The BMW prescription (2020)

Laurent Lellouch

CNRS & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration [BMWc] Nature 593 (2021) 51 → BMWc'20 Phys.Rev.Lett. 111 (2013) 25 → BMWc'13

Laurent Lellouch Converging on QCD+QED prescriptions @ Higgs Centre, 29 May 2023

Introduction and motivation

Search for new ϕ in low-energy experiments involving strong interaction effects

- need nonperturbative QCD computations w/ subpercent precision
- must include $O(\alpha)$ and $O(\delta m = m_d m_u)$ corrections

At this order

 $\mathcal{O}_{\text{SM}} = \mathcal{O}_{\text{ISO}} + \mathcal{O}_{\text{SIB}} + \mathcal{O}_{\text{QED}}$

- $\mathcal{O}_{SM} = \text{full SM}$ prediction including $O(\alpha)$ and $O(\delta m)$ effects
 - can be compared directly to experimental measurements at permil level
- $O_{\rm ISO} \sim {\rm contribution to } O_{\rm SM} \text{ w/ renormalized } \alpha = 0 \text{ and } \delta m = 0 \text{ keeping all other renormalized parameters fixed}$
 - can be compared directly to experimental measurements at percent level
- $\mathcal{O}_{SIB} \sim \delta m_{\phi} \frac{\partial \mathcal{O}_{SM}}{\partial \delta m} |_{\delta m=0,\alpha=0,\ldots}$
- $\mathcal{O}_{\text{QED}} \sim \alpha_{\phi} \frac{\partial \mathcal{O}_{\text{SM}}}{\partial \alpha} |_{\delta m = 0, \alpha = 0, \dots}$

Once N_f=2+1+··· QCD_{ISO} is renormalized by tuning bare m_{ud}, m_s,... and g_s to reproduce observables that depend strongly on these parameters

 $\rightarrow \mathcal{O}_{\text{ISO}}$ and \mathcal{O}_{SIB} both finite

- Calculation of O_{QED} introduces O(α) divergences that must be absorbed in bare parameters of QCD
 - $\rightarrow\,$ value of $\mathcal{O}_{\text{ISO},\text{SIB},\text{QED}}$ depends on finite terms absorbed in each contribution (scheme dependence)
 - \rightarrow (re-)renormalize parameters of QCD by tuning bare m_u, m_d, m_s, \dots and g_s to reproduce *precisely measured quantities* that depend strongly on these parameters
 - \rightarrow at $O(\alpha)$, α does not renormalize: take e.g. PDG value
 - → separation into $\mathcal{O}_{\text{ISO},\text{SIB},\text{QED}}$ obtained by tuning bare parameters of QCD_{ISO} to reproduce as many measured quantities or observables computed in N_f =1+1+1++... QCD+QCD and isolating terms $\propto \alpha, \delta m$

BMW scheme (2020)

Hadronic scheme [BMW '13, '20]:

- M_{qq} = mass of connected $q\bar{q}$ meson as standin for m_q (q=u, d, s, c)^a
- W_0 [BMW '12] as standin for α_s

Pros:

very sensitive to individual m_q; χPT expansions [Bijnens et al '07]

$$M_{\pi_{\chi}}^{2} \equiv \frac{M_{uu}^{2} + M_{dd}^{2}}{2} = B_{2}(m_{u} + m_{d}) + O(m_{ud}^{2}, \alpha/N_{c}, (\delta m)^{2}/N_{c})$$
$$\Delta M^{2} \equiv M_{dd}^{2} - M_{uu}^{2} = B_{2}\delta m + \delta m \times O(m_{ud}, \alpha)$$
$$M_{ss}^{2} = 2B_{3}m_{s} + O(m_{s}^{2}, \alpha m_{s}/N_{c}, \delta m^{2}/N_{c}) \qquad M_{cc} = 2m_{c}(1 + O(v^{2}, \alpha/N_{c}))$$

- \rightarrow should be no large αm_s Dashen violations
- w₀ is mostly sensitive to QCD scale

 \rightarrow purely gluonic

 \rightarrow SIB & QED corrections: $(1/N_c) \times O(\alpha, (\delta m)^2)$

^aIn BMW'20, used m_s / m_c instead of M_{cc}

- should be close to GRS scheme [Gasser et al '12] defined via renormalized m_q and α_s
- no need to perform additional renormalization of m_q , q = u, d, s, c, and α_s , in QCD and QCD+QED
- M_{qq} and w_0 computable w/ order permil accuracy

Cons:

NONE!

