FNAL/MILC QCD+QED Prescription

Steven Gottlieb Indiana University

(Fermilab Lattice & MILC Collaborations)

Converging on QCD+QED Prescriptions Higgs Centre for Theoretical Physics University of Edinburgh May 26-27, 2023

Outline

Introduction

- Prescription for QCD without QED
- Prescription of Isospin Symmetric QCD
- Omega Baryon
- Other Scales
- ✦ Gradient Flow
- Adding QED to QCD
- Speculation on Future Calculations

Introduction

- Emphasis on prescriptions to define isospin-breaking corrections to hadronic observables
- FNAL/MILC defined our prescription (scheme) in our 2018 work on meson decay constants
- A. Bazavov et al., <u>PhysRevD.98.074512</u>, B- and Dmeson leptonic decay constants from four-flavor lattice QCD, [arXiv:1712.09262]

✦ Also relevant

- Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD, <u>PhysRevD.98.054517</u> [arXiv:1802.04248]
- Lattice computation of the electromagnetic contributions to kaon and pion masses, <u>PhysRevD.99.034503</u> [arXiv:1807.05556]

QCD Prescription

- How shall we tune the quark masses to best reproduce the world as it would be if the quarks were not charged?
- Not completely well defined as isospin and electromagnetic corrections are both part of real world.
- ♦ We use f_{π} to set the scale and masses of π, K⁺, K⁰, $D_s(B_s)$ to set quark masses.
 - $N_f = 2 + 1 + 1$ for 5 or 6 lattice spacings

Inputs

 From PDG values of experimental results, we infer values in the QCD only world [PRD98, 074512 (2018)]

TABLE VI. Experimental inputs to our tuning procedure (left side) [66], and the meson masses after adjusting for electromagnetic effects (right side).

Experimental inputs	QCD masses
$f_{\pi^+} = 130.50(1)_{\exp}(3)V_{ud}(13)_{EM}$ Me	V
$M_{\pi^0} = 134.9770 \mathrm{MeV}$	$(M_{\pi})^{\rm QCD} = 134.977 {\rm MeV}$
$M_{\pi^+} = 139.5706 \mathrm{MeV}$	
$M_{K^0} = 497.611(13) \mathrm{MeV}$	$(M_{K^0})^{\text{QCD}} = 497.567 \text{MeV}$
$M_{K^+} = 493.677(16) \mathrm{MeV}$	$(M_{K^+})^{\text{QCD}} = 491.405 \text{MeV}$
$M_{K^0} - M_{K^+} = 3.934(20) \mathrm{MeV}$	
$M_{D_s} = 1968.28(10) \mathrm{MeV}$	$(M_{D_s})^{\rm QCD} = 1967.02 {\rm MeV}$
$M_{B_s} = 5366.89(19) \mathrm{MeV}$	$(M_{B_s})^{\rm QCD} = 5367.11 {\rm MeV}$

QCD π and K Masses

◆ Dashen's theorem correction:

$$\epsilon' \equiv \frac{(M_{K^{\pm}}^2 - M_{K^0}^2)^{\gamma} - (M_{\pi^{\pm}}^2 - M_{\pi^0}^2)^{\exp t}}{(M_{\pi^{\pm}}^2 - M_{\pi^0}^2)^{\exp t}}$$

$$\epsilon' \equiv 0.74(1)_{\text{stat}} \binom{+ 8}{-11}_{\text{syst}}, \text{ and}$$

$$\epsilon' = 0.74(1)_{\text{stat}} \binom{- 8}{-11}_{\text{syst}}, \text{ and}$$

$$\epsilon' = 0.74(1)_{\text{stat$$

Isospin Symmetric QED+QCD

- We use the scheme proposed by BMW Collaboration in PRL 111, 252001 (2013)
- Consider neutral mesons containing charged quark and antiquark, but with no annihilation diagram, *i.e.*, quark line connected diagrams only.
 - It is as if the antiquark is another flavor, but with same mass and charge. Denote this meson as xx'
- \bigstar Isospin symmetry defined by $M_{\boldsymbol{u}\boldsymbol{u}'}=M_{dd'}$.
- To set the overall scale of the quark masses, match to isosymmetric pure QCD

$$M_{uu'}^2 = M_{dd'}^2 = (M_{\pi}^2)^{QCD} \equiv M_{\pi_0,expt}^2$$

• works well as radiative corrections are small for these quantities

Heavy-light Masses

✦ We use a phenomenological formula

$$\bigstar M_{H_x}^{\text{expt}} = M_{H_x}^{\text{QCD}} + Ae_x e_h + Be_x^2$$

- where A = 4.44 MeV, B = 2.4 MeV and
- - Rosner and Wise, PRD 47, 343 (1993), Goity and Jayalath, PL B 650, 22 (2007), Davies *et al.*, PRD 82, 114504 (2010).

Quark Mass Tuning

✦ For each physical-mass ensemble:

- Tune m_l to achieve desired value of $M_\pi^2/f_{\pi^+}^2$
 - This provides both a and m_l
- Tune m_s to achieve desired value of $2M_K^2 M_\pi^2$
- Determine $m_d m_u$ from

$$m_d - m_u = \frac{M_{K_0^0}^2 - M_{K_a^{+}adj}^2}{\frac{\partial M_K^2}{\partial m_l}}$$

- This requires knowledge of the derivative, and adjustment of the masses for finite