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Motivation
• Forward scattering is interesting in many contexts

• phenomenology:  
-DIS at small x  
-saturation, …  
-large rapidity jets (‘Mueller-Navelet’)  
- …

• theory:  
-partonic amplitudes in (multi)-Regge limit):  
 unique insight into scattering at high loops 
-generally interesting limit (pomeron→graviton in AdS CFT,…)

this 
talk



Outline
• Wilson line approach to forward scattering:  

-Eikonal approximation  
-The Reggeized gluon 
-Expected all-order structure 
-Quantitative tests w/ the 2->2 amplitude

• Systematic improvements 
- A remarkable equivalence: ‘non-global logs’  
- 3-loop evolution
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• Fast particles like to go straight

• In gauge theories,  
natural to dress with Wilson lines:

• Familiar enough for heavy quarks. Seems natural 
for fast particles…  Q:  When is that valid?

The eikonal approximation

b

U(b) ⌘ Pei
R 1
�1 TaAa

µ(b+vt)vµdt

M(pi) ⇡
Z

d2beiq·bhU(b)itarget,



Q:  Which trajectory should one dress with a Wilson line?

...

A slightly less naive picture of 
an ultrarelativistic particle:



• This question was analyzed by many people 

• The only possible correct answer is « all »  
(all partons whose rapidity is between that of the projectile and target)  

• Increases with energy (⇒growing 𝜎tot)

• Looks complicated! 

• Successful theory finally developed in the ’90’

6

[Balitsky ’95, Mueller,  
Kovchegov, JIMWLK*]



The eikonal approximation
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b1

proton
quarkonium

b2

(a more well-defined gauge theory example:)

M ⇡
Z

d2b1d
2b2⇢(b1 � b2)e

iq· b1+b2
2 Tr[U(b1)U

†(b2)]

qq pair

What are the corrections to this?



The Balitsky-JIMWLK equation
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Due to the large boost, the Wilson lines associated with a highly boosted projectile

propagating in the +-direction will be parallel to each other and supported on a common

light-front x� = 0. However, they can be located anywhere in the transverse plane, since

boosts do not a↵ect transverse coordinates. Thus the necessary operators are labelled by a

transverse coordinate

U
r

(x) ⌘ Pei
R1
�1 dx

+
A

a
+(x+

,x

�=0,x)Ta
r . (2.1)

We will refer to these as “projectile” Wilson lines, in the representation r. Similarly, we have

“target” Wilson lines which go along the �-direction at x+ = 0

Ū
r

(x) ⌘ Pei
R1
�1 dx

�
A

a
�(x+=0,x�

,x)Ta
r . (2.2)

Importantly, such null, infinite Wilson lines are divergent. This occurs in any number

of space-time dimensions; contrary to the well-known situation for semi-infinite Wilson lines,

dimensional regularization does not remove all divergences. Instead, the divergences can be

removed, for example, by tilting the Wilson lines slightly o↵ the light-cone to give them a

finite rapidity, ⌘ ⌘ 1
2 log

dx

+

dx

� . The operators U thus depend implicitly on a rapidity regulator,

U ⌘ U⌘, which we will generally not make explicit in order not to clutter the formulas.

By the factorization principle stated in the Introduction, the rapidity scale ⌘ of an op-

erator plays a role analogous, in the context of large rapidity limits, as that played by the

“renormalization scale” in the context of short-distance limits. The corresponding evolution

equation, analogous to the renormalization group equation for local operators, is known as

the (Balitsky-Kovchekov)-JIMWLK equation.

��

��

��

(a) (b)

Figure 1. Shockwave diagrams contributing to the leading order JIMWLK equation. The “shock”
represent the Lorentz-contracted target which moves in the opposite direction. Diagrams with the two
gluon endpoints attached to the same Wilson lines are also present but not shown explicitly.

2.1 The JIMWLK equation

To introduce the reader to the main equation and ideas, as well as to make contact with

di↵erent forms found in the literature, we introduce the equation in steps, beginning with the
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(+perms.)

d

d⌘ =

z1

z2
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d

d⌘ =

• The ‘shock’ represents Lorentz-contracted target

• The 45o lines represent fast projectile partons

• Each parton that crosses the shock gets a Wilson line

z1

z2

The Balitsky-JIMWLK equation
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simplest case.

The simplest gauge-invariant operators built from U ’s are color dipoles, whose evolution

takes the form []

d

d⌘
Tr[U †

f (z1)Uf(z2)] =
↵
s

⇡2

Z
d2z0 z212
z201z

2
02

⇣
Tr[U †

f (z1)T
aUf(z2)T

b]Uab

ad(z0)� C
F

Tr[U †
f (z1)Uf(z2)]

⌘
.

(2.3)

The subscripts ‘f ’ and ‘ad’ indicate the fundamental and adjoint representations, respectively,

and z
ij

⌘ z
i

� z
j

denotes di↵erences of transverse coordinates (2-vectors).

To understand the physical origin of these terms it is customary to draw “shockwave”

diagram as in fig. 2. Such shockwave diagrams will be used extensively in later sections

of this paper. They depict the trajectories of partons present in the projectile, with the

understanding that the trajectory of each parton that crosses the target (shaded area, or

“shockwave”) must be dressed by a corresponding Wilson line. The adjoint Wilson line Uab

ad

in the first term in eq. (2.3) is associated with the gluon crossing the target in fig. 2(a), while

the second term correspond to the graphs in (b), which do not involve any additional parton

crossing the shock. All graphs are well separated from each other in the high-energy limit,

thanks to the Lorentz contraction of the target, and the trajectories at crossing are labeled

simply by a transverse coordinate.

These graphical rules may appear very rooted in perturbation theory, but as we will

repeatedly emphasize, in the ‘t Hooft planar limit the relevant expansion parameter is g2 ⇠
�/N

c

rather than � itself. For this reason, it is natural to conjecture these rules should apply

in the regime of large � as well.

Importantly, the evolution (2.3) has produced one additional Wilson line, as expected

from the general discussion in the Introduction. To iterate the evolution, it is thus necesary

to know the evolution of a general product as well.

Fortunately, at the leading-order, this can be obtained from (2.3) without further compu-

tation. Indeed, due to the simplicity of the relevant one-loop Feynman graphs, only pairwise

interactions can appear at this order. This allows the dipole evolution (2.3) to be uplifted

directly to an arbitrary color-singlet product of Wilson lines:

d

d⌘
U(z1) · · ·U(z

n

) =
↵
s

4⇡2

nX

i,j=1

Z �d2z0z2
ij

z20iz
2
0j

⇥
⇣
T a

i,L

T b

j,R

Uab

ad(z) + T a

j,L

T b

i,R

Uab

ad(z)� T a

i,L

T a

j,L

� T a

i,R

T a

j,R

⌘
U(z1) · · ·U(z

n

). (2.4)

In this equation we have introduced the notation T a

L,i

and T a

R,i

for the group theory generators

acting to the left or to the right, respectively, of the Wilson line U(z
i

). The standard group

theory convention [T a, T b] = ifabcT c implies the commutation relations

[T a

L,i

, T b

L,i

] = �ifabcT c

L,i

, [T a

R,i

, T b

R,i

] = ifabcT c

R,i

, [T a

L,i

, T b

R,i

] = 0.

It is easy to see that eq. (2.4) reduces correctly in the dipole case. To see that it is

uniquely determined by this property, we note that any possible ambiguity in the integration
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d
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• Evolution: operator mixing between 2WL and 3WL:

z1

z2

The Balitsky-JIMWLK equation
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The Fourier transform to coordinate space gives

hW a(z1),W
b(z2)iBorn = �i

�ab

4⇡
log(z212µ

2
IR). (2.18)

The Born-level inner product between multiple W operators is obtained by summing over all

Wick contractions between left- and right- movers.

Importantly, boost invariance of the inner product implies Hermiticity of the evolution

Hamiltonian:

hH(W )m, (W )ni = h(W )m, H(W )ni. (2.19)

This states that one should be able to describe a process with a large rapidity gap by boosting

either the projectile or the target, and get the same answer.

This simple requirement is extremely di�cult to fulfill in a description where Wilson lines

can be added but not removed under evolution. What may appear, in one frame, as a gluon

radiated from the projectile and scattering elastically against the target, must be equivalent,

in another frame, to a gluon emitted from the target and then scattering elastically against

the projectile. This is a very nontrivial constraint on the form of H.

Figure 2. Feynman diagram giving the Born-level inner product between two Wilson lines.

It is well appreciated that this requirement has deep implications regarding the structure

of higher-loop corrections to the JIMWLK equation. In particular, they have been used to

obtain the equations describing so-called Pomeron loops []. As we will stress in the next

section, Hermiticity of the boost operator has deep implications already at one-loop order

and Gluon Reggeization is a direct consequence of it.

3 Reggeization and the inner product

The reader of the preceding section may have the impression that Reggeization occurs as

the result of rather accidental cancelations. This is not the case: it is a simple and direct

consequence of the Hermitian inner product.

This simple property has far-reaching consequence when combined with the following

basic power-counting rules, which follow from Hypotheses 1–2 and basic inspection of leading

order Feynman diagrams:

• The inner product h(W )m, (W )ni is suppressed by at least (g2)|m�n|

– 14 –

i) Start from naive eikonal approximation:  
scatter fundamental Wilson lines

q

qq

q

�x? ⇠ 1/
p

|t|

(s � |t|)

Application: 2to2 scattering, I
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qq

q

...

Application: 2to2 scattering, I
i) Start from naive eikonal approximation:  

scatter fundamental Wilson lines (s � |t|)
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This states that one should be able to describe a process with a large rapidity gap by boosting

either the projectile or the target, and get the same answer.

This simple requirement is extremely di�cult to fulfill in a description where Wilson lines

can be added but not removed under evolution. What may appear, in one frame, as a gluon

radiated from the projectile and scattering elastically against the target, must be equivalent,

in another frame, to a gluon emitted from the target and then scattering elastically against

the projectile. This is a very nontrivial constraint on the form of H.
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at leading-log: M ⇡ s

t

✓
|s|
�t

◆↵g(t/µ
2
IR)

[Fadin, Kuraev& Lipatov 1977,  
Balitsky& Lipatov 1978]
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• At LL, most Wilson lines are trivial (U=1)  

• Define Reggeized gluon operator by taking log:  
 

• Gives a gauge-invariant operator*:

• Result is independent of representation used.

and its complex conjugate, that is spanning the complete the Schwinger-Keldysh contour (see

ref. [22] and references therein). This being said, the same equation (2.5) describes both

situations at the leading order.

As a final comment, we note that the color-singlet one-loop evolution equation (2.4) is

conformally invariant in the transverse plane.2 This is a direct consequence of the conformal

symmetry of the tree-level QCD Lagrangian. In contrast, conformal symmetry is destroyed

in (2.5). This is readily understood from the fiducial Wilson line which we inserted at z = 1
in order to make the scattering amplitude gauge-invariant.

Next-to-leading order evolution of color dipoles has been obtained in [20] (see also refs. [23,

24]), and shown to agree with next-to-leading order BFKL [25] in the appropriate regime.

By a relatively straightforward recycling of the ingredients of that computation, we have

assembled the next-to-leading order JIMWLK kernel (closely related to the next-to-leading

order correction to the so-called BKP equation [26]), which will be presented and analyzed

in a forthcoming publication [27].

2.2 Linearization and Gluon Reggeization: a pedestrian approach

The JIMWLK equations constitute an infinite hierarchy of equations which we cannot solve

without further approximations. For example, even starting from a single Wilson line, evolu-

tion will generate a complicated product of multiple Wilson line operators. Heuristically this

reflects the presence of a cloud of soft partons surrounding the projectile.

In the case where all Wilson lines are close to identity, as is the case in a perturbative

scattering process, it is known that the infinite hierarchy can be consistently truncated to

a linear system. This system involves only a finite number of Wilson lines depending on

the desired accuracy. This linear system furthermore agrees with the BFKL approach. The

existence of this linearization is essentially the phenomenon of gluon reggeization, and is a

nontrivial property of the JIMWLK equation.

Because we will use this result extensively, we describe it in detail. We need to pick

a color-adjoint degree of freedom which will form the basis of the expansion. A convenient

choice is the logarithm of the adjoint Wilson line,

W a ⌘ fabc

gC
A

log U bc

ad (2.7a)

⌘ fabc

gC
A

⇥
U bc

ad � �bc
⇤
� 1

2

fabc

gC
A

⇥
U bd

ad � �bd
⇤⇥
Udc

ad � �dc
⇤
+O

⇣⇥
Uab

ad � �ab
⇤3⌘

(2.7b)

=

Z 1

�1
Aa

+(x
+)dx+ � g

1

2
fabc

Z 1

�1
dx+1 dx

+
2 A

b

+(x2)A
+c(x1)✓(x

+
2 � x+1 ) + . . .

Notice that the operator W a is by definition gauge invariant (under gauge transformations

which vanish at infinity), and begins at order g0 in the weak coupling expansion. This

2This is visible from the invariance of the measure d

2
z0z

2
12/(z

2
01z

2
02) under the inversion zi ! zi/z

2
i , which

takes z2ij 7! z

2
ij/(z

2
i z

2
j ) and d

2
z0 7! d

2
z0/z

4
0 .
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[cf Kovner et al, ’97]

similar to Goldstone’s  
parametrization of pion field

W a

U(x?) ⌘ e

igT

a
W

a(x?)

*under gauge transformations which vanish at infinity



• RG equation for W linearizes!  
 
 

• Diagonal in momentum space:

• Eigenvalue is (LL) ’gluon Regge trajectory’
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d

d⌘
W a(z1) =

↵sCA

2⇡2

Z
d2z0
z201

(W a(z0)�W a(z1)) +O(g4W 3)

These imply that the one-loop evolution is triangular in the Reggeized gluon basis: higher-

order terms omitted in eq. (2.15) can increase the number of W fields in an operator, but

no e↵ects exist (in the one-loop Balitsky-JIMWLK Hamiltonian) which would decrease the

number of W ’s.