BMW scheme (2020)

- should be close to GRS scheme [Gasser et al '12] defined via renormalized m_q and α_s
- no need to perform additional renormalization of m_q , q = u, d, s, c, and α_s , in QCD and QCD+QED
- M_{aq} and w_0 computable w/ order permil accuracy

Cons:

- M_{qq} and w_0 are not experimentally measurable (though some very close to be)
 - → must be computed
 - → have done so w/ few permil accuracy [BMW'20]
 - \rightarrow results can be used by others
- If each collaboration uses its own M_{qq} & w₀
 - → no common definiton of ISO, SIB & QED contributions
 - ⇒ precise comparison not possible
- However could agree on standard values!

BMW separation strategy (2020)

- Calculate O_{SM} in N_f = 4 × 1 QCD+QED w/ many m_q bracketing φ values & many a, L
- 2. Obtain O_{SM} (Type I fits)

w/

$$\rightarrow \mathcal{O}_{\mathsf{SM}}\left(\frac{M_{\pi_{\chi}}^2}{M_{\Omega^-}^2}, \frac{M_{K_{\chi}}^2}{M_{\Omega^-}^2}, \frac{\Delta M_K^2}{M_{\Omega^-}^2}, \frac{M_{\eta_c}}{M_{\Omega^-}}, \boldsymbol{e_v}, \boldsymbol{e_s}, \boldsymbol{aM_{\Omega^-}}, \boldsymbol{LM_{\Omega^-}}\right)$$

$$M_{\pi_{\chi}}^{2} = M_{\pi^{0}}(1 + O((\delta m)^{2}, \alpha^{2})) \sim m_{u} + m_{d}$$

$$M_{K_{\chi}}^{2} = \frac{1}{2}(M_{K^{+}}^{2} + M_{K^{0}}^{2} - M_{\pi^{+}}^{2}) \sim m_{s}$$

$$\Delta M_{K}^{2} = M_{K^{0}}^{2} - M_{K^{+}}^{2} \sim m_{d} - m_{u} \qquad M_{\eta_{c}} \sim 2m_{c}$$

$$M_{\Omega^{-}} \sim a \qquad \& \qquad \alpha$$

- interpolate to ϕ masses & α and $aM_{\Omega^-} \rightarrow 0$ & $LM_{\Omega^-} \rightarrow \infty$ $\rightarrow \quad \mathcal{O}^{\phi}_{SM}$
- obtain thus $\mathcal{O}^{\phi}_{\rm SM}=M^{\phi,2}_{uu}, M^{\phi,2}_{dd}, M^{\phi,2}_{ss}, w^{\phi}_0$

BMW separation strategy (2020)

3. Now, consider (Type II fit)

$$\mathcal{O}_{\rm SM}\left(w_0^2 M_{uu}^2, w_0^2 M_{dd}^2, w_0^2 \Delta M^2, w_0 M_{cc}, e_v, e_s, a/w_0, Lw_0\right)$$

w/ $\Delta M^2 = M_{dd}^2 - M_{dd}^2$

- study as function of its arguments
- interpolate to ϕ masses & α and $a/w_0 \rightarrow 0$ & $L/w_0 \rightarrow \infty$
- isolate coefficients of ΔM^2 , e_v^2 , $e_v e_s$, $e_s^2 \rightarrow$ finite:

$$\begin{aligned} \mathcal{O}_{\rm ISO} &= \mathcal{O}_{\rm SM} \left((w_0^2 M_{\pi_{\chi}}^2)^{\phi}, (w_0^2 M_{\pi_{\chi}}^2)^{\phi}, 0, (w_0 M_{cc})^{\phi}, 0, 0, 0, \infty \right) \\ \mathcal{O}_{\rm SIB} &= \mathcal{O}_{\rm SM} \left((w_0^2 M_{\pi_{\chi}}^2)^{\phi}, (w_0^2 M_{\pi_{\chi}}^2)^{\phi}, (w_0^2 \Delta M^2)^{\phi}, (w_0 M_{cc})^{\phi}, 0, 0, 0, \infty \right) \\ \mathcal{O}_{\rm QED} &= \mathcal{O}_{\rm SM} \left((w_0^2 M_{\pi_{\chi}}^2)^{\phi}, (w_0^2 M_{\pi_{\chi}}^2)^{\phi}, 0, (w_0 M_{cc})^{\phi}, e_{\phi}, e_{\phi}, 0, \infty \right) \end{aligned}$$

Results for K-mass decomposition in BMW'20 scheme

Type I fits yield:

