Leading isospin breaking effects in a_{μ}^{HVP} and in baryon masses - an update of the Mainz effort

Andreas $Risch^1$ andreas.risch@desy.de

Alexander Segner³

¹John von Neumann-Institut für Computing NIC Deutsches Elektronen-Synchrotron DESY Platanenallee 6, 15738 Zeuthen, Germany

³PRISMA⁺ Cluster of Excellence and Institut für Kernphysik Johannes Gutenberg Universität Johann-Joachim-Becher-Weg 45, 55128 Mainz, Germany

Andrew D. Hanlon²

Hartmut Wittig^{3,4}

²Physics Department Brookhaven National Laboratory Upton, New York 11973, USA

⁴Helmholtz-Institut Mainz Staudingerweg 18, 55128 Mainz, Germany

Monday 29th May, 2023

Outline

Mainz setup for Lattice $\rm QCD + \rm QED$

LO-HVP contribution to the muon anomalous magnetic moment a_{μ}

Baryon spectrum in QCD+QED

Some remarks on a renormalisation scheme convention

Mainz setup for Lattice QCD+QED

QCD+QED on QCD_{iso} gauge ensembles

▶ Non-compact QED_L-action¹ for IR regularisation, Coulomb gauge

► QCD+QED quark action from QCD_{iso}:

$$(m_{\rm u}^{(0)}, m_{\rm d}^{(0)}, m_{\rm s}^{(0)}) \to (m_{\rm u}, m_{\rm d}, m_{\rm s})$$
 $m_{\rm u}^{(0)} = m_{\rm d}^{(0)}$
 $U^{x\mu} \to W^{x\mu} = U^{x\mu} e^{iaeQA^{x\mu}}$
 $Q = \text{diag}\left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$

 \blacktriangleright QCD+QED on QCD_{iso} gauge ensembles:

- ▶ QCD+QED parametrised by $\varepsilon = (m_{\rm u}, m_{\rm d}, m_{\rm s}, e^2)$
- ▶ QCD_{iso} parametrised by $\varepsilon^{(0)} = (m_{\rm u}^{(0)}, m_{\rm d}^{(0)}, m_{\rm s}^{(0)}, 0)$
- ▶ Reweighting and leading order perturbative expansion² in $\Delta \varepsilon = \varepsilon \varepsilon^{(0)}$ around $\varepsilon^{(0)}$
- $\alpha_{\rm em}$ does not renormalise at leading order
- ▶ QCD_{iso} O(a)-improved, isospin breaking introduces O(a) lattice artefacts

¹Hayakawa and Uno 2008.

 $^{^{2}}$ Divitiis et al. 2013.

Hadronic renormalisation scheme for QCD+QED and QCD_{iso}

▶ Pseudo-scalar meson masses in χ PT + QED³ give proxies for bare parameters $m_{\rm u} + m_{\rm d}$, $m_{\rm s}$ and $m_{\rm u} - m_{\rm d}$:

$$\hat{m} = \frac{1}{2}(m_{\rm u} + m_{\rm d})$$
 $\varepsilon = \frac{\sqrt{3}}{4} \frac{m_{\rm d} - m_{\rm u}}{m_{\rm s} - \hat{m}} \pi^0 - \eta$ mixing angle $O(e^2 p^0)$ and $O(\varepsilon)$:

$$\begin{split} m_{\pi^0}^2 &= 2B\hat{m} & m_{K^0}^2 = B\big((m_{\rm s} + \hat{m}) + \frac{2\varepsilon}{\sqrt{3}}(m_{\rm s} - \hat{m})\big) \\ m_{\pi^+}^2 &= 2B\hat{m} + 2e^2 ZF^2 & m_{K^+}^2 = B\big((m_{\rm s} + \hat{m}) - \frac{2\varepsilon}{\sqrt{3}}(m_{\rm s} - \hat{m})\big) + 2e^2 ZF^2 \end{split}$$

In chiral limit: ${\cal F}$ pion decay constant, ${\cal B}$ vacuum condensate parameter, ${\cal Z}$ dimensionless coupling constant