This result is of fundamental importance since it ensures that sectors with di↵erent

numbers of W ’s can be diagonalized independently at one-loop. In the single-W sector, for

example, one gets just the second line of eq. (2.15). This is easily diagonalized by going to

momentum space, W a(p) =
R
d2zeip·zW a(z), leading to

d

d⌘
W a(p) = ↵

g

(p)W a(p) +O(g4W 3) (2.16)

where ↵ is the so-called gluon Regge trajectory

↵
g

(p) ⌘ ↵sC
A

2⇡2

Z
d2z

z2
(eip·z � 1) = �↵sC

A

2⇡
log

p2

µ2
IR

. (2.17)

The significance of eq. (2.16) is that amplitudes mediated by single-W exchange exhibit

pure Regge pole behavior, that is the pure power-law dependence on energy A / s↵(p) that

is the hallmark of gluon reggeization. (Later we will treat the infrared divergences more

carefully using dimensional regularization.) Mathematically, gluon reggeization is implied by

the triangular structure of eq. (2.15), which governs the weak-field expansion.

For products of two and more W fields, eq. (2.15) reproduces the celebrated BFKL

equation [14, 15] and its multi-reggeon generalization in arbitrary color states, the BJKP

equation [59–61], as it should. For the reader’s convenience, the Fourier space version of

eq. (2.15) is given in appendix A in a form which can be directly compared with those

references. This confirms the interpretation of the W field, defined in eq. (2.8a) as the

logarithm of a null infinite Wilson line, as an interpolating operator for the Reggeized gluon.

2.3 The hermitian inner product and structure at higher loops

A simple but powerful fact about the boost operator H = � d

d⌘

is that it is hermitian.

This holds with respect to a specific inner product, which is just the vacuum expectation

value of time-ordered products of left- and right- moving Wilson lines, e.g. the scattering

amplitude. For any two functionals O1,2, we define:
⌦
O1,O2

↵
⌘ h0|T O1[U ]⌘ O2[Ū ]⌘|0i . (2.18)

The barred U ’s, as we recall from eq. (2.2), denote left-moving Wilson lines. At tree level,

the inner product in the Reggeized gluon basis is Gaussian with the two-point function

h0|T W a(p) W̄ b(p0)|0i
���
g!0

= �ab�2(p� p0)
i

p2
. (2.19)

This is obtained trivially from the graph shown in fig. 2 in a covariant or Coulomb gauge,

since the longitudinal integrals in the Wilson lines force the four momentum components p+

and p� to vanish.4

4 We recall that such correlators are to be made gauge invariant by adding gauge links at infinity, abbreviated
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/ s↵g(t)

��

� �

Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from
summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
exchanged gluon.

In prevision of using this to constrain the so-called soft anomalous dimension, we per-

form all computations in dimensional regularization using the D-dimensional kernel given in

eq. (3.5).

4.1 General structure of the amplitude

We consider the amplitude M
ij!ij

where the projectiles retain their identities (for example

gg ! gg or gq ! gq etc.) It will be convenient to work in a frame where the incoming partons

1 and 2 both have vanishing transverse momentum, with momenta P4 and P3 being nearly

opposite to P1, P2, respectively. These kinematics are shown in fig. 4.

The first step in the computation is to perform an operator expansion, wherein we ap-

proximate the projectile by Wilson lines. At the Born level, this amounts to the naive eikonal

approximation (see ref. [38] for an interesting application)

â
i,�3,a(P3)â

†
i,�2,a

0(P2) ⇠ p+2 ��2,�̄3
U
i

(p)
aa

0 (leading log). (4.1)

Here â† and â are creation and annihilation operators for the external states, U
i

is a Wilson

line in the representation associated with particle i with color indices a and a0, and p is

the transverse momentum component of P3. We use capital letters to denote four-vectors,

P
i

⌘ (p+
i

, p�
i

, p
i

). The �
i

’s are the helicities of the particles, which are conserved in the

high-energy limit.

At higher orders in perturbation theory, several types of corrections to (4.1) must be

expected, in line with its interpretation as an Operator Product Expansion.

First, the coe�cient of U
i

(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing multiple

Wilson lines must appear. This is necessary because according to the JIMWLK equation, the

original operator U
i

(p) will mix with such products under rapidity evolution. Hence they must

necessarily appear in the OPE, be it only to fix “constants of integration” for the evolution.

(The need to include such multi-Wilson line operators was also demonstrated directly long

– 21 –

↵g(p) =
↵sCA

2⇡2

Z
d2�2✏z

(z2)1�2✏
(ep·z � 1) ⇠ ↵sCA

2⇡✏

✓
p2

µ2

◆�✏



• More reggeons: start from B-JIMWLK

• Plug in Goldstone’s parametrization

• T’s = color rotation generators: CBH formula:

17 [SCH ’13]

�d

d⌘
=

↵s

2⇡2

Z
d2zid

2zj
d2z0 z0i·z0j

z20iz
2
0j

⇣
T a
i,LT

a
j,L + T a

i,RT
a
j,R

�Uab
ad(z0)

�
T a
i,LT

b
j,R + T a

j,LT
b
i,R

�⌘

U ! eigW

O[W ]. The Baker-Campbell-Hausdor↵ formula then states that

igT a

j,L

=
�

�W a

j

+
g

2
fabxW x

j

�

�W b

j

+
g2

12
faexf ebyW x

j

W y

j

�

�W b

j

� g4

720
WWWW

�

�W
+ . . .

igT a

j,R

=
�

�W a

j

� g

2
fabxW x

j

�

�W b

j

+
g2

12
faexf ebyW x

j

W y

j

�

�W b

j

� g4

720
WWWW

�

�W
+ . . .

(2.12)

The color contractions in the W 4�/�W and higher terms are easily obtained but will not be

needed. For the reader’s convenience we reproduce here the functional form the Balitsky-

JIMWLK equation (2.6):

�d

d⌘
⌘ H =

↵s

2⇡2

Z
d2z

i

d2z
j

d2z0 z0i·z0j
z20iz

2
0j

⇣
T a

i,L

T a

j,L

+ T a

i,R

T a

j,R

� Uab

ad(z0)
�
T a

i,L

T b

j,R

+ T a

j,L

T b

i,R

�⌘
.

To linearize we plug in eqs. (2.10) and (2.12) and expand in g. Rewriting the parenthesis as

�
T a

i,L

� T a

i,R

��
T a

j,R

� T a

j,R

�
�
�
Uab

ad(z0)� �ab
��
T a

i,L

T b

j,R

+ T a

j,L

T b

i,R

�
, (2.13)

and abbreviating W a

i

⌘ W a(z
i

), the various terms readily evaluate to:

�
T a

i,L

� T a

i,R

��
T a

i,R

� T a

i,R

�
= �faa

0
cf bb

0
cW a

0
i

�

�W a

i

W b

0
j

�

�W b

j

,

�
�
Uab

ad(z0)� �ab
�
T a

i,L

T b

j,R

=
1

2
faa

0
cf bb

0
c

 
(W a

0
i

�W a

0
0 )W b

0
0

�2

�W a

i

�W b

j

+W a

0
0

�

�W a

i

W b

0
j

�

�W b

j

!

+
1

g
fabcW c

0

�2

�W a

i

�W b

j

+O(gW 3) . (2.14)

Importantly, the 1/g piece ends up canceling after adding the (i $ j) term, so (2.13) is of

order g0. Commuting W ’s to the left of �/�W ’s and collecting terms then yields

H =
↵s

2⇡2

Z
d2z

i

d2z
j

�d2z0 z0i·z0j
z20iz

2
0j

faa

0
cf bb

0
c(W a

0
i

�W a

0
0 )(W b

0
j

�W b

0
0 )

�2

�W a

1 �W
b

2

+
↵sC

A

2⇡2

Z
d2z

i

d2z0
z20i

(W a

i

�W a

0 )
�

�W a

i

+O(g4W 4�2/�2W ) .

(2.15)

This equation possesses two crucial properties.

• It contains no terms of order (W )0. This is a simple consequence of the boost invariance

of the vacuum: in this state all expectation values vanish h(W )ni = 0, and this state

must be stable.

• It contains no terms W �2/�2W . This is a simple consequence of signature (CPT)

symmetry, which interchanges initial and final states Uab

ad 7! U ba

ad. The Reggeized gluon

is odd under this symmetry, W a ! �W a, which explains the cancelation of the 1/g

piece.

– 14 –



• Result of expanding in g:

• Act on polynomial W(p1)…W(pn) = n-Reggeon state

• First term = gluon Regge trajectories

• Second term = sum over pairwise interactions

18

interactions with k < 0 are suppressed by at least g2+|k|
s , which means that they can first

appear in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. Thus to obtain the m!m�2

transition by direct calculation of the Hamiltonian would require a rather formidable three-
loop non-planar computation. However, this is unnecessary, since the symmetry of H

predicts the result; this is carried out explicitly in the following subsection (see eq. (3.18)).

3.1 Evolution in momentum space

Due to the simple form eq. (3.4) of the kernel in momentum space, the perturbative calcu-
lation will be easier in this space. Let us thus introduce the Fourier transform:

W a
(p) =

Z

[dz] e�ipz W a
(z), W a

(z) =

Z

[d̄p] eipz W a
(p). (3.12)

Substituting into eq. (3.10), and using the Fourier representation of the kernel eq. (3.5), one
finds, after a bit of algebra again,

Hk!k = �
Z

[dp]CA ↵g(p)W
a
(p)

�

�W a
(p)

(3.13)

+↵s

Z

[d̄q][dp1][dp2]H22(q; p1, p2)W
x
(p1+q)W y

(p2�q)(F xF y
)

ab �

�W a
(p1)

�

�W b
(p2)

,

where the gluon Regge trajectory and pairwise interactions come out as some specific com-
binations of the momentum space kernel R of eq. (3.4) (see [16] for more details). Given
that we consider here only the leading order contribution to the kernel Kij;0 in eq. (3.2),
the gluon Regge trajectory in eq. (3.13) is actually the leading-order trajectory defined in
eq. (2.19), that we recall here for the reader’s convenience:

↵g(p) =

↵s

⇡
↵(1)
g (p2) + O(↵2

s)

= �↵s(µ)S✏(µ
2
)

Z

[d̄q]
p2

q2(p � q)2
+ O(↵2

s) =
↵s(µ) r�

2⇡✏

✓

µ2

p2

◆✏

+ O(↵2
s). (3.14)

The solution to the single-Reggeon part of the evolution equation above, in which one
consider the LO Regge trajectory, is responsible for the leading-logarithmic behaviour of
the amplitude. Below we will analyse the structure of the scattering amplitude up to NNLL
accuracy, which means that we will need also the first two corrections to ↵g(p2), namely
↵(2)
g (p2) and ↵(3)

g (p2). The NLO Regge trajectory ↵(2)
g (p2) has been calculated in [58–61];

it can also be extracted from two-loop calculations of 2 ! 2 scattering amplitudes, see [44].
The NNLO correction to the Regge Trajectory ↵(3)

g (p2) is instead not yet known in full
QCD, though it will be possible to extract it below at least in N = 4 SYM from a recent
three-loop calculation [41]. As we will discuss below, it is not even possible to define it
precisely, beyond the planar limit, without taking into account the mixing in the evolution
between one- and three-Reggeon exchange given by H1!3 and H3!1. The other ingredient
appearing in eq. (3.13) is then the leading-order momentum kernel for the evolution of two
Reggeon states, [16], i.e.

H22(q; p1, p2) =
(p1 + p2)2

p21p
2
2

� (p1 + q)2

p21q
2

� (p2 � q)2

q2p22
. (3.15)
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The solution to the single-Reggeon part of the evolution equation above, in which one
consider the LO Regge trajectory, is responsible for the leading-logarithmic behaviour of
the amplitude. Below we will analyse the structure of the scattering amplitude up to NNLL
accuracy, which means that we will need also the first two corrections to ↵g(p2), namely
↵(2)
g (p2) and ↵(3)

g (p2). The NLO Regge trajectory ↵(2)
g (p2) has been calculated in [58–61];

it can also be extracted from two-loop calculations of 2 ! 2 scattering amplitudes, see [44].
The NNLO correction to the Regge Trajectory ↵(3)

g (p2) is instead not yet known in full
QCD, though it will be possible to extract it below at least in N = 4 SYM from a recent
three-loop calculation [41]. As we will discuss below, it is not even possible to define it
precisely, beyond the planar limit, without taking into account the mixing in the evolution
between one- and three-Reggeon exchange given by H1!3 and H3!1. The other ingredient
appearing in eq. (3.13) is then the leading-order momentum kernel for the evolution of two
Reggeon states, [16], i.e.

H22(q; p1, p2) =
(p1 + p2)2

p21p
2
2

� (p1 + q)2

p21q
2

� (p2 � q)2

q2p22
. (3.15)

– 20 –

=BFKL/BJKP



LO B-JIMWLK gives:
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Leading BFKL and 
‘BKP’ kernels

off the diagonal: n→n+k Reggeon transitions
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all determined by one simple function:



Basically:

h0|(W̄1 · · · W̄n)H(W1 · · ·Wm)|0i = h0|H(W̄1 · · · W̄n) (W1 · · ·Wm)|0i

H = HT

Projectile-Target duality

The Fourier transform to coordinate space gives

hW a(z1),W
b(z2)iBorn = �i

�ab

4⇡
log(z212µ

2
IR). (2.18)

The Born-level inner product between multiple W operators is obtained by summing over all

Wick contractions between left- and right- movers.

Importantly, boost invariance of the inner product implies Hermiticity of the evolution

Hamiltonian:

hH(W )m, (W )ni = h(W )m, H(W )ni. (2.19)

This states that one should be able to describe a process with a large rapidity gap by boosting

either the projectile or the target, and get the same answer.