 $w_0^{\phi} = 0.17236(29)(63) \, \text{fm} \quad (\Delta M^2)^{\phi} = 0.01317(32)(27) \, \text{GeV}^2 \quad M_{ss}^{\phi} = 689.89(28)(40) \, \text{MeV}$

Type II fits for

$$M_{\mathcal{K}^{+/0}} = M_{\mathcal{K}^{+/0}}^{\mathsf{ISO}} + M_{\mathcal{K}^{+/0}}^{\mathsf{SIB}} + M_{\mathcal{K}^{+/0}}^{\mathsf{QED}}$$

give (preliminary)

$$M_{K^0}^{\rm ISO} = 494.55(31) \,\,{\rm MeV} \quad M_{K^0}^{\rm ISO} = 2.98(14) \,\,{\rm MeV} \quad M_{K^0}^{\rm QED} = 0.05(7) \,\,{\rm MeV}$$
$$M_{K^+}^{\rm ISO} = 494.54(31) \,\,{\rm MeV} \quad M_{K^+}^{\rm ISO} = -3.13(17) \,\,{\rm MeV} \quad M_{K^+}^{\rm QED} = 2.25(8) \,\,{\rm MeV}$$
$$\checkmark \quad M_{K^0}^{\rm ISO} = M_{K^0}^{\rm ISO}$$

Comparison to other schemes

- Phenomenology
 - Cottingham & narrow width approximation [Cottingham '63, Stamen et al '22]

 $M_{\omega}, \Gamma_{\omega}, M_{\phi}, \Gamma_{\phi}, M_{K^0}, M_{K^+}, \alpha$

- Lattice
 - GRS [Gasser et al 02, RM123 '17,'19]: α & e.g. in $\overline{\mathrm{MS}}$ @ 2 GeV

• $m_{ud} = \frac{1}{2}(m_u + m_d), \ \delta m = m_d - m_u, \ m_s, \ m_c, \ \alpha_s$

- BMW '13, UKQCD '22
 - QCD+QED: $M_{\pi_{\chi}}^2$, ΔM_K^2 , $M_{K_{\chi}}^2$, M_{Ω^-} , α
 - Separation: $M_{\pi_{\chi}}^2$, ΔM^2 , $M_{K_{\chi}}^2$, M_{Ω^-} , α
 - \rightarrow large αm_s Dashen violations
- [Mainz '22 QCD+QED: $M_{\pi_chi}^2$, $\Delta M_K^2 - \Delta M_{\pi}^2$, $M_{K_{\chi}}^2$, $f_{\pi}^{\rm ISO}$, α QCD_{ISO}: $M_{\pi_{\chi}}^2$, $m_u = m_d$, $M_{K_{\chi}}^2$, $f_{\pi}^{\rm ISO}$, $\alpha = 0$ \rightarrow large αm_s Dashen violations]

Comparison to other schemes

- → excellent agreement with GRS and Cottingham
- ⇒ indication of equivalence between BMW'20 and GRS even beyond $K^{+,0}$ mass decomposition

Conclusion

• BMW'20 prescription: decompose $N_f = 4 \times 1 \text{ QCD} + \text{QED}$ results via matching of

$$w_0^{\phi} = 0.17236(29)(63) \, \text{fm} \qquad M_{\pi_{\chi}}^{\phi} = \sqrt{\frac{M_{uu}^2 + M_{dd}^2}{2}} = 134.9768(5) \, \text{MeV}$$
$$(\Delta M^2)^{\phi} = M_{dd}^2 - M_{uu}^2 = 0.01317(32)(27) \, \text{GeV}^2 \qquad M_{ss}^{\phi} = 689.89(28)(40) \, \text{MeV}$$
$$M_{\eta_c^{\phi}} = 2.9863(27) \, \text{GeV} \quad \text{[HPQCD '15]} \quad \text{(or } \frac{m_c}{m_s} = 11.85) \quad \text{[HPQCD '10]}$$

Suggested prescription: decompose N_f = 4 × 1 QCD+QED results via matching of e.g.

$$w_0^{\phi} = 0.1730 \,\mathrm{fm} \qquad M_{\pi_{\chi}}^{\phi} = \sqrt{\frac{M_{uu}^2 + M_{dd}^2}{2}} = 135.0 \,\mathrm{MeV}$$
$$\Delta M^2)^{\phi} = M_{dd}^2 - M_{uu}^2 = 0.01317 \,\mathrm{GeV}^2 \qquad M_{ss}^{\phi} = 689.9 \,\mathrm{MeV}$$
$$M_{\eta_{c}^{\phi}} = 2.986 \,\mathrm{GeV}$$