At the moment: isospin breaking effects in scale setting disregarded

► Scheme for QCD+QED: $m_{\pi^0}^2 \propto m_{\rm u} + m_{\rm d}$ $m_{K^+}^2 + m_{K^0}^2 - m_{\pi^+}^2 \propto m_{\rm s}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2 \propto m_{\rm u} - m_{\rm d}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2 \propto m_{\rm u} - m_{\rm d}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2 \propto m_{\rm u} - m_{\rm d}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 \propto m_{\rm s}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 \propto m_{\rm s}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 + m_{\pi^0}^2 \propto m_{\rm u} - m_{\rm d}$ $m_{K^+}^2 - m_{K^0}^2 - m_{\pi^+}^2 \propto m_{\rm s}$ $m_{K^+}^2 - m_{K^+}^2 - m_{K^+}^2 \sim m_{K^+}^$

At

³Neufeld and Rupertsberger 1996.

LO-HVP contribution to the muon anomalous magnetic moment a_{μ}

LO-HVP contribution to the muon anomalous magnetic moment a_{μ}

▶ a_{μ}^{HVP} in time-momentum representation (TMR)⁴:

$$\begin{aligned} a_{\mu}^{\mathrm{HVP}} &= \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}t \, \widetilde{K}(t, m_{\mu}) \, C(t) \\ C(x^0) \, \delta^{\mu_2 \mu_1} &= \int \mathrm{d}x^3 \langle \mathcal{V}_{\mathrm{R}}^{\gamma x \mu_2} \mathcal{V}_{\mathrm{R}}^{\gamma 0 \mu_1} \rangle \end{aligned}$$

• Intermediate window contribution of $a_{\mu,\text{win}}^{\text{HVP}}$ in TMR:

$$a_{\mu,\text{win}}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty \mathrm{d}t \,\omega_{\text{win}}(t) \,\widetilde{K}(t,m_\mu) \,C(t)$$
$$\omega_{\text{win}}(t) = \Theta(t,t_0,\Delta) - \Theta(t,t_1,\Delta) \qquad \Theta(t,t',\Delta) = \frac{1}{2} \left(1 + \tanh\left(\frac{t-t'}{\Delta}\right)\right)$$
$$t_0 = 0.4 \,\text{fm} \qquad t_1 = 1.0 \,\text{fm} \qquad \Delta = 0.15 \,\text{fm}$$

▶ Goal: Precise Lattice QCD determination with sub-percent error ⇒ Isospin breaking effects become relevant!

⁴Bernecker and Meyer 2011; Francis et al. 2013; Della Morte et al. 2017.

QCD+QED on QCD_{iso} gauge ensembles

- QCD_{iso} ensembles $(CLS)^5$:
 - Tree-level improved Lüscher-Weisz gauge action
 - $N_{\rm f} = 2 + 1 \ O(a)$ -improved Wilson fermion action
 - Periodic/open temporal boundary conditions

$$\blacktriangleright \operatorname{tr}(M) = const.$$

CLS ensembles used to study leading isospin breaking effects in a_{μ}^{HVP}

	$\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$	<i>a</i> [fm]	$m_{\pi} [\text{MeV}]$	$m_K [{\rm MeV}]$	$m_{\pi}L$	$L[{\rm fm}]$
H102	$32^{3} \times 96$	0.08626(10)	354(5)	438(4)	5.0	2.8
N101	$48^3 \times 128$	0.08030(10)	282(4)	460(4)	5.9	4.1
N452	$48^3 \times 128$		350(5)	440(6)	6.5	3.7
N451	$48^3 \times 128$	0.07634(97)	287(4)	462(5)	5.3	3.7
D450	$64^3 \times 128$		217(3)	476(6)	5.4	4.9
N200	$48^3 \times 128$	0.06426(76)	282(3)	463(5)	4.4	3.1

⁵Bruno et al. 2015; Bruno et al. 2017.