This simple requirement is extremely di�cult to fulfill in a description where Wilson lines

can be added but not removed under evolution. What may appear, in one frame, as a gluon

radiated from the projectile and scattering elastically against the target, must be equivalent,

in another frame, to a gluon emitted from the target and then scattering elastically against

the projectile. This is a very nontrivial constraint on the form of H.

Figure 2. Feynman diagram giving the Born-level inner product between two Wilson lines.

It is well appreciated that this requirement has deep implications regarding the structure

of higher-loop corrections to the JIMWLK equation. In particular, they have been used to

obtain the equations describing so-called Pomeron loops []. As we will stress in the next

section, Hermiticity of the boost operator has deep implications already at one-loop order

and Gluon Reggeization is a direct consequence of it.

3 Reggeization and the inner product

The reader of the preceding section may have the impression that Reggeization occurs as

the result of rather accidental cancelations. This is not the case: it is a simple and direct

consequence of the Hermitian inner product.

This simple property has far-reaching consequence when combined with the following

basic power-counting rules, which follow from Hypotheses 1–2 and basic inspection of leading

order Feynman diagrams:

• The inner product h(W )m, (W )ni is suppressed by at least (g2)|m�n|
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same as H=HT in schemes where correlators are diagonal ~𝛿m,n:

boosting projectile = boosting target

*really:

(cf Kovner’s talk)
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BKP kernels

terms in NNLO B-JIMWLK 
predicted by symmetry H=HT

n→n+k transitions:  from LO B-JIMWLK

• Due to Pomeron growth, off-diagonal can’t be ignored

• Complete ‘Reggeon field theory’ remains elusive

General structure
eigW

aTa

⇠ 1 + igWT + . . .



Pomeron loop power counting

• BFKL (W~1)

• B-JIMWLK (log Uproj~gW~1)

• The observable physics is of course the same

H2→4 H4→2x

NLL x NLL = NNLL

LL x NNLL = NNLL



How do we know  
that this is right?
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• Parton amplitude beyond leading-log:  

• Expand in reggeized gluons:
��

� �

Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from
summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
exchanged gluon.

In prevision of using this to constrain the so-called soft anomalous dimension, we per-

form all computations in dimensional regularization using the D-dimensional kernel given in

eq. (3.5).

4.1 General structure of the amplitude

We consider the amplitude M
ij!ij

where the projectiles retain their identities (for example

gg ! gg or gq ! gq etc.) It will be convenient to work in a frame where the incoming partons

1 and 2 both have vanishing transverse momentum, with momenta P4 and P3 being nearly

opposite to P1, P2, respectively. These kinematics are shown in fig. 4.

The first step in the computation is to perform an operator expansion, wherein we ap-

proximate the projectile by Wilson lines. At the Born level, this amounts to the naive eikonal

approximation (see ref. [38] for an interesting application)

â
i,�3,a(P3)â

†
i,�2,a

0(P2) ⇠ p+2 ��2,�̄3
U
i

(p)
aa

0 (leading log). (4.1)

Here â† and â are creation and annihilation operators for the external states, U
i

is a Wilson

line in the representation associated with particle i with color indices a and a0, and p is

the transverse momentum component of P3. We use capital letters to denote four-vectors,

P
i

⌘ (p+
i

, p�
i

, p
i

). The �
i

’s are the helicities of the particles, which are conserved in the

high-energy limit.

At higher orders in perturbation theory, several types of corrections to (4.1) must be

expected, in line with its interpretation as an Operator Product Expansion.

First, the coe�cient of U
i

(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing multiple

Wilson lines must appear. This is necessary because according to the JIMWLK equation, the

original operator U
i

(p) will mix with such products under rapidity evolution. Hence they must

necessarily appear in the OPE, be it only to fix “constants of integration” for the evolution.

(The need to include such multi-Wilson line operators was also demonstrated directly long
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One way: compare w/fixed-order

Eq. (3.11) describes not only the 1 ! 3, but also 2 ! 4 transitions in position space.
The latter are not necessary for the calculation of the odd contribution to the amplitude
at three loops: 2 ! 4 transitions start contributing only at four loops. It is however
straightforward to derive their representation in momentum space, and we list it here for
future reference. One has

H2!4 =

⇡↵2
s

3

S✏(µ
2
)

Z

[d̄p1][d̄p2][d̄p3][d̄p4][dpa][dpb](2⇡)
2�2✏�2�2✏

(p1+p2+p3+p4�pa�pb)

⇥H24(pi) (F
xF yF zF t

)

abW x
(p1)W

y
(p2)W

z
(p3)W

t
(p4)

�

�W a
(pa)

�

�W b
(pb)

, (3.19)

where:

H24(pi) = 2R(pa, pb�p4) + 2R(pa�p1, pb) � R(pa, pb)

� 3R(pa�p1, pb�p4) +R(pa�p1, pb�p4�p3) � R(pa, pb�p4�p3)

+R(pa�p1�p2, pb�p4) � R(pa�p1�p2, pb), (3.20)

and we recall that R(p, q) = (p+q)2

p2q2
from eq. (3.4). Similarly, taking its transpose,

H4!2 =

⇡↵2
s

3

Z

[d̄pa][d̄pb][dp1][dp2][dp3][dp4](2⇡)
2�2✏�2�2✏

(pa+pb�p1�p2�p3�p4)

⇥ (�1)

p2a p
2
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p21 p
2
2 p

2
3 p

2
4
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⇥ �

�W x
(p1)

�

�W y
(p2)

�

�W z
(p3)

�

�W t
(p4)

. (3.21)

3.2 Impact factors

Given the Hamiltonian, all one needs to compute the amplitude are the target and projectile
impact factors. At leading order these follow simply from the naive eikonal approximation:

| ii(LO)
=

Z

[dz]eip·zUi(z), (3.22)

where the Wilson line is in the representation of particle i, and p in the transferred momen-
tum, p2 = �t. Expanding in powers of the Reggeon field according to eq. (3.6), and going
to momentum space, this can also be written to NNLL accuracy as

| ii(LO)
= igTa

iW
a
(p) � g2

2

Ta
iT

b
i

Z

[d̄q]W a
(q)W b

(p�q)

� ig3

6

Ta
iT

b
iT

c
i

Z

[d̄q1][d̄q2]W
a
(q1)W

b
(q2)W

c
(p�q1�q2) + O(N

3
LL), (3.23)

where we have dropped the coefficient of the unit operator.
At higher orders in the coupling, the color charge of the projectile is no longer con-

centrated in a single point, which leads to a nontrivial momentum dependence for multi-
Reggeon impact factors. Restricting again to NNLL accuracy, the relevant corrections at
relative order ↵s reads

| ii(NLO)
=

↵s

⇡



igTa
iW

a
(p)D(1)

i (p)
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where we have dropped the coefficient of the unit operator.
At higher orders in the coupling, the color charge of the projectile is no longer con-
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Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from
summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
exchanged gluon.

In prevision of using this to constrain the so-called soft anomalous dimension, we per-

form all computations in dimensional regularization using the D-dimensional kernel given in

eq. (3.5).

4.1 General structure of the amplitude

We consider the amplitude M
ij!ij

where the projectiles retain their identities (for example

gg ! gg or gq ! gq etc.) It will be convenient to work in a frame where the incoming partons

1 and 2 both have vanishing transverse momentum, with momenta P4 and P3 being nearly

opposite to P1, P2, respectively. These kinematics are shown in fig. 4.

The first step in the computation is to perform an operator expansion, wherein we ap-

proximate the projectile by Wilson lines. At the Born level, this amounts to the naive eikonal

approximation (see ref. [38] for an interesting application)

â
i,�3,a(P3)â

†
i,�2,a

0(P2) ⇠ p+2 ��2,�̄3
U
i

(p)
aa

0 (leading log). (4.1)

Here â† and â are creation and annihilation operators for the external states, U
i

is a Wilson

line in the representation associated with particle i with color indices a and a0, and p is

the transverse momentum component of P3. We use capital letters to denote four-vectors,

P
i

⌘ (p+
i

, p�
i

, p
i

). The �
i

’s are the helicities of the particles, which are conserved in the

high-energy limit.

At higher orders in perturbation theory, several types of corrections to (4.1) must be

expected, in line with its interpretation as an Operator Product Expansion.

First, the coe�cient of U
i

(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing multiple

Wilson lines must appear. This is necessary because according to the JIMWLK equation, the

original operator U
i

(p) will mix with such products under rapidity evolution. Hence they must

necessarily appear in the OPE, be it only to fix “constants of integration” for the evolution.

(The need to include such multi-Wilson line operators was also demonstrated directly long
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Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from
summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
exchanged gluon.
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summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
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opposite to P1, P2, respectively. These kinematics are shown in fig. 4.

The first step in the computation is to perform an operator expansion, wherein we ap-

proximate the projectile by Wilson lines. At the Born level, this amounts to the naive eikonal

approximation (see ref. [38] for an interesting application)
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Here â† and â are creation and annihilation operators for the external states, U
i

is a Wilson

line in the representation associated with particle i with color indices a and a0, and p is

the transverse momentum component of P3. We use capital letters to denote four-vectors,

P
i

⌘ (p+
i

, p�
i

, p
i

). The �
i

’s are the helicities of the particles, which are conserved in the

high-energy limit.

At higher orders in perturbation theory, several types of corrections to (4.1) must be

expected, in line with its interpretation as an Operator Product Expansion.

First, the coe�cient of U
i

(p) can receive radiative corrections, which will depend on

the particle species i. Second, and perhaps more significantly, operators containing multiple

Wilson lines must appear. This is necessary because according to the JIMWLK equation, the

original operator U
i

(p) will mix with such products under rapidity evolution. Hence they must

necessarily appear in the OPE, be it only to fix “constants of integration” for the evolution.

(The need to include such multi-Wilson line operators was also demonstrated directly long
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Figure 5. Tree-level elastic amplitude in the Regge limit. Leading logarithm corrections follow from
summing the renormalization group evolution for the gluon source, which e↵ectively Reggeizes the
exchanged gluon.
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Form of the NLL 4-point amplitude:

MNLL
4 = (1 + ↵sC

(1)L + ↵sC
(1)R)hW,W iNLL + hWW,WW iLL

signature 
even

signature (‘CPT’)  
odd

The first term is a pure power-law, while the second 
term is a (pure imaginary) ‘Regge cut’



• The NLL Regge cut can be computed using just 
the leading order (‘naive’) eikonal 
approximation, +leading order BFKL kernel  
 
 
 

• This result was known since (B)FKL ’77;  
actually doing the integrals proves interesting
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The identity follows simply by writing T

2
s�T

2
u

2 = T a

i,L

�
T a

j,L

+T a

j,R

�
. Notice that the last factor is

the tree color structure. This yields the signature-even contribution to the one-loop amplitude

in the Regge limit:

M(1)aa0bb0

ij!ij

��even = i
↵̃s

2✏

T2
s

�T2
u

2
⇥Mtree

ij!ij

. (4.14)

To go to the higher orders, we note from eq. (A.5) that the color structure dependence of

the one-loop Hamiltonian comes solely through what is essentially the t-channel color charge,

facef bdeW cd =
�
C
A

� 1

2
T2

t

�
W ab.

Therefore, all terms in eq. (4.10) will be polynomials in T2
t

and C
A

acting on T

2
s�T

2
u

2 Mtree
ij!ij

.

For this reason, we choose to rewrite the Regge cut contribution in the more useful form:

Maa

0
bb

0
ij!ij

��even
NLL
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✓
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d
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Mtree
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. (4.15)

Notice that we have pulled out the one-loop Regge trajectory weighed by the t-channel

Casimir. To write the overlap function as explicitly as possible, we work in momentum

space and we use the momentum conservation to write W
p

(k) ⌘ W (p)W (k � p), stripping

the color indices. The `-loop overlap function is then defined as

d
`

=
⇡p2`

c0�

Z
µ̄2✏d2�2✏k

(2⇡)2�2✏
hĤ`�1W

p

(k)i ⇥ T2
s

�T2
u

2
. (4.16)

The subtracted Hamiltonian here, shifted by the one-loop Regge trajectory weighted by T2
t

in accordance with (4.15), is given explicitly by (see eq. (A.5))

ĤW
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The expectation value is defined as hW
p

(k)itarget ⌘ �1/[k2(p�k)2]. The problem is now

reduced to computing a rather explicit set of planar propagator-type Feynman integrals in

2� 2✏ Euclidean dimensions.

The result so far is, of course, totally standard, see refs. [8–10, 32, 33] and references

therein. However, we find it interesting to perform the integrations explicitly.

Results for the integrals

For ` = 1, 2, 3 it turns out that all the required integrals can be done by repeatedly applying

the formula for the bubble integral,
Z

d2�2✏k

(2⇡)2�2✏

1

(k2)↵((p+ k)2)�
=

�(1� ✏� ↵)�(1� ✏� �)�(↵+ � � 1� ✏)

(4⇡)1�✏�(↵)�(�)�(2� 2✏� ↵� �)
(p2)1�✏�↵�� .
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powers of BFKL Kernel

(SCH’13)



This produces a (somewhat lengthy) sum over various products of � functions. We did not

find that they combine in any particularly nice way, but it is nonetheless straightforward to

expand the result in ✏ to any desired accuracy:
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In writing the color factors here we have used thatT2
t

' C
A

when acting on the tree amplitude,

which allows the combination (T2
t

�C
A

) to be written as a commutator. Also ⇣
k

is Riemann’s

zeta function evaluated at the integer k.

As a cross-check on these expressions, we have been able to reproduce these results by

working directly with the coordinate-space expression of the kernel given in eq. (A.2b).

At the four-loop order all but one integral can be similarly done using just the bubble

formula. The remaining integral is10:
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We have obtained this result with the help of the two-fold Mellin-Barnes representation of the

triangle sub-integral desribed for example in ref. [42]), evaluating the integrals analytically

in terms of infinite sums using contour integration. This integral appears multiplied by 1/✏2

in d4, and, adding it to the rest, we obtain
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In summary, the NLL amplitude contains two components: exchanges of one and two

Reggeized gluons. The former is given by eq. (4.9) and the later is given in eq. (4.15), with

the first few orders computed in this section.

We note that upon projecting the amplitude onto the color-octet states in the t-channel,

the Regge “cut” reduces to a Regge pole (e.g., a pure power of s). Also, in the planar limit,

the t-channel color structure is necessarily a color octet and the cut is never visible. This

is easily seen from the above results, because all commutators [T2
t

, . . .] vanish in the octet

channel so only the d1 term is present then. The commutators vanish because T2
t

! C
A

when

acting on the left due to the octet projection, while T2
t

! C
A

also on the right as a result

of the form of the tree amplitude. The absence of a color-octet cut is a consequence of the

“bootstrap” relation in eq. (3.8).

10The author thanks Tristan Dennen for convincing him to use the Mellin-Barnes approach for this problem,

and for initially providing the result [up to O(✏) accuracy so far], with the help of the MB package [41]. Any

error is the author’s.
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• First two lines match1,2-loop fixed-order 
calculations

• Leading poles reproduce the (correct) 
exponentiation of one-loop IR divergences

• No subleading poles at 3-loops!?!?!
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the first few orders computed in this section.

We note that upon projecting the amplitude onto the color-octet states in the t-channel,

the Regge “cut” reduces to a Regge pole (e.g., a pure power of s). Also, in the planar limit,
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(cf Fadin’s talk)

✔

✔



• resummation of IR divergences:

• Dipole conjecture must break in Regge limit at 4-loops:  
(broken at 3-loops, but only away from Regge limit)

• Regge limit of 𝜞 can now be predicted to all loops

28

4.3 Implications for infrared divergences

To structure of infrared divergences in gauge theory is well-understood, as a result of con-

siderable work spanning the past decades. In dimensional regularization, amplitudes can be

written in the form

M = Z
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where all infrared divergences (poles in dimensional regularization) are absorbed into the

factor
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For further discussion and for a detailed breakdown of the content of the exponent, we refer

to refs. [12, 43, 44] and references therein. The soft anomalous dimension � is a matrix that

acts on the set of all possible color structures, and, correspondingly, Z is also a matrix. The

� integration generates poles in 1/✏ where ✏ < 0 acts as an infrared regulator; up to running

coupling corrections, ↵s(�2) = ↵s(µ2)
⇣
µ

2

�

2

⌘
✏

.

A fascinating conjecture put forward in ref. [44–46] is that in the massless case the soft-

anomalous dimension should take form of a sum over “dipole” terms

� =
X
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where �̂
K

⇡ 2↵s
⇡

+ O(↵2
s ) and s

ij

= �2P
i

·P
j

. This conjecture was made based on the result

of a 2-loop computation and other theoretical arguments. Possible corrections to the dipole

formula are strongly constrained by invariance under rescaling of the particle’s momenta, but

are not ruled out.

Conveniently, since this general form is scheme-independent, we can choose to expand

the exponent in terms of ↵̃s instead of ↵s, the di↵erence being subleading in ✏. This will

modify d and Mfin
ij!ij

but not the general form of the formula.

The Regge limit of the dipole formula was investigated in the beautiful paper [47], whose

notations we will follow closely. At leading-log order Z is particularly simple since we only

need to keep the terms proportional to log |s| ⇡ log |u| in the exponent [47]. This gives, using
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Comparing eq. (4.20) with the leading-log amplitude amplitude (4.5), we conclude that in

this scheme

H
ij!ij

��
LL

= Mtree
ij!ij

. (4.24)
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the exponent in terms of ↵̃s instead of ↵s, the di↵erence being subleading in ✏. This will

modify d and Mfin
ij!ij

but not the general form of the formula.

The Regge limit of the dipole formula was investigated in the beautiful paper [47], whose

notations we will follow closely. At leading-log order Z is particularly simple since we only

need to keep the terms proportional to log |s| ⇡ log |u| in the exponent [47]. This gives, using
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Comparing eq. (4.20) with the leading-log amplitude amplitude (4.5), we conclude that in

this scheme

H
ij!ij
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LL

= Mtree
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. (4.24)
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4.3 Implications for infrared divergences

To structure of infrared divergences in gauge theory is well-understood, as a result of con-

siderable work spanning the past decades. In dimensional regularization, amplitudes can be

written in the form
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where all infrared divergences (poles in dimensional regularization) are absorbed into the

factor
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For further discussion and for a detailed breakdown of the content of the exponent, we refer

to refs. [12, 43, 44] and references therein. The soft anomalous dimension � is a matrix that

acts on the set of all possible color structures, and, correspondingly, Z is also a matrix. The

� integration generates poles in 1/✏ where ✏ < 0 acts as an infrared regulator; up to running

coupling corrections, ↵s(�2) = ↵s(µ2)
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.

A fascinating conjecture put forward in ref. [44–46] is that in the massless case the soft-

anomalous dimension should take form of a sum over “dipole” terms
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of a 2-loop computation and other theoretical arguments. Possible corrections to the dipole

formula are strongly constrained by invariance under rescaling of the particle’s momenta, but
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need to keep the terms proportional to log |s| ⇡ log |u| in the exponent [47]. This gives, using
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Comparing eq. (4.20) with the leading-log amplitude amplitude (4.5), we conclude that in

this scheme

H
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= Mtree
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. (4.24)

– 27 –

Implication for IR 
divergences:

[Gardi&Magnea; 
Neubert&Becher ’09]

[Almelid,Duhr&Gardi ’15]

✔

(see Joscha’s talk!)



• NNLL: 3-loop amplitude w/ reggeized gluons

• Many color structures can be predicted using only 
LO evolution

• Breakdown of Regge pole factorization @ 2-loops

• Poles match 3-loop evolution.

• Full agreement with 3-loop non-planar N=4

• First direct test of projectile/target duality H=HT

Figure 7. Diagrams representing the color structure of the 1 ! 3 and 3 ! 1 transitions. Notice
that these diagrams are different from the ones representing the kinematical structure of the 1 ! 3

and 3 ! 1 transitions, i.e. H13(p1, p2, p3) in eq. (3.17). This is a consequence of the fact that the
BFKL evolution derived in section 3.1 represents an effective field theory in 2 � 2✏ dimensions, in
which the longitudinal degrees of freedom have been integrated out.

graphs in fig. 7):
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Multiplying with the propagators according to our master equation (2.48d), and collecting
the integrals, this contribution to the reduced amplitude is again written in terms of the
same elementary integrals:
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The main nontrivial task is to simplify the color factor. Again we would like to obtain a
color operator acting on the tree amplitude. This can be achieved by a simple systematic
algorithm: move all fabc’s onto the external states by using the Jacobi identity:

fabcT c
i = �i[T a

i , T
b
i ]. (3.47)

In fact this can be done in multiple distinct ways, since one can applies this on the i or j leg.
This makes it possible to arrange to get 4 color generators to act on each of the i and j legs,
which then enable to use eq. (3.36) to read off the result in terms of quadratic Casimirs. In
fact, we find that for the 1 ! 3 and 3 ! 1 transitions separately, the quadratic Casimir
operators do not provide a sufficient basis since the nesting for some terms does not allow
to extract any generator acting from the outside. However, the obstruction is odd under
interchange of i and j, and upon adding the two diagrams we do find a compact expression:
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thus leading to

h j,3| ˆH1!3| i,1i + h j,1| ˆH3!1| i,3i
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Figure 6. Example of a diagram involved in the calculation of the three-Reggeon cut at three loops.
This diagram, together with all the other diagrams obtained by inserting a rung in all possible
ways between the three Reggeons, and considering all possible permutation of the three Reggeons
themselves, arises from the insertion of a single factor of ˆH3!3, as discussed below eq. (3.42).
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where H22 is the BFKL kernel in eq. (3.15). We emphasize that the simplification of the
Hamiltonian is only valid for permutation invariant momentum dependence. Contracting
the W ’s against the target then gives the color factor derived in eq. (3.37), times three
propagators, which produce simple two-dimensional integral:
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Here, using the elementary bubble integral in eq. (3.31), we have expressed all integrals in
terms of three basic ones:
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While the integrals Ia,b,c are readily available in terms of B↵,�(✏) of eq. (3.32) to all orders
in ✏, here we chose to display the first few orders in their expansion, which will be used
below.

3W ! W and W ! 3W amplitudes: transition vertices

The next contribution comes from the off-diagonal 1 ! 3 and 3 ! 1 terms in the Hamil-
tonian, given in eqs. (3.16) and (3.18). These produce the color factor (represented by the
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Adding the results in eqs. (3.43) and (3.49), and expressing the color operators in a common
basis, we get:
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3.5 Result: the three-loop reduced amplitude to NNLL accuracy

To summarize, in this section we used BFKL theory to calculate the signature odd part
of the 2 ! 2 amplitude to NNLL accuracy. The result at one- and two-loop is recorded
in eq. (3.39), while the three-loop result is obtained by multiplying the preceding equation
with the appropriate minus sign and factor from eq. (2.48):
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where we have introduced the functions
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This equation is the main result of this section. The integrals Ia,b,c are defined in eq. (3.44)
where they are evaluated, using the bubble integral (3.32), to all orders in ✏ in terms of �
functions. Here we will be interested in particular in their ✏ ! 0 limit, hence we quote their
expansion through finite terms.

We note that all the integrals entering ˆM(�,3,1)
ij!ij in eq. (3.51) are of uniform polyloga-

rithmic weight 3 (as usual in this context, ✏ is assigned weight �1). Given that ˆM(�,3,1)
ij!ij is

itself the coefficient of a single (high-energy) logarithm, and taking into account the overall
factor of ⇡2 in eq. (3.51), we see that the weight adds up to 6, which is the maximal weight
at three loops. Such a uniform maximal weight structure is expected in N = 4 SYM theory,
while in general not in QCD. However, as we have seen, ˆM(�,3,1)

ij!ij is fully determined by
gluon interactions, and therefore entirely independent of the matter contents of the theory.
Thus, it is indeed expected that the result, which is valid for any gauge theory, should
retain the uniform maximal weight nature characteristic of N = 4 SYM.
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✔
✔

[Henn&Mistlberger ’16]

(see Leonardo’s talk!)

✔
[Del Duca&Glover ‘01]

[Almelid,Duhr&Gardi ’15]



Summary so far

Regge scattering factorizes on Wilson lines U Input:

Output: gluon Reggeization 
=Regge form ~s𝛼(t) at LL and NLL;  
 +Regge cuts beyond (predicted) 

(Note: asking if W is Reggeized gluon to all orders 
=like asking if 𝜋 in U= exp(i𝜋aTa/f𝜋) is ‘pion’ to all orders.  
It’s a just a valid parametrization of the relevant DOF)



Outline
• Wilson line approach to forward scattering:  

-Eikonal approximation  
-The Reggeized gluon 
-Expected all-order structure 
-Quantitative tests w/ the 2->2 amplitude

• Systematic improvements 
- A remarkable equivalence: ‘non-global logs’  
- 3-loop evolution

31



Allowed
‘potato-shaped’  

regions

Non-global logs
Q:  Cross-section for e+e-→X, with ‘X’ energy 
smaller than E_0 outside some region R 

R1

e+

e-

R2

Radiation 
vetoed



• Suppressed by soft* radiation: large logarithms 

• angles not ‘globally integrated’  
 

• Difficult: need to keep track of all radiation in 
allowed region! [color&angle]

[Salam&Dasupta ‘01 
Banfi, Salam& Dasgupta ’03]

*’soft’=GeV<E<<TeV



Effective allowed
=‘transparent’

shrinks

Vetoed= ‘opaque’:  
grows

As in forward scattering: transparent& opaque regions.  
Opaque regions grows with energy  

R1

e+

e-

R2



• Quantitative equivalence:  

• Conformal (stereographic) transformation:

[Weigert ’03;
Hatta ’08-…] 
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Checks at LO and NLO
• Universal amplitude for soft gluon:

• Start with two parents and square:

• Energy logs from phase space integrals:

[Weinberg]

|M3|2 ' s12
s10s02

|M2|2
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Z
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• Similar to textbook computation of IR 
divergences, except angular integral ‘not global’!

• Real& virtual related by KLN [cancel for U=1]
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Square of tree-level soft current relatively simple:

N=4SYM
general  

gauge thy

+ (nF � 4)
s12

s000(s10+s100)(s20+s200)

+ ( 12ns�nF + 1)
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NLO: [SCH, ’15]
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(a) (b)

Figure 4. Building block for next-to-leading order computation: amplitude for two soft particles.
Solid lines are eikonal Wilson lines. (a) Two soft gluons. The non-abelian part of the first graph gives
a connected contribution. (b) Two soft fermions or scalars.

• Finally, we did not prove in this subsection that divergences do exponentiate according

to eq. (2.7). We simply read o↵ the exponent from a one-loop fixed-order calculation.

Proofs to leading-logarithm accuracy are in refs. [10, 14] and an all-order demonstration

is given in section 5.

3 Evolution equation to next-to-leading order

We now present a calculation ofK to the next-to-leading order, by matching two-loop infrared

divergences in �[U ] against eq. (2.7). The computation will be phrased exclusively in terms

of convergent integrals over building blocks with a clear physical interpretation (renormalized

soft currents), which will shed light on the exponentiation mechanism. We perform the

computation in a general gauge theory, although at intermediate steps we only write formulas

for color-adjoint matter. The reader not interested in the technical details can skip directly

to the final result in subsection 3.6.