Isospin breaking expansion of mesonic two-point functions

- ▶ $\langle \mathcal{O}[U] \rangle_{\text{eff}}^{(0)}$ denotes expectation value regarding QCD_{iso} effective gauge action
- ▶ Diagrammatic expansion of $C_{\mathcal{M}_2\mathcal{M}_1} = \langle \mathcal{M}_2\mathcal{M}_1 \rangle$ (quark-connected contributions):

 \Rightarrow Isospin breaking effects in sea-quarks not included and quark-disconnected contributions disregarded until now

Intermediate window contribution $a_{\mu,\text{win}}^{\text{HVP}}$

• $\frac{(a_{\mu,\text{win}}^{\text{HVP}})^{(1)}}{(a_{\mu,\text{win}}^{\text{HVP}})^{(0)}} = 0.3(1)\%$ for quark-connected contributions

• Uncertainty on relative correction doubled in final results for $a_{\mu,\text{win}}^{\text{HVP 6}}$

- New additional data points compatible
- ▶ IB in scale setting and QED-FV effects to be included

 $^{^6\}mathrm{Ce}$ et al. 2022.

HVP contribution to the muon anomalous magnetic moment a_{μ}^{HVP}

► $C(t) = \langle \mathcal{V}^{\gamma}(t) \mathcal{V}^{\gamma}(0) \rangle$ exhibits noise problem for large t⇒ Apply bounding method⁷:

$$0 < C(t_c)e^{-E_{\rm eff}(t_c)(t-t_c)} \le C(t) \le C(t_c)e^{-E_0(t-t_c)} \qquad t \ge t_c$$

 E_0 given by m_ρ or $m_{2\pi}$, disregarding $\pi + \gamma$ state in QCD+QED

▶ IB in scale setting and QED-FV effects to be included

⁷Borsanyi et al. 2017; Blum et al. 2018.

Scale setting for QCD+QED on CLS ensembles

- ▶ So far leading isospin breaking effects in scale setting are not included
- ► CLS scale setting for QCD_{iso} originally based on $\frac{2}{3}(f_K + \frac{1}{2}f_\pi)^8$

 $\sqrt{t_0} = 0.1448(15) \,\mathrm{fm}$

- Computation of decay constants f_K and f_{π} in QCD+QED is demanding⁹:
 - infrared divergences in intermediate stages of computation
 - cancel taking exchange of virtual photons between quarks and charged decay products as well as emission of real final state photons into account
- \blacktriangleright RQCD recently computed QCD_{iso} scale setting on CLS ensembles based on $m_{\Xi}{}^{10}$

 $\sqrt{t_0} = 0.1443(7) \,\mathrm{fm}$

 \Rightarrow Scale setting via baryon masses for QCD+QED based on CLS ensembles seems promising

⁸Bruno et al. 2017; Strassberger 2022.

⁹Carrasco et al. 2015; Giusti et al. 2018; Di Carlo et al. 2019; Desiderio 2020.

¹⁰Bali et al. 2023.

Baryon spectrum in QCD+QED

Baryon spectrum in QCD+QED

► Focus on baryons that are stable in QCD+QED:

$$p$$
 n Σ^+ $\Sigma^ \Xi^0$ $\Xi^ \Lambda$ Ω

• Extract baryon masses from $C_{\mathcal{B}\overline{\mathcal{B}}}(t) = \langle \mathcal{B}(t)\overline{\mathcal{B}}(0) \rangle$

- Quasi-local interpolating operators with smeared quark fields for baryons based on Clebsch-Gordan construction in Dirac-Pauli representation¹¹
- ► Smeared quark fields $q_{\mu}(\vec{x},t) = \sum_{\vec{y}} G(\vec{x},\vec{x}+\vec{y}) \tilde{q}_{\mu}(\vec{x}+\vec{y},t)$ QCD covariant QED non-covariant Wuppertal smearing kernel G on APE-smeared QCD gauge field, radius 0.5 fm for all quark flavours
- Parity and spin operators are diagonal in Dirac-Pauli representation:

$$Pq(\vec{x},t)P^{-1} = \gamma_4 q(-\vec{x},t) = \rho q(-\vec{x},t)$$
$$S_z q(\vec{x},t) = \frac{i}{2} [\gamma_2,\gamma_1] q(\vec{x},t) = sq(\vec{x},t)$$

μ	ρ	s
1	+	+
2	+	-
3	—	+
4	—	-

- \Rightarrow Each component q_{μ} has definite parity ρ and spin s
- \Rightarrow Direct translation of Dirac index μ to $\rho\text{-}$ and s-spin possible

¹¹Basak et al. 2005.

Interpolation operators for baryons: flavour content

	I_3	S	operator	symmetry
N	$\frac{1}{2}$	0	$\overline{p}_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \frac{1}{\sqrt{2}} (\overline{u}^a_{\mu_1} \overline{d}^b_{\mu_2} - \overline{d}^a_{\mu_1} \overline{u}^b_{\mu_2}) \overline{u}^c_{\mu_3}$	MA
	$-\frac{1}{2}$		$\overline{n}_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \frac{1}{\sqrt{2}} (\overline{u}^a_{\mu_1} \overline{d}^o_{\mu_2} - \overline{d}^a_{\mu_1} \overline{u}^b_{\mu_2}) \overline{d}^c_{\mu_3}$	
	1		$\overline{\Sigma}^+_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \overline{u}^a_{\mu_1} \overline{u}^b_{\mu_2} \overline{s}^c_{\mu_3}$	
Σ	0	-1	$\overline{\Sigma}^0_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \frac{1}{\sqrt{2}} (\overline{u}^a_{\mu_1} \overline{d}^b_{\mu_2} + \overline{d}^a_{\mu_1} \overline{u}^b_{\mu_2}) \overline{s}^c_{\mu_3}$	MS
	-1		$\overline{\Sigma}_{\mu_1\mu_2\mu_3}^- = \varepsilon_{abc} \overline{d}_{\mu_1}^a \overline{d}_{\mu_2}^b \overline{s}_{\mu_3}^c$	
	$\frac{1}{2}$	_2	$\overline{\Xi}^0_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \overline{s}^a_{\mu_1} \overline{s}^b_{\mu_2} \overline{u}^c_{\mu_3}$	MS
	$-\frac{1}{2}$	-	$\overline{\Xi}_{\mu_1\mu_2\mu_3}^- = \varepsilon_{abc} \overline{s}_{\mu_1}^a \overline{s}_{\mu_2}^b \overline{d}_{\mu_3}^c$	WIG
Λ	0	-1	$\overline{\Lambda}_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \frac{1}{\sqrt{2}} (\overline{u}^a_{\mu_1} \overline{d}^b_{\mu_2} - \overline{d}^a_{\mu_1} \overline{u}^b_{\mu_2}) \overline{s}^c_{\mu_3}$	MA
Ω	0	-3	$\overline{\Omega}_{\mu_1\mu_2\mu_3} = \varepsilon_{abc} \overline{s}^a_{\mu_1} \overline{s}^b_{\mu_2} \overline{s}^c_{\mu_3}$	S

Interpolation operators for light baryons¹²

▶ Clebsch-Gordan construction of flavour content of interpolation operators

 $^{^{12}\}mathrm{Basak}$ et al. 2005.

Interpolation operators for baryons: spin and parity

P	S_z	Ω	Ξ/Σ	Λ/N
	$\frac{3}{2}$	$\overline{\Omega}_{111}$		
+	$\frac{1}{2}$	$\sqrt{3\Omega}_{112}$	$\sqrt{\frac{2}{3}}(\overline{\Xi}/\overline{\Sigma}_{112}-\overline{\Xi}/\overline{\Sigma}_{121})$	$\sqrt{2}\overline{\Lambda}/\overline{N}_{121}$
	$-\frac{1}{2}$	$\sqrt{3\Omega}_{122}$	$\sqrt{\frac{2}{3}}(\overline{\Xi}/\overline{\Sigma}_{122}-\overline{\Xi}/\overline{\Sigma}_{221})$	$\sqrt{2\Lambda}/\overline{N}_{122}$
	$-\frac{3}{2}$	$\overline{\Omega}_{222}$		
	$\frac{3}{2}$	$\overline{\Omega}_{333}$		
_	$\frac{1}{2}$	$\sqrt{3\Omega}_{334}$	$\sqrt{\frac{2}{3}}(\overline{\Xi}/\overline{\Sigma}_{334}-\overline{\Xi}/\overline{\Sigma}_{343})$	$\sqrt{2}\overline{\Lambda}/\overline{N}_{343}$
	$-\frac{1}{2}$	$\sqrt{3\Omega}_{344}$	$\sqrt{\frac{2}{3}}(\overline{\Xi}/\overline{\Sigma}_{334}-\overline{\Xi}/\overline{\Sigma}_{443})$	$\sqrt{2\Lambda}/\overline{N}_{344}$
	$-\frac{3}{2}$	$\overline{\Omega}_{444}$		

Interpolation operators for light baryons 13

Selected operators with the best overlap to the ground state

- ▶ Consider parity partners for averaging with time-reversed correlation function
- ▶ Simple structure of operators leads to computationally cheaper contractions

 $^{^{13}\}mathrm{Basak}$ et al. 2005.

Isospin breaking expansion of baryonic two-point functions

- ▶ $\langle \mathcal{O}[U] \rangle_{\text{eff}}^{(0)}$ denotes expectation value regarding QCD_{iso} effective gauge action
- ▶ Diagrammatic expansion of $C_{\mathcal{B}\overline{\mathcal{B}}} = \langle \mathcal{B}\overline{\mathcal{B}} \rangle$ (quark-connected contributions):

$$(C_{\mathcal{B}\overline{\mathcal{B}}})^{(1)}_{\Delta m_f} = \left\langle \begin{array}{c} {}^{B^{(0)}} & & \\ & &$$

 \Rightarrow Isospin breaking effects in sea-quarks not included until now

- Evaluated with quark point sources and stochastic Z_2 photon sources
- Noise reduction: covariant approximation averaging¹⁴ & truncated solver method¹⁵ (all-mode averaging)

¹⁴Shintani et al. 2015.

¹⁵Bali et al. 2010.

Extraction of ground state mass via two state fit

- ▶ Baryonic two-point functions suffer from noise problem at large t⇒ Apply fit model that is also valid at earlier time slices
- ▶ Two state fit model:

$$C(t) = c e^{-mt} + c_* e^{-m_* t}$$

m ground state mass, c_* and m_* absorb excited state effects

• Effective mass:

$$m_{\text{eff}}(t) = -\frac{\mathrm{d}}{\mathrm{d}t}\log(C(t))$$

Expand in $d e^{-\Delta M t}$ with $\Delta M = m_* - m$ and $d = \frac{c_*}{c}^{16}$:
 $m_{\text{eff}}(t) = m + \Delta M d e^{-\Delta M t} + h.o.$

 $\begin{aligned} \blacktriangleright & \text{First order perturbative expansion } X = X^{(0)} + \sum_{l} \Delta \varepsilon_{l} X_{l}^{(1)} \\ & m_{\text{eff}}^{(0)}(t) = m_{l}^{(0)} + d^{(0)} \Delta M^{(0)} e^{-\Delta M^{(0)}t} + h.o. \\ & m_{\text{eff}}_{l}^{(1)}(t) = m_{l}^{(1)} + \left(\frac{d_{l}^{(1)}}{d^{(0)}} + \frac{\Delta M_{l}^{(1)}}{\Delta M^{(0)}} - \Delta M_{l}^{(1)}t\right) d^{(0)} \Delta M^{(0)} e^{-\Delta M^{(0)}t} + h.o. \end{aligned}$

▶ In addition: Single state fit

 $^{^{16}\}mathrm{Del}$ Debbio et al. 2007.

Fit model averaging

- ▶ Selection of optimal fit range [t_{min}, t_{max}] for m_{eff}(t) is to some degree ambiguous and subjective
 ⇒ Apply fit model averaging
- Commonly applied Akaike information criterion¹⁷ (AIC) favours models that tend to overfit the data
 introduce approximation operating term ¹⁸
 - \Rightarrow introduce penalty term¹⁸

$$\underbrace{\operatorname{pr}(M|D)}_{\text{model weight}} \propto \exp\left(-\frac{1}{2}\left(\chi^2(a) + 2(k+n)\right)\right)$$

k number of model parameters, n number of data points not considered in fit Optimal parameter $\langle a_i \rangle$ and parameter variance $\sigma_{a_i}^2$:

$$\langle a_i \rangle = \sum_M \langle a_i \rangle_M \operatorname{pr}(M|D)$$

$$\sigma_{a_i}^2 = \underbrace{\sum_M \sigma_{a_i,M}^2 \operatorname{pr}(M|D)}_{\text{stochastic variance}} + \underbrace{\sum_M \langle a_i \rangle_M^2 \operatorname{pr}(M|D) - \left(\sum_M \langle a_i \rangle_M \operatorname{pr}(M|D)\right)^2}_{\text{model variance}}$$

¹⁷Akaike 1974.

¹⁸Jay and Neil 2021; Neil and Sitison 2022.

QCD+QED on QCD_{iso} gauge ensembles

- ▶ QCD_{iso} ensembles $(CLS)^{19}$:
 - Tree-level improved Lüscher-Weisz gauge action
 - $N_{\rm f} = 2 + 1 \ O(a)$ -improved Wilson fermion action
 - Periodic/open temporal boundary conditions

CLS ensembles used to study leading isospin breaking effects in baryon masses

	$\left(\frac{L}{a}\right)^3 \times \frac{T}{a}$	a [fm]	m_{π} [MeV]	$m_K [{\rm MeV}]$	$m_{\pi}L$	$L [{\rm fm}]$
N451	$48^3 \times 128$	0.07624(07)	287(4)	462(5)	5.3	3.7
D450	$64^3 \times 128$	0.07034(97)	217(3)	476(6)	5.4	4.9
N203	$48^3 \times 128$	0.06426(76)	346(4)	442(5)	5.4	3.1
N200	$48^3 \times 128$	0.00420(70)	282(3)	463(5)	4.4	3.1

 $^{^{19}\}mathrm{Bruno}$ et al. 2015; Bruno et al. 2017.

Fit to isosymmetric contribution

Fit to isosymmetric contribution $am_{\rm eff}^{(0)}$ for the Ξ baryon on D450

- Fit isosymmetric contribution to obtain $(am, d, a\Delta M)^{(0)}$ for each model
- Perform model averaging
- ▶ Add Gaussian noise to $(am, d, a\Delta M)^{(0)}$ to account for model variance
- 2-state fits starting at early time slices dominate

Fit to first-order contribution

Fit to first-order contributions $am_{\mathrm{eff}}{}^{(1)}_{a\Delta m_{\mathrm{s}}}$ and $m_{\mathrm{eff}}{}^{(1)}_{e^2}$ for the Ξ baryon on D450

- ▶ Insert model averaged values for $(am, d, a\Delta M)^{(0)}$ into first order fit model and determine $(am, d, a\Delta M)_l^{(1)}$
- Same procedure as in isosymmetric case
- ▶ 2-state fits starting at early time slices dominate

Relative precision of baryon masses in QCD+QED

Ensemble	$a[{ m fm}]$	$m_{\pi} [{ m MeV}]$	N	Λ	Σ	Ξ	Ω
N451	0.076	287	0.25%	0.72%	0.70%	0.32%	0.24%
D450		217	0.49%	0.30%	0.33%	0.29%	0.32%
N203	0.064	346	0.26%	0.20%	0.21%	0.17%	0.28%
N200		282	1.00%	0.32%	0.30%	0.18%	0.27%

Statistical precision of isosymmetric contribution $m^{(0)}$ to baryon masses

 $\blacktriangleright~\Xi$ most promising candidate on the finer and lighter ensembles D450 and N200