3.1 Building blocks: soft currents

A natural building block is the tree-level amplitude for emitting two soft gluons. It can be

written naturally as a sum of disconnected and connected contributions:
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follows directly from the Feynman graphs shown in fig. 4(a) [25]. To optimize the notation

all color generators are implicitly symmetrized: Ra

i

Rb

j

! 1

2

{Ra

i

, Rb

j

}, which is relevant when

i = j. This notational convention (borrowed from ref. [31]) is why the connected part is

proportional to fabc.
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Figure 4. Building block for next-to-leading order computation: amplitude for two soft particles.
Solid lines are eikonal Wilson lines. (a) Two soft gluons. The non-abelian part of the first graph gives
a connected contribution. (b) Two soft fermions or scalars.
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a connected contribution. (b) Two soft fermions or scalars.

• Finally, we did not prove in this subsection that divergences do exponentiate according

to eq. (2.7). We simply read o↵ the exponent from a one-loop fixed-order calculation.

Proofs to leading-logarithm accuracy are in refs. [10, 14] and an all-order demonstration

is given in section 5.

3 Evolution equation to next-to-leading order

We now present a calculation ofK to the next-to-leading order, by matching two-loop infrared

divergences in �[U ] against eq. (2.7). The computation will be phrased exclusively in terms

of convergent integrals over building blocks with a clear physical interpretation (renormalized

soft currents), which will shed light on the exponentiation mechanism. We perform the

computation in a general gauge theory, although at intermediate steps we only write formulas

for color-adjoint matter. The reader not interested in the technical details can skip directly

to the final result in subsection 3.6.

3.1 Building blocks: soft currents

A natural building block is the tree-level amplitude for emitting two soft gluons. It can be

written naturally as a sum of disconnected and connected contributions:

Sµ⌫,ab(k
1

, k
2

) = g2
X

i,j

Ra

i

Rb

j

Sµ

i

(k
1

)S⌫

j

(k
2

) + g2
X

i

ifabcRc

i

Sµ⌫

i

(k
1

, k
2

) +O(g4) , (3.1)

with Sµ

i

(k
1

) =
�

µ
i

�i·k1 the one-gluon soft current introduced previously. The connected part

Sµ⌫

i
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1

, k
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) =
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2�
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)


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� kµ
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)

k
1

·k
2

�

(3.2)

follows directly from the Feynman graphs shown in fig. 4(a) [25]. To optimize the notation

all color generators are implicitly symmetrized: Ra

i

Rb

j

! 1

2

{Ra

i

, Rb

j

}, which is relevant when

i = j. This notational convention (borrowed from ref. [31]) is why the connected part is

proportional to fabc.
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• Crucial: two soft gluons not independent

• Amplitude depends on ratio of soft gluon energies

• NLO is basically the integral over that ratio

|S|2 =
s12

s10s000s002


1 +

s12s000 + s10s002 � s100s20
2(s10+s100)(s02+s002)

�
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Integrate over relative energies:

Pull out angular integrals:

E
d

dE
U12 �

Z
d2⌦0

4⇡

d2⌦00

4⇡
K[1 000 2]U10U000U002

K[1 000 2] =

Z 1

0
⌧d⌧

h��S(⌧�0,�00)
��2

i
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1
0
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Integrate over relative energies:

Pull out angular integrals:

E
d

dE
U12 �

Z
d2⌦0

4⇡

d2⌦00

4⇡
K[1 000 2]U10U000U002

K[1 000 2] =

Z 1

0
⌧d⌧

h��S(⌧�0,�00)
��2 �

��
⌧!0

✓(⌧<1)�
��
⌧!1✓(⌧>1)

i

Subtract iterations of LO
⇒no subdivergences!



42

1
0

2
0’

Integrate over relative energies:

Pull out angular integrals:

E
d

dE
U12 �

Z
d2⌦0

4⇡

d2⌦00

4⇡
K[1 000 2]U10U000U002

K[1 000 2] =

Z 1

0
⌧d⌧

2

64

��S(⌧�0,�00)
��2

�
��
⌧!0

✓(Q2
[1⌧000]<Q2

[1002])

�
��
⌧!1✓(Q2

[0002]<Q2
1⌧02])

3

75

Best: use Lorentz-invariant energy scales Q2
[i0j] ⌘

si0s0j
sij



• Full (planar) NLO evolution: (non-global logs&Regge)

• Precisely Balitsky&Chirilli’s (N=4) result!!!

• Eigenvalues match ‘Pomeron trajectory’

43

K(2)
[1 000 2] = 2 log

↵12↵000

↵100↵02
+

✓
1 +

↵12↵000

↵10↵002�↵100↵02

◆
log

↵10↵002

↵100↵02

K(2)U12 =

Z

�0,�00

↵12

↵10↵000↵002
K(2)

[1 000 2]

�
U10U02+U100U002�2U10U000U002

�
+ �(2)

K K(1)U12

[Balistky&Chirilli ’07,’08]

[Fadin&Lipatov(&Kotikov) ’98;
Ciafaloni&Gamici ‘98]



44

Note: use Lorentz-invariant energy scales, not ‘energy’!

Q2
[i0j] ⌘

si0s0j
sij

This ensures Lorentz-invariance of BMS equation
 = conformal invariance of BK equation

Similar to using :                       instead of k+  in LO BK,  

makes NLO automatically conformal invariant.

k

+

s
x

2
10x

2
02

x

2
12



• Full non-planar result also available (N=4& QCD)
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3.6 Final result for the evolution equation

We record our final result for the two-loop Hamiltonian in the ‘Lorentz’ scheme (superscript `),

which combines eqs. (3.20)–(3.22) with the finite renormalizations (3.26) and (3.30). For con-

venience we repeat the color structures, switching to the integro-di↵erential notation (2.17):

K(2) =
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K
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+K(2)N 6=4. (3.32)

Here ↵
ij

= ��i·�j

2

= 1� cos ✓ij

2

, La
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⌘ (La

0
i

Ua

0
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0
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i

), Ra

i;0

⌘ (Uaa

0
0

Ra

0
i

� La

i

) and
R

i

=
R

d2⌦
i

,

the color rotations L and R being di↵erential operators defined in eq. (2.17). All products

of La

i

’s and Ra

i

’s are implicitly symmetrized and normal-ordered to the right of U
0

, U
0

0 . The

third term is simply the one-loop result (2.14) times the cusp anomalous dimension (3.22).

The angular functions are:
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. (3.33)

This is the complete result in N = 4 SYM. In a general gauge theory with n
F

flavors of Dirac

fermions and n
S

complex scalars in the representation R, there additional contributions from

matter loops, also obtained in eq. (3.12). Upon restoring group theory factors corresponding

to representation R, in accordance with the square of fig. 4(b), these can be written:
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All sums are individually Lorentz-invariant (invariant under rescalings of the individual �
i

).

The first term is the contribution of two chiral N = 1 multiplets (minus the four adjoints in

N = 4 SYM) and the second term collects remaining scalars; b
0

= 1

3

(11C
A

�4n
F

T
R

�n
S

T
R

).
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(SCH ’15)

Equivalent to NLO B-JIMWLK result
[ Kovner,Mulian&Lublinski ’14,  

Balitsky&Chirilli ’14]

(cf ’s Kovner’s talk)



Wait. QCD is not conformal!
• One can compute QCD non-global logs in 

the same way:
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3.6 Final result for the evolution equation

We record our final result for the two-loop Hamiltonian in the ‘Lorentz’ scheme (superscript `),

which combines eqs. (3.20)–(3.22) with the finite renormalizations (3.26) and (3.30). For con-

venience we repeat the color structures, switching to the integro-di↵erential notation (2.17):
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the color rotations L and R being di↵erential operators defined in eq. (2.17). All products

of La

i

’s and Ra

i

’s are implicitly symmetrized and normal-ordered to the right of U
0

, U
0

0 . The

third term is simply the one-loop result (2.14) times the cusp anomalous dimension (3.22).

The angular functions are:
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This is the complete result in N = 4 SYM. In a general gauge theory with n
F

flavors of Dirac

fermions and n
S

complex scalars in the representation R, there additional contributions from

matter loops, also obtained in eq. (3.12). Upon restoring group theory factors corresponding

to representation R, in accordance with the square of fig. 4(b), these can be written:
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All sums are individually Lorentz-invariant (invariant under rescalings of the individual �
i

).

The first term is the contribution of two chiral N = 1 multiplets (minus the four adjoints in

N = 4 SYM) and the second term collects remaining scalars; b
0

= 1

3

(11C
A

�4n
F

T
R

�n
S

T
R

).
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• They don't quite agree:

• Difference computable from matter loop…

47

It is interesting to compare technical aspects of the calculations. The tree-level soft

current (3.1) is reminiscent of the light-cone gauge amplitudes in eq. (43) of ref [48]. The

subtraction of subdivergences in eq. (3.10) is similar to the + prescription derived in refs. [48,

56]. The transformation to the ‘Lorentz scheme’ (3.30) is identical to that leading to the

‘conformal basis’ in refs. [41, 44]. As a significant technical simplification, however, we saved

the Fourier transform step. Also the reliance on standard building blocks made it possible to

benefit from results in the literature, namely the soft currents and collinear splitting functions.

4.2 Comparison including running coupling

Having demonstrated the agreement in N = 4 SYM, let us now compare the fermion and

scalar loop contributions to the Balitsky-JIMWLK and non-global logarithm Hamiltonians,

e.g. the terms proportional to n
F

and n
S

in eq. (3.34). Performing the comparison with

refs. [44, 57] we find that the two Hamiltonians agree for the most part, except for the

following discrepancy (setting z
ij

= z
i

� z
j

):
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(4.5)

where as before µ is the MS renormalization scale. In particular, the di↵erence is proportional

to the first �-function coe�cient, as predicted [17].

The origin of the discrepancy (4.5) is clear: the inversion y+ ! 1/µ2y+ in (4.1), which

relates the BFKL and non-global log Hamiltonians, is only an isometry up to the Weyl

rescaling ds2
y

! (µy+)�2ds2
y

. This is not a symmetry in a non-conformal theory. Physically,

BFKL and non-global logarithms describe infinitely fast and infinitely slow measurements of

an object’s wavefunction, which would not normally be expected to be connected without

conformal symmetry.

For future reference, we note that a general theory deals with Weyl transformations in

non-conformal theories (see for example [58]). The essential feature is that, starting from the

BFKL side and performing the conformal transformation (4.1), one ends up with a coordinate-

dependent coupling constant:

S0 =

Z

d4y
�F

µ⌫

Fµ⌫

4
⇥

g2(µ
0

µy+)
⇤ , ↵

s

(µ
0

µy+) = ↵
s

(µ
0

)

✓

1� 2b
0

↵
s

(µ
0

)

4⇡
log(µy+) + . . .

◆

. (4.6)

In other words, the BFKL Hamiltonian in QCD in principle controls non-global logs in QCD

but in an imagined setup with a coordinate-dependent coupling. Contrary to real QCD, in

this setup a narrow jet never hadronizes: the increasing coupling due to the growing size of

a jet, is compensated by its fallo↵ at large y+. Thus e↵ectively the coupling is set by the

angular size. This reflects that angles map to distances in the BFKL problem. We will not

pursue eq. (4.6) further here, but in any case it is clear that to all orders in perturbation
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• Work in d=4-2𝜀 dimensions:

• In the conformal dimension, they are equal!

• Given the 𝜀-dependence at lower loops, 
they are equivalent to each other!!!

48
[Vladimirov ‘16]

KRegge(✏)

K
Soft

K
Regge

(2✏ = ��(↵
s

)) = K
soft

Rapidity vs Soft divergences

does not depend on 𝜀

does



Upshot
• Full equivalence: non-global logs/(pert.)Regge limit

• Advantages:  
-Directly in coordinate space 
 
-Can use well-studied on-shell building blocks:  
  soft currents, KLN theorem, …

• Works in QCD: difference       computable

49

/ �

(recall that x? , ✓ stereographically)



NLO evolution of composite “conformal” dipoles in QCD

I. B. and G. Chirilli
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o

b = 11
3 Nc � 2

3 nf

KNLO BK = Running coupling part + Conformal "non-analytic" (in j) part
+ Conformal analytic (N = 4) part

Linearized KNLO BK reproduces the known result for the forward NLO BFKL
kernel.
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From Ian Balitsky’s talk:

=O(eps)term  
in LO BK

=matter 
loops NGLs

=N=4 
NGLs



NNLO
• Triple soft current at tree-level  

   ⇒ extract from known 4-particle integrand ✓

• Double soft current at one-loop  
   ⇒ extract from known one-loop 6-point ✓

• Single soft current at two-loops 
  ⇒ not needed: contribution really just        ✓

• Fully virtual IR divergences at three-loops 
  ⇒ not needed: KLN fixes it from rest ✓
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�(3)
K



• Sample graphs we computed/borrowed:
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Figure 3. One-loop virtual correction to double soft current contributing to the cross-section at three
loops.

be of any species (gluons, fermions and scalars). Consider for example the case when the two

soft gluons have the same helicity. In this case we use the one-loop correction to the MHV

amplitude (four positive and two negative helicity gluons), divided by the tree amplitude [40]:
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where the operation C is a cyclic rotation by one. The one-loop soft current is obtained by

taking the limit where partons 2 and 3 become the soft partons 0 and 00, and subtracting the

one-loop correction to the parent four-point amplitude. In this limit, the two color-adjacent

partons 1 and 4 define the parent dipole, and the other two decouple, thus giving us the soft

current
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It is important to note that since all invariants are positive (timelike), the Feynman prescrip-

tion adds an imaginary part to all logarithms: log(�s
ij

) = log |s
ij

|� i⇡.

For soft gluons of opposite helicity, as well as for soft fermions and scalars, one needs

the NMHV (super)amplitude [41, 42]. It may be amusing to note that the two fermions soft

current is the same in QCD and N = 4 SYM, since the contributing diagrams are the same.

Thus some e↵ective supersymmetry can also be used at one loop in QCD as well.