Relative precision of baryon masses in QCD+QED

Ensomble	Ξ^0			Ξ			Ω^{-}	
Ensemble	e^2	Δm_u	Δm_s	e^2	Δm_d	Δm_s	e^2	Δm_s
N451	1.3%	1.7%	0.5%	0.9%	1.7%	0.5%	1.5%	1.6%
D450	1.8%	2.5%	0.5%	1.0%	2.5%	0.5%	1.4%	1.4%
N203	1.0%	1.0%	0.7%	0.8%	1.0%	0.7%	1.1%	1.0%
N200	1.4%	1.9%	1.0%	1.0%	1.9%	1.0%	1.3%	1.4%

Statistical precision of first order contribution $m_l^{(1)}$ to baryon masses

- ▶ Ξ^- and Ξ^0 possess noisier light quark derivatives, in Ω absent
- ▶ Ξ^- slightly more precise than Ξ^0
- ▶ Caveat: neglected isospin breaking effects from sea-quarks contributions

Some remarks on a renormalisation scheme convention

Some remarks on a renormalisation scheme convention

- ▶ 4-flavour scheme should be an extension of a 3-flavour scheme
 ⇒ Simplifies comparisons of calculations with and without quenched charm quark
- D mesons should not be used to set the light quark mass splitting
 ⇒ Avoid induction of lattice artefacts from charm quark to light quark masses
- ▶ Is m_{π^0} a good candidate for a renormalisation scheme?
 - QED correction to quark-disconnected contributions
 - $\pi^0 \to 2\gamma$ decay

Conclusions and Outlook

Isospin breaking effects a_{μ}^{HVP} :

- ▶ Study scheme dependence of isospin breaking effects
- Determination of Z_{V1,R}V₁ by means of vector Ward identity including LO isospin breaking effects
- ▶ Investigate finite volume effects and include LO QED finite volume corrections
- ▶ Include quark-disconnected and sea-quark contributions

Baryon spectrum in QCD+QED:

- \blacktriangleright Currently most promising candidate for scale setting: Ξ
- ▶ Need to refine analysis
- ▶ Investigate finite volume effects and include LO QED finite volume corrections
- Include sea-quark contributions

References I

H. Akaike. "A new look at the statistical model identification". In: *IEEE Transactions on Automatic Control* 19.6 (1974), pp. 716–723. DOI: 10.1109/TAC.1974.1100705.

Gunnar S. Bali et al. "Scale setting and the light baryon spectrum in $N_f = 2 + 1$ QCD with Wilson fermions". In: *JHEP* 05 (2023), p. 035. DOI: 10.1007/JHEP05(2023)035. arXiv: 2211.03744 [hep-lat].

Subhasish Basak et al. "Clebsch-Gordan construction of lattice interpolating fields for excited baryons". In: *Phys. Rev. D* 72 (2005), p. 074501. DOI: 10.1103/PhysRevD.72.074501. arXiv: hep-lat/0508018.

David Bernecker and Harvey B. Meyer. "Vector Correlators in Lattice QCD: Methods and applications". In: *Eur. Phys. J. A* 47 (2011), p. 148. DOI: 10.1140/epja/i2011-11148-6. arXiv: 1107.4388 [hep-lat].

T. Blum et al. "Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment". In: *Phys. Rev. Lett.* 121.2 (2018), p. 022003. DOI: 10.1103/PhysRevLett.121.022003. arXiv: 1801.07224 [hep-lat].