The component formulas are somewhat involved, and in the N = 4 theory further simpli-

fications occur when summing over particle species in the interference with the tree amplitude.
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Figure 3. One-loop virtual correction to double soft current contributing to the cross-section at three
loops.
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the NMHV (super)amplitude [41, 42]. It may be amusing to note that the two fermions soft

current is the same in QCD and N = 4 SYM, since the contributing diagrams are the same.

Thus some e↵ective supersymmetry can also be used at one loop in QCD as well.
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Figure3.One-loopvirtualcorrectiontodoublesoftcurrentcontributingtothecross-sectionatthree
loops.

beofanyspecies(gluons,fermionsandscalars).Considerforexamplethecasewhenthetwo

softgluonshavethesamehelicity.Inthiscaseweusetheone-loopcorrectiontotheMHV

amplitude(fourpositiveandtwonegativehelicitygluons),dividedbythetreeamplitude[40]:
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wheretheoperationCisacyclicrotationbyone.Theone-loopsoftcurrentisobtainedby

takingthelimitwherepartons2and3becomethesoftpartons0and00,andsubtractingthe

one-loopcorrectiontotheparentfour-pointamplitude.Inthislimit,thetwocolor-adjacent

partons1and4definetheparentdipole,andtheothertwodecouple,thusgivingusthesoft

current
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Itisimportanttonotethatsinceallinvariantsarepositive(timelike),theFeynmanprescrip-

tionaddsanimaginaryparttoalllogarithms:log(�s
ij

)=log|s
ij

|�i⇡.

Forsoftgluonsofoppositehelicity,aswellasforsoftfermionsandscalars,oneneeds

theNMHV(super)amplitude[41,42].Itmaybeamusingtonotethatthetwofermionssoft

currentisthesameinQCDandN=4SYM,sincethecontributingdiagramsarethesame.

Thussomee↵ectivesupersymmetrycanalsobeusedatoneloopinQCDaswell.

Thecomponentformulasaresomewhatinvolved,andintheN=4theoryfurthersimpli-

ficationsoccurwhensummingoverparticlespeciesintheinterferencewiththetreeamplitude.
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triple soft emission 
(squared) at tree-level



• Recursive subtraction of subdivergences:

• Cleanly removes iterations of lower-loop evolution

• Compute only finite absolutely convergent integrals

53

from subsection 3.4, this becomes

F (1)ren,sub
[1 000 2] = F (1)ren

[1 000 2]�✓
�
Q[0 00 2]<Q[1 0 2]

�✓�2⇡2

3
+ (1)

◆
�✓

�
Q[1 0 00]<Q[1 00 2]

�✓�2⇡2

3
� (1)

◆
.

(4.19)

The critical conceptual point here is that we won’t need the O(✏) terms in this expression.

This is because the combination in eq. (4.17), in which all objects are defined to all orders in

✏, is precisely the one which vanishes to all order in ✏ near the endpoints ⌧ ! 0 and ⌧ ! 1
(this follows from the factorization properties of the bare amplitudes F bare). This precludes

any ✏/✏ e↵ect. The extension to higher loops is clear: one just includes more terms in the

expansion of �. Also we expect only minor changes in the presence of a nontrivial �-function

as in full QCD, where g2(�) will now be a series in g2(Q[1 000 2]).

4.4 Nested subtractions for triple real contribution

We now turn to the fully real contribution to K(3), which is given by the IR divergent part

of triple-real emission, minus the subdivergences associated with iterations of K(1) and K(2).

The basic idea is to write the subtractions as phase space integrals with step functions, exploit-

ing (3.7) and its higher-multiplicity generalizations. In this way all energy sub-divergences

(with fixed angles, as appropriate since the angles are fixed by the color rotations U) will can-

cel under the integration sign. To write the result concisely, we recursively define subtracted

integrands F sub, generalizing eq. (3.8). Introducing the abbreviations

[X][Y ] ⌘ F sub
[X] F

sub
[Y ] ✓(Q

2
[X]<Q2

[Y ]), [X][Y ][Z] ⌘ F sub
[X] F

sub
[Y ] F

sub
[Z] ✓(Q2

[X]<Q2
[Y ]<Q2

[Z]),

these are defined as:

F sub
[1 0 2] ⌘ F[1 0 2] = 1, (4.20a)

F sub
[1 000 2] ⌘ F[1 000 2] � [1 0 00][1 00 2]� [0 00 2][1 0 2], (4.20b)

F sub
[1 000000 2] ⌘ F[1 000000 2] � [1 0 00][1 00000 2]� [0 00 000][1 0000 2]� [00 000 2][1 000 2]

�[1 000 000][1 000 2]� [0 00000 2][1 0 2]

�[1 0 00][1 00 000][1 000 2]� [00 000 2][0 00 2][1 0 2]� [0 00 000][1 0 000][1 000 2]

�[0 00 000][0 000 2][1 0 2]� [1 0 00][00 000 2][1 00 2]� [00 000 2][1 0 00][1 00 2]. (4.20c)

The structure is straightforward: there is one subtraction for each possible subprocess (con-

sistent with the planar structure), and the unsubtracted F ’s are given in eq. (2.5) and (4.4).

Intuitively, the F sub’s are a device to compute the logarithm of F : the preceding equations can

be generated (and generalized to all orders) by formally solving the equation Pe
R
F

sub
=

R
F ,

order by order in the number of emitted partons.

As shown in section 3, what is relevant for the evolution is the integral over relative

energies:

K(3)
[1 000000 2] ⌘

Z 1

0

d⌧

⌧

d⌧ 0

⌧ 0
4F sub

[1 (⌧�0)(⌧ 0�00 )�000 2]
. (4.21)
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energy step functions

✓
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We have used the squared amplitude for triple-real emission and also the one-loop cor-

rection to double-real emission (related to the one-loop six-point remainder function). In

addition K receives contribution from single-real emission at two-loops, and fully virtual cor-

rections. However, it is not necessary to explicitly compute them. As mentioned already,

fully virtual corrections follow simply from the KLN theorem. And by Lorentz symme-

try (kept manifest at all stages of our calculation) the single-real emissions can only pro-

duce a constant �(3)
K

time one-loop. As argued (and tested) in the next section, provided

that the U12 color structure appears nowhere else in our expression, what multiplies one-

loop must be the cusp anomalous dimension (known to all loops [45]): �
K

⌘ 1
4�cusp =

g

2
YMN

c

16⇡2

✓
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2

3
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2
YMN

c

16⇡2 + 11⇡4

45

⇣
g

2
YMN

c

16⇡2

⌘2
+ . . .

◆
.

Thus our final result for the three-loop BK equation, recalling the lower loop results, is:

K(1)U12 =

Z

�0

↵12

↵10↵02

�
2U12 � 2U10U02

�
, (4.33a)

K(2)U12 = �⇡2

3
K(1)U12 +

Z

�0,�00

↵12

↵10↵000↵002
K(2)

[1 000 2]

�
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�
,

(4.33b)

K(3)U12 =
11⇡4

45
K(1)U12 +
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�0,�00
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↵10↵000↵002
K(3)
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�

�(1 + P )
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K(3)c.t.
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�
2U100U002 � 2U10U000U002

�⌘i
,(4.33c)

where P is the parity (10)$(2000), ↵
ij

⌘ |z
i

�z
j

|2 are transverse distances and
R
�0

⌘
R

d

2
z0
⇡

.

(Equivalently, for the non-global-logarithmic problem, the stereographic projection (1.2) gives

↵
ij

⌘ 1� cos ✓
ij

2 and
R
�0

⌘
R

d

2⌦0
4⇡ ).

The two-loop transverse function K(2)
[1 000 2] was given in eq. (3.10), and the triple-real

function K(3)
[1 000000 2] and counter-term K(3)c.t.

[1 000000 2] are in eqs. (4.23) and (4.31). Finally, defining

cross-ratios u and v and associated complex numbers x, x̄,

u ⌘ xx̄ =
↵12↵000

↵100↵02
, v ⌘ (1� x)(1� x̄) =

↵10↵002

↵100↵02
, (4.34)

the e↵ective single-virtual kernel (the sum of eqs. (4.16) and (4.32)) is given as

K(3)
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✓
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◆
log v
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v

u

�
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log3 u
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Li3(x) + Li3(x̄)� 2⇣3

�
� 2

�
Li2(x) + Li2(x̄) + 2⇣2

�
log u . (4.35)

For convenience, these formulas are reproduced in computer-readable format in the ancillary

text file formulas.txt, attached to the arXiv submission of this paper.
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result:

Attached in computer-friendly format to arXiv submission.

Thanks to the pattern of subtractions, and to the factorization of soft currents (see eqs. (2.6)

and (4.3)), F sub
[1 000000 2] vanishes in all soft limits and its energy integral at fixed angles is

absolutely convergent at all orders in ✏. One might worry that the step functions make it

tricky to integrate in practice, but in fact they always multiply trivial measures like d⌧/⌧ .

Furthermore, the explicit expression (4.4) naturally splits into several individually convergent

pieces. For example, the piece F safe doesn’t contain any step function and converges by itself.

The pieces from the “1” in F[1 0 2], F[1 000 2] and F[1 000000 2] contain multiple step functions, but

all share the trivial measure d⌧/⌧ d⌧ 0/⌧ 0 and so immediately integrate to logarithms. Finally,

the five nontrivial subtractions in (4.4) naturally combine with the remaining terms in (4.20c),

to produce five individually convergent integrals.

So our problem is reduced to computing finite energy integrals; these produce functions of

transcendental weight 2. A good, systematic way to compute such integrals is the di↵erential

equation method described B.3 The most di�cult integrals are contained within F safe. One

of them, in particular, coming from the first line below eq. (4.5), cannot be written simply in

terms of the angular distances ↵
ij

, but requires associated spinors (�↵�̇

i

⌘ �↵

i

�̃�̇):

f1 ⌘
Z 1

0

d⌧

⌧

d⌧ 0

⌧ 0
4e1(⌧�0, ⌧

0�00 ,�000)

= 2Re

⇢
1 +

↵00000h0 2i[2 1]
↵0002h0 00i[001]� ↵002h0 000i[0001]

� 
Li2

✓
1�↵100↵0002

↵1000↵002

◆
� Li2

✓
1�↵0000↵002

↵000↵0002

◆
+

+Li2

✓
� [1 0][00 000]

[1 000][0 00]

◆
� Li2

✓
�h1 0ih00 000i
h1 000ih0 00i

◆
+ log

↵10↵00000

↵1000↵000
log

↵0002h0 00i[001]
↵002h0 000i|[0001]

��
. (4.22)

Here we have used a commonly used notation for the Lorentz-invariant spinor products:

hi ji = ✏
↵�

�↵

i

��

j

and [i j] = ✏
↵̇�̇

�̃↵̇

i

�̃�̇

j

with ✏ antisymmetric. (Under the stereographic projec-

tion (1.2), these map respectively to: hi ji = (z
i

�z
j

) and [i j] = (z̄
i

�z̄
j

).) The other integrals

are more elementary and produce at most dilogarithms of cross-ratios of ↵’s.

To give the final result we define the five cross-ratios:

u1 ⌘
↵12↵000

↵100↵02
, u2 ⌘

↵12↵00000

↵1000↵002
, u3 ⌘

↵12↵0000

↵1000↵02
, v1 ⌘

↵10↵002

↵100↵02
, v2 ⌘

↵100↵0002

↵1000↵002
.

Then the triple-real integral gives

K(3)
[1 000000 2] =

✓
1� u3

1� v1v2

◆
2

64
2Li2

✓
1� 1

v1v2

◆
� 2Li2
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1� 1
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1� 1

v2

◆

+ log v1 log v2 + log(v1v2)
�
log(u1u2)� 3

2 log u3
�
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+(u1u2 � u1v2 � u2v1 + v1 + v2 � u1 � u2 + u3)


Li2

✓
1� 1

v1v2

◆
� ⇣2

�

+3 log u1 log u2 � 3
2 log

2 u3 + (1 + P )(f + f1), (4.23)

3
For energy integrations the method is considerably simpler than for the transverse integrals illustrated in

appendix, because partial fractions and integration-by-parts in one variable are more elementary and the final

contributions are given from boundary terms instead of contact terms.
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• Pomeron trajectory = linearized eigenvalue

LO

NLO

NNLO

LO resum
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Figure 5. The BFKL eigenvalue for m = 0 along the real ⌫ axis at various orders for � = g2YMNc = 6.
Convergence near the maximum is visibly slower than away from it. The “resummation of leading-
order” is defined below eq. (5.16).

Expressions for higher m will not be reproduced here but a Mathematica notebook

trajectories 3loop.nb attached to the arXiv submission article allows to manipulate them

easily. (The command j3Eval[m,nu] evaluates numerically to high accuracy the 3-loop cor-

rection to j(m, nu), by numerically integrating the series-expansion around 0 and 1 of the

radial functions; the command F3integrandHPL[m] produces symbolic expressions for the

radial function and transverse spin m in terms of harmonic polylogarithms.) In appendix C

we also provide harmonic sums expressions for m = 0 and m = 1.

For even m = 2, 4, 6 . . ., something new happens: the integrand requires a generalization

of harmonic polylogarithms involving iterations of
R

d

dx

0 log 1�i

p
x

0

1+i

p
x

0 . This is related to the

square-root containing entries of the symbol of H(y) recorded at the end of appendix B.

While still straightforward to evaluate the Mellin transform numerically, the result cannot

be written in terms of conventional harmonic sums and it is an interesting open problem to

characterize this new class of sums.

Finally, we have compared our result for m = 0 with the recent works [15, 16], which

exploited, respectively, integrability of the theory and high-loop data in the collinear limit.

After converting to our basis, we found perfect agreement with both references (showing in

particular that they are equal to each other). The coordinate space kernel (5.6), its corre-

sponding eigenvalue for m > 0, and the nonlinear terms in eq. (4.33c), are new predictions.
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Uij = 1� 1

Nc
Uij

for eigenfunction: Um,⌫ = |zi � zj |i⌫eim arg(zi�zj)

d

d⌘
Um,⌫ =

⇥
j(m, ⌫)� 1

⇤
Um,⌫

[see Brower,Polchinski,Strassler&Tan]

(� = 2 + i⌫)



Tests
• Collinear limit 𝜈→±i controlled by small-x 

limit of DGLAP 

• Analytic expression for m=0 conjectured 
using Integrability of planar N=4

56

[Jaroscewicz ’83; 
Ball, Falgari, Forte,Marzani… 07]

(which can be done, for example, with the help of ABA or QSC approach), while for the
BFKL equation such procedure should be taken into account before comparison with the
anomalous dimension, if one can obtain some result separately for the holomorphic and
antiholomorphic parts. So, if we write for the ω the following general expansion over γ

ω =
∑

ℓ=1

(
FL(ℓ)

(
−γ
2

)
+ FL(ℓ)

(
1 +

γ

2

))
g2ℓ (17)

we should perform the substitution γ → γ+ω and then expanding the following expression

ω = g2
(
FL(0)

(
−γ + ω

2

)
+ FL(0)

(
1 +

γ + ω

2

))

+ g4
(
FL(1)

(
−γ + ω

2

)
+ FL(1)

(
1 +

γ + ω

2

))
+ g6

∑

k=−3

F̂L
(2)

k γk (18)

= g2
(
FL(0)

(
−γ
2

)
+ FL(0)

(
1 +

γ

2

))

+ g4
(
FL(1)

(
−γ
2

)
+ FL(1)

(
1 +

γ

2

))
+ g6

∑

k=−5

FL
(2)
k γk (19)

up to third order of the perturbative theory we can find coefficients FL(2)
k of the expansion

of the NNLLA corrections to the eigenvalue of the BFKL-pomeron

∞∑

k=−5

FL
(2)
k γk = FL(2)

(
−γ
2

)
+ FL(2)

(
1 +

γ

2

)
. (20)

Note, that the difference between the coefficients F̂L
(2)

k and FL
(2)
k comes from the shifting

in the argument γ → γ +ω (from the first two terms in Eq. (18)) and the expansion of ω
in Eq. (18) has maximally only single logarithms (i.e. the negative powers of γ no more
than (g2/γ)ℓ), while Eq. (20) has the double logarithms (i.e. γ (g2/γ2)ℓ).

Substitute Eq. (16) into Eq. (18) we find the following expansion of the ω in third
order of the perturbative expansion:

ω = +g2
(
8

γ
− 2 ζ3 γ

2 − ζ5
2
γ4 − ζ7

8
γ6
)

+g4
(
− 64

γ3
− 24 ζ3 + 5 ζ4 γ + γ2

(
4 ζ2 ζ3 + 20 ζ5

)
+ γ3

(
3 ζ3

2 − 143

48
ζ6

)

+γ4
(
ζ2 ζ5 + 14 ζ7

))

+g6
(
1024

γ5
− 512

γ3
ζ2 +

576

γ2
ζ3 −

464

γ
ζ4 + 840ζ5 + 64ζ2ζ3 + γ

(
− 40ζ3

2 − 373ζ6
)

+γ2
(
−8ζ2ζ5 − 86ζ3ζ4 +

1001

4
ζ7

))
. (21)

5

!(3) !

[Velizhanin ’15]

[Gromov,Levkovich-Maslyuk&Sizov, ’15]

C Eigenvalue in terms of harmonic sums for m = 0 and m = 1

Here we give explicit expressions for the 3-loop Pomeron trajectory, given in coordinate space

in eq. (5.6), in Mellin space using the harmonic sums

S
a

(N) =
NX

i=1

(sign a)i

i|a|
, S

a1,...,an(N) =
NX

i=1

(sign a)i

i|a|
S
a2,...,an(i) . (C.1)

This defines the sums for integer N and the Mellin transform produces their analytical contin-

uation from even N . Using standard algorithms [55], we have converted the Mellin integral

projected onto transverse angular momentum m = 0, eq. (5.15), to harmonic sums with

argument N = �1+i⌫

2 :

F (1)
0,⌫ = �4S1, F (2)

0,⌫ = 8S3 � 16S�2,1 + 8⇣2
�
3S�1 + 3 log 2 + S1

�
� 6⇣3, (C.2)

F (3)
0,⌫

32
= �S5 + 2S�4,1 � S�3,2 + 2S�2,3 � S2,�3 � 2S3,�2 + 4S�3,1,1 + 4S1,�3,1 + 2S1,�2,2

+2S1,2,�2 + 2S2,1,�2 � 8S1,�2,1,1 + ⇣2
�
S1S2 � 3S�3 + 2S�2,1 � 4S1,�2

�
� 49

2 ⇣4S1

+7⇣3
�
2S1,�1 + 2(S1 � S�1) log 2� S�2 � log2 2

�
+ (8⇣�3,1 � 17⇣4)

�
S�1 � S1 + log 2

�

�1
2⇣3S2 + 4⇣5 � 6⇣2⇣3 + 8⇣�3,1,1 . (C.3)

Here ⇣�3,1 ⇡ 0.087786 and ⇣�3,1,1 ⇡ �0.009602 are multi-zeta values. This result is in precise

agreement with [18]. The Pomeron trajectory is the sum of F
m,⌫

and F
m,�⌫

, see eq. (5.11).

For m 6= 0 our result is new. For m = 1, for example, the Mellin transform can be expressed

in terms of harmonic sums now with argument N = i⌫

2 , giving the Odderon Regge trajectory:

F (1)
1,⌫ = �4S1,

F (2)
1,⌫

8
= N�1(S�2 + ⇣2)�N�2S1 + S3 + ⇣2S1 +

1
2⇣3, (C.4)

F (3)
1,⌫

16
= N�1 (�3S�4 + 2S�3,1 + 2S�2,2 + 2S1,�3 + 4S2,�2 � 8S�2,1,1 + 4S1,�2,1 � 8S1,1,�2)

+N�2
�
2S3 � S�3 � 2S�2,1 + 4S1,�2 + 4⇣2S1 � 5⇣3

�
+N�3 (4S1,1 � 4S�2 � S2 � 3⇣2)

+N�1
�
⇣2(�2S2

1 � 6S�2) + ⇣3(7S�1 + 3S1)� 9⇣4
�
+ (3N�4 � 11

2 ⇣4)S1 � 2S5

�⇣2⇣3 � 3⇣5 . (C.5)

This is regular and in fact vanishes at ⌫ = 0, in accordance with the all-order result (5.8).

Other values of m can be evaluated numerically using the attached Mathematica notebook.

References

[1] V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J.
Nucl. Phys. 15 (1972) 438–450. [Yad. Fiz.15,781(1972)].

[2] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B126 (1977)
298.

– 36 –

✔

✔



Conclusions
• Modern approach to high-energy scattering via 

Wilson lines: new theoretical control @NNLL

• Evolution now known in planar N=4 SYM:  
-eigenvalue for m=1,2,3,...  
-nonlinear interactions ‘3-Pomeron vertex’

• Possible extension to (planar?)  QCD 

• Study convergence& resummations?
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Figure 6. Level repulsion between the Pomeron and DGLAP trajectories for m = 0 as a function of
scaling dimension, illustrating the ⌫ = ±i singularities. (LO expressions plotted with � = g2YMNc = 1.)

5.2 Collinear singularities and resummation

The eigenvalue is plotted for m = 0 and m = 1 in figs. 5-7. It is apparent that, especially near

the peak for m = 0, the perturbative series su↵ers from slow convergence. This was observed

already at two loops and explained in terms of nearby singularities in the complex plane at

i⌫ = ±1 [12].

In short, these singularities are related to the collinear limit of BFKL, where the scaling

dimension � = 2 + i⌫ = 3 of the exchanged state coincides with that of twist-two operators:

� = 2 + j + �(j) with j close to 1, e.g. the operators entering the DGLAP equation. As is

common for two-level quantum systems, this crossing of two energy levels [18] gets resolved

as depicted in fig. 6:

j ⇡ 1 +
�� 3±

p
(�� 3)2 + 32g2

2
, � = 2 + i⌫. (5.16)

At small g2 ⌘ g

2
YMN

c

16⇡2 , one branch choice gives the near-horizontal BFKL trajectory while the

other gives the 45� twist-two (DGLAP) trajectory. (The square root formula follows easily

by solving �(j) ⇡ j + 2 + 8g2

j�1 for the j, within the overlapping regime of validity of BFKL

and DGLAP g2 ⌧ |j�1| ⌧ 1 where the anomalous dimension �(j) can be approximated

by its leading pole.) It was shown that, expanding the square root to order g4, reduces by

half the magnitude of the two-loop corrections to the intercept j(0, 0) (if one also includes

the complex conjugate singularity at i⌫ = �1) [12]. The “LO resummation” curve in fig. 5,

called “scheme 2” in ref. [12], thus shows the LO trajectory plus eq. (5.16) minus its O(g2)

expansion. (It would be useful to develop a NLO resummation and we leave it as an open

problem for the future.)
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the complex conjugate singularity at i⌫ = �1) [12]. The “LO resummation” curve in fig. 5,

called “scheme 2” in ref. [12], thus shows the LO trajectory plus eq. (5.16) minus its O(g2)

expansion. (It would be useful to develop a NLO resummation and we leave it as an open

problem for the future.)
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Figure 7. The BFKL eigenvalue for m = 1 along the real ⌫ axis at various orders for � = g2YMNc = 6.

The formula (5.16), expanded to three loops, turns out to not predict very well the three-

loop correction to the intercept j(0, 0) ⇡ 1 + 11.09g2 � 84.08g4 � 2543.05g6 + O(g8). In fact

it gets even the sign wrong. By looking at the singular terms in F close to the pole we can

try to understand why:

F0,⌫
i⌫!1���! 8g2

�
� 64g4

�3
+ g6

✓
1024

�5
� 512⇣2

�3
� 576⇣3

�2
� 464⇣4

�

◆
+ regular +O(g8), (5.17)

where � = 1 � i⌫. Comparing with eq. (5.16), we find that the leading pole 1024g6/�5

is exactly as predicted (as it had to), but setting � = 1 the subleading poles also give a

numerically large contribution to the intercept 2F . However, summing up all the singular

terms in eq. (5.17), one finds that about 80% of the three-loop correction to the intercept is

reproduced, suggesting that the non-singular terms are indeed numerically subdominant. A

heuristic explanation is that the next singularities, at i⌫ = ±3, are considerably further.

Interestingly, all polar terms at L-loops can be obtained from the L-loop DGLAP equa-

tion. (See for example [56] for a discussion of the general method.) From the higher-loop

DGLAP equation one can get nonsingular terms in the expansion (5.17), see for example

eq. (21) of [16]. We have checked directly that our result (5.15-C.3) agrees with these con-

straints.7

We conclude that the physical picture of [12], that large corrections to the intercept

originate from the i⌫ = ±1 collinear singularities, is consistent with the three-loop trajectory

we obtained, although the full polar part, predicted by DGLAP, must be retained. In general

it would be very interesting to find a way to make full use of the DGLAP information at a

given loop order

7
In eq. (21) of [16] (version 1) we changed ! 7! �!, to match with the generally accepted convention

! = j � 1 that we follow.
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m=1 (leading Odderon trajectory)

note: Odderon intercept=1 to all orders in λ.
Agrees with strong coupling! 

[Tan et al ’14]



On the Odderon intercept
• m=1,ν=0 is a very special wavefunction:

• Strings of dipoles in planar limit telescope:

• Cancel in evolution.  Thm: Odderon intercept 
vanishes to all order in λ in planar limit

U12 = 1� 1
Nc

(z1 � z2)

U10U02 = 1� 1
Nc

((z1 � z0) + (z0 � z2)) +O(1/N2
c )

= 1� 1
Nc

(z1 � z2) = U12

U10U0002U002 = U12
...



• Soft current squared from four-particle 
planar integrand:

61

(a)

(b)

Figure 2. Extracting squared soft currents from the four-particle integrand: cuts which give the
squares of single (a) and double (b) emissions by taking the cut internal propagators to be soft.

Here P the parity operation {1, 0} $ {2, 000}. The result we obtain from the four-point

integrand matches precisely this form, with the remainder vanishing in all soft limits. For

future convenience we write it here as a sum of individually regular pieces:

F safe
[1 000000 2] = (1 + P )(e1 + e2) + e3 + e4 , (4.5)

e1 =
1

4s1(000000)s(00000)2s000000

 
s0000(2s1000s002+s100(s002�s0002))� s000(2s100s0002+s1000(s0002�s002))

+s00000(2s10s0002�s1(00000)s02�s12s0(00000))

!
,

e2 =
s10(s12s00000 + s1000s002 � s100s0002)

4s1(000)s1(000000)s(00000)2
, e3 =

s100s002
2s1(000)s(00000)2

� s100s002 + s100s02 + s1000s002
2s1(000000)s(000000)2

,

e4 =
s12(s12s000s00000+s10s0002s000000)

4s1(000)s1(000000)s(000000)2s(00000)2
+

s12(s000+s00000�s0000)

4s1(000000)s(000000)2
� s12s000

4s1(000)s(000000)2
� s12s00000

4s1(000000)s(000)2
.

As a cross-check, we have reproduced numerically the squared soft current (4.4)-(4.5) by a

direct Feynman diagram calculation, summing up the gluon, fermion and scalar contributions,

and also using the computer package [39]. For convenience, this formula, and others in

this paper, is included in computer-readable format in the ancillary text file formulas.txt,

attached to the arXiv submission of this paper.

4.2 Second ingredient: Double-soft current and the remainder function

To obtain the one-loop correction to the double soft current in the simplest way, we take the

limit of two soft partons in the known one-loop six-point amplitude. These soft partons can

– 13 –

1 +
s12s000 + s10s002 � s100s20
2(s10+s100)(s02+s002)

=

• Known 8-loop integrand     maximally nonlinear 
term in 7-loops evolution! [Bourjaily, Heslop&Tran ’15]



Linearized kernel

• Start with full evolution, expand w/  
 

• The functions K^(L) are relatively simple:  

• On translation-invariant states, do one integral:

• Trajectory = Fourrier-Mellin transform of H
62

Uij ⇡ 1� 1

Nc
Uij

5 Linearized evolution and BFKL Pomeron trajectory

In many applications to the high-energy limit, especially those involving dilute targets and

projectiles, the Wilson lines remain close to unity and the physics is governed by a linearized

version of eqs. (4.33). Then we set

U
ij

= 1� U
ij

(5.1)

and treat U
ij

as a small quantity. Generically, in the ‘t Hooft large N
c

limit, U
ij

⇠ 1/N2
c

when

scattering objects made of a fixed number of partons, or for example a four-point correlator

of single-trace operators. The resulting linear equation is referred to as the BFKL equation

and its eigenvalue j = 1�K is the Pomeron Regge trajectory. With this application in mind,

in this section we will use the language of transverse plane and conformal symmetry, instead

of the stereographically equivalent language of angles and Lorentz symmetry.

Linearizing the color structures in the three loop result (4.33c) produces many terms, but

these turn out to organize simply into the combination which appears already at two loops:

U10U02 + U100U002 � 2U10U000U002 7! U100 + U02 � U10 � U002 � 2U000 . (5.2)

This is due to an exact symmetry: the large N
c

theory is invariant under the local gauge

transformations U
ij

! U
ij

e↵i

�↵

j , representing independent U(1) gauge transformations in the

past and future. (Beyond the planar limit, only the global SU(N
c

)past⇥SU(N
c

)future survives

as a symmetry of the Balitsky-JIMWLK equation.) The combination (5.2) is the only one

invariant under the linear transformation U
ij

7! U
ij

+ ↵
i

� ↵
j

, which does not contain U12

and is invariant under the parity (10)$(200). That parity is automatic for any conformally-

invariant function of four transverse points 1, 0, 00, 2, and so not really an assumption.

The first four terms on the right of eq. (5.2) naively integrate to zero,

Z
d2z0d

2z00(U10�U100)
↵12K[1 000 2]

↵10↵000↵002

naively
=

Z
d2z0

↵12 U10

↵10↵02

Z
d2z00


↵02K[1 000 2]

↵000↵002
� (1$2)

�
= 0,

(5.3)

because by conformal symmetry the z00 integral can only produce a constant and thus cannot

be antisymmetric in 1 and 2. In the first equality we have used the just-mentioned parity

symmetry to trade (0$00) for (1$2). A subtlety however is that in this rewriting the middle

integral fails to be absolutely convergent in the double scaling limit z0, z00 ! z2, even though

the left-hand side is. Due to this, the conformal symmetry argument breaks down for z0 =

z2, enabling a contact term �2(z0�z2) to appear. (See appendix E of ref. [33] for explicit

examples.)

Taking into account the possibility of such contact terms by adding a constant C(L), the

linearization at L-loops takes the general form

K(L)U12 =
⇣
�(L)
K

K(1) + 2C(L)
⌘
U12 +

Z
d2z0d2z00

⇡2

(�2)↵12 U000

↵10↵000↵002
K(L)lin

[1 000 2] , (5.4)
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a scaling dimension ⌫ and an (integer) angular momentum m. It can be extracted by looking

at the translation invariant wavefunctions5

U
ij

⌘ U(z
i

� z
j

) = |z
i

�z
j

|1+i⌫ [(z
i

� z
j

)/(z̄
i

� z̄
j

)]m/2. (5.7)

A special eigenfunction is U(z
i

�z
j

) = z
i

� z
j

, corresponding to m = 1 and ⌫ = 0, which

is a generator of the aforementioned U(1) gauge symmetry at large N
c

. The eigenvalue of

K = 1� j must thus vanish in this case, which leads to an exact prediction for the intercept

of the Odderon trajectory at large N
c

[19, 47]:

j(m=1, ⌫=0) = 1. (5.8)

Since this property was manifest in the original starting point, i.e. eq. (5.2) before eq. (5.3)

was used, in practice we will use this property to fix the constant C(L). Translation-invariance

of the trial wavefunctions enables one transverse integral to be done explicitly. This simplifies

the evolution (5.4) to:

K(L)U(x) =
⇣
�(L)
K

K(1) + 2C(L)
⌘
U(x)�

Z
d2y

|y|2 H
(L)(y)U(xy) , (5.9)

where, labelling four points as {z1, z0, z00 , z2} = {1, z, z�y, 0}, the translation-invariant kernel
is

H(L)(y) =

Z d2z 2K(L)lin
[1 z (z�y) 0]

⇡|1� z|2|y � z|2 . (5.10)

Plugging in the wavefunction (5.7), we see that the Pomeron trajectory is the Mellin transform

of H(L)(y).

The parity symmetry of K(L)lin makes |y|H(L)(y) invariant under the inversion y ! 1/y.

The eigenvalue can thus be written as the sum of two terms, analytic in the lower- and upper-

half ⌫-planes respectively, representing the contributions from |y| < 1 and |y| > 1. Following

a common notation in the literature, we thus write the Regge trajectory j = 1�K as:

j(m, ⌫) = 1 +
1X

L=1

✓
g2YMN

c

16⇡2

◆
L ⇣

F (L)
m,⌫

+ F (L)
m,�⌫

⌘
(5.11)

where, for L > 1,

F (L)
m,⌫

= �(L)
K

F (1)
m,⌫

� C(L) +

Z

|y|<1

d2y

|y|2 |y|
1+i⌫(y/ȳ)m/2H(L)(y) . (5.12)

In summary, the Pomeron trajectory j(m, ⌫), defined conceptually as the eigenvalue of the

evolution (5.4) on the eigenfunctions (5.7), is obtained at three loops by computing the Mellin

transform (5.12) of the translation invariant projection (5.10) of the coordinate space kernel

(5.6).

5
In conventional Regge theory, trajectories j(t) are functions of the transverse momentum squared. In a

conformal theory there is a continuum of such trajectories for each value of t, but this continuum is generated

by a symmetry and with fixed p and ⌫ the spectrum becomes discrete, see for example [18].
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(only 5 letters: {x, x̄, 1�x, 1�x̄, x+x̄�xx̄})



3-loop special functions:

63

Thanks to the pattern of subtractions, and to the factorization of soft currents (see eqs. (2.6)

and (4.3)), F sub
[1 000000 2] vanishes in all soft limits and its energy integral at fixed angles is

absolutely convergent at all orders in ✏. One might worry that the step functions make it

tricky to integrate in practice, but in fact they always multiply trivial measures like d⌧/⌧ .

Furthermore, the explicit expression (4.4) naturally splits into several individually convergent

pieces. For example, the piece F safe doesn’t contain any step function and converges by itself.

The pieces from the “1” in F[1 0 2], F[1 000 2] and F[1 000000 2] contain multiple step functions, but

all share the trivial measure d⌧/⌧ d⌧ 0/⌧ 0 and so immediately integrate to logarithms. Finally,

the five nontrivial subtractions in (4.4) naturally combine with the remaining terms in (4.20c),

to produce five individually convergent integrals.

So our problem is reduced to computing finite energy integrals; these produce functions of

transcendental weight 2. A good, systematic way to compute such integrals is the di↵erential

equation method described B.3 The most di�cult integrals are contained within F safe. One

of them, in particular, coming from the first line below eq. (4.5), cannot be written simply in

terms of the angular distances ↵
ij

, but requires associated spinors (�↵�̇

i

⌘ �↵

i

�̃�̇):

f1 ⌘
Z 1

0

d⌧

⌧

d⌧ 0

⌧ 0
4e1(⌧�0, ⌧

0�00 ,�000)

= 2Re

⇢
1 +

↵00000h0 2i[2 1]
↵0002h0 00i[001]� ↵002h0 000i[0001]

� 
Li2

✓
1�↵100↵0002

↵1000↵002

◆
� Li2

✓
1�↵0000↵002

↵000↵0002

◆
+

+Li2

✓
� [1 0][00 000]

[1 000][0 00]

◆
� Li2

✓
�h1 0ih00 000i
h1 000ih0 00i

◆
+ log

↵10↵00000

↵1000↵000
log

↵0002h0 00i[001]
↵002h0 000i|[0001]

��
. (4.22)

Here we have used a commonly used notation for the Lorentz-invariant spinor products:

hi ji = ✏
↵�

�↵

i

��

j

and [i j] = ✏
↵̇�̇

�̃↵̇

i

�̃�̇

j

with ✏ antisymmetric. (Under the stereographic projec-

tion (1.2), these map respectively to: hi ji = (z
i

�z
j

) and [i j] = (z̄
i

�z̄
j

).) The other integrals

are more elementary and produce at most dilogarithms of cross-ratios of ↵’s.

To give the final result we define the five cross-ratios:

u1 ⌘
↵12↵000

↵100↵02
, u2 ⌘

↵12↵00000

↵1000↵002
, u3 ⌘

↵12↵0000

↵1000↵02
, v1 ⌘

↵10↵002

↵100↵02
, v2 ⌘

↵100↵0002

↵1000↵002
.

Then the triple-real integral gives

K(3)
[1 000000 2] =

✓
1� u3

1� v1v2

◆
2

64
2Li2

✓
1� 1

v1v2

◆
� 2Li2

✓
1� 1

v1

◆
� 2Li2

✓
1� 1

v2

◆

+ log v1 log v2 + log(v1v2)
�
log(u1u2)� 3

2 log u3
�

3

75

+(u1u2 � u1v2 � u2v1 + v1 + v2 � u1 � u2 + u3)


Li2

✓
1� 1

v1v2

◆
� ⇣2

�

+3 log u1 log u2 � 3
2 log

2 u3 + (1 + P )(f + f1), (4.23)

3
For energy integrations the method is considerably simpler than for the transverse integrals illustrated in

appendix, because partial fractions and integration-by-parts in one variable are more elementary and the final

contributions are given from boundary terms instead of contact terms.

– 19 –

In nonlinear evolution:

In linear limit:kernel K(3)lin(x) in (5.6) is compactly written:

O1 = 2
�
Li3(x) + Li3(x̄)� 2⇣3

�
� log u

�
Li2(x) + Li2(x̄)

�
, (B.10a)

O2 = 2
�
Li3(1�x) + Li3(1�x̄)� 2⇣3

�
� log v

�
Li2(1�x) + Li2(1�x̄)

�
, (B.10b)

O3 =

⇢
Li3

✓
x̄

x(x̄�1)

◆
+ Li3

✓
x(x̄�1)

x̄

◆
+

1

2


Li2

✓
x̄

x(x̄�1)

◆
� Li2

✓
x(x̄�1)

x̄

◆�
log(1�x)(1�x̄)

�4Li3(x)� 2Li3(1�x) + log(xx̄)Li2(x) +
1

6
log3(1�x)� 1

2
log2(1�x)

�
log(x)� log(x̄)

�

�1

4
log2(1�x) log(1�x)(1�x̄) + ⇣2 log(1�x)

�
� (x $ x̄). (B.10c)

The same five letters are also singularities of the two-loop kernel, so it is natural to conjecture

that no other letters appear in K(L)lin(x) to any order in perturbation theory in planar N = 4

SYM. Its translation-invariant projection H(L)(y), defined by the integration (5.10), can then

be obtained by applying the same algorithm, which implies that at most the ten letters

d log{y, ȳ, 1±y, 1±ȳ, y+ȳ, 1+yȳ,
p
y+i

p
ȳp

y�i

p
ȳ

, 1+i

p
yȳ

1�i

p
yȳ

} can appear in its symbol (all of which do

indeed appear at three loops).

C Eigenvalue in terms of harmonic sums for m = 0 and m = 1

Here we give explicit expressions for the 3-loop Pomeron trajectory, given in coordinate space

in eq. (5.6), in Mellin space using the harmonic sums

S
a

(N) =
NX

i=1

(sign a)i

i|a|
, S

a1,...,an(N) =
NX

i=1

(sign a)i

i|a|
S
a2,...,an(i) . (C.1)

This defines the sums for integer N and the Mellin transform produces their analytical contin-

uation from even N . Using standard algorithms [52], we have converted the Mellin integral

projected onto transverse angular momentum m = 0, eq. (5.15), to harmonic sums with

argument N = �1+i⌫

2 :

F (1)
0,⌫ = �4S1, F (2)

0,⌫ = 8S3 � 16S�2,1 + 8⇣2
�
3S�1 + 3 log 2 + S1

�
� 6⇣3, (C.2)

F (3)
0,⌫

32
= �S5 + 2S�4,1 � S�3,2 + 2S�2,3 � S2,�3 � 2S3,�2 + 4S�3,1,1 + 4S1,�3,1 + 2S1,�2,2

+2S1,2,�2 + 2S2,1,�2 � 8S1,�2,1,1 + ⇣2
�
S1S2 � 3S�3 + 2S�2,1 � 4S1,�2

�
� 49

2 ⇣4S1

+7⇣3
�
2S1,�1 + 2(S1 � S�1) log 2� S�2 � log2 2

�
+ (8⇣�3,1 � 17⇣4)

�
S�1 � S1 + log 2

�

�1
2⇣3S2 + 4⇣5 � 6⇣2⇣3 + 8⇣�3,1,1 . (C.3)

Here ⇣�3,1 ⇡ 0.087786 and ⇣�3,1,1 ⇡ �0.009602 are multi-zeta values. This result is in precise

agreement with [15]. The Pomeron trajectory is the sum of F
m,⌫

and F
m,�⌫

, see eq. (5.11).

For m 6= 0 our result is new. For m = 1, for example, the Mellin transform can be expressed
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(5 letters: {x, x̄, 1�x, 1�x̄, x+x̄�xx̄})