References II

- Sz. Borsanyi et al. "Slope and curvature of the hadronic vacuum polarization at vanishing virtuality from lattice QCD". In: *Phys. Rev. D* 96.7 (2017), p. 074507. DOI: 10.1103/PhysRevD.96.074507. arXiv: 1612.02364 [hep-lat].
- Mattia Bruno, Tomasz Korzec, and Stefan Schaefer. "Setting the scale for the CLS 2+1 flavor ensembles". In: *Phys. Rev. D* 95.7 (2017), p. 074504. DOI: 10.1103/PhysRevD.95.074504. arXiv: 1608.08900 [hep-lat].
- Mattia Bruno et al. "Simulation of QCD with $N_f = 2 + 1$ flavors of non-perturbatively improved Wilson fermions". In: *JHEP* 02 (2015), p. 043. DOI: 10.1007/JHEP02(2015)043. arXiv: 1411.3982 [hep-lat].
- N. Carrasco et al. "QED Corrections to Hadronic Processes in Lattice QCD". In: *Phys. Rev. D* 91.7 (2015), p. 074506. DOI: 10.1103/PhysRevD.91.074506. arXiv: 1502.00257 [hep-lat].

- Marco Cè et al. "Window observable for the hadronic vacuum polarization contribution to the muon g-2 from lattice QCD". In: (June 2022). arXiv: 2206.06582 [hep-lat].
- L. Del Debbio et al. "QCD with light Wilson quarks on fine lattices (I): First experiences and physics results". In: *JHEP* 02 (2007), p. 056. DOI: 10.1088/1126-6708/2007/02/056. arXiv: hep-lat/0610059.

References III

- M. Della Morte et al. "The hadronic vacuum polarization contribution to the muon g-2 from lattice QCD". In: *JHEP* 10 (2017), p. 020. DOI: 10.1007/JHEP10(2017)020. arXiv: 1705.01775 [hep-lat].

- A. Desiderio et al. "First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons". In: (June 2020). arXiv: 2006.05358 [hep-lat].
- M. Di Carlo et al. "Light-meson leptonic decay rates in lattice QCD+QED". In: *Phys. Rev. D* 100.3 (2019), p. 034514. DOI: 10.1103/PhysRevD.100.034514. arXiv: 1904.08731 [hep-lat].
- G.M. de Divitiis et al. "Leading isospin breaking effects on the lattice". In: *Phys. Rev. D* 87.11 (2013), p. 114505. DOI: 10.1103/PhysRevD.87.114505. arXiv: 1303.4896 [hep-lat].
- Anthony Francis et al. "A new representation of the Adler function for lattice QCD". In: *Phys. Rev. D* 88 (2013), p. 054502. DOI: 10.1103/PhysRevD.88.054502. arXiv: 1306.2532 [hep-lat].
- D. Giusti et al. "First lattice calculation of the QED corrections to leptonic decay rates". In: *Phys. Rev. Lett.* 120.7 (2018), p. 072001. DOI: 10.1103/PhysRevLett.120.072001. arXiv: 1711.06537 [hep-lat].

References IV

- Masashi Hayakawa and Shunpei Uno. "QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons". In: *Prog. Theor. Phys.* 120 (2008), pp. 413–441. DOI: 10.1143/PTP.120.413. arXiv: 0804.2044 [hep-ph].

- William I. Jay and Ethan T. Neil. "Bayesian model averaging for analysis of lattice field theory results". In: *Phys. Rev. D* 103 (2021), p. 114502. DOI: 10.1103/PhysRevD.103.114502. arXiv: 2008.01069 [stat.ME].
- Ethan T. Neil and Jacob W. Sitison. "Improved information criteria for Bayesian model averaging in lattice field theory". In: (Aug. 2022). arXiv: 2208.14983 [stat.ME].

H. Neufeld and H. Rupertsberger. "The Electromagnetic interaction in chiral perturbation theory". In: Z. Phys. C 71 (1996), pp. 131–138. DOI: 10.1007/s002880050156. arXiv: hep-ph/9506448.

- Eigo Shintani et al. "Covariant approximation averaging". In: *Phys. Rev. D* 91.11 (2015), p. 114511. DOI: 10.1103/PhysRevD.91.114511. arXiv: 1402.0244 [hep-lat].
- Ben Strassberger et al. "Scale setting for CLS 2+1 simulations". In: *PoS* LATTICE2021 (2022), p. 135. DOI: 10.22323/1.396.0135. arXiv: 2112.06696 [hep-lat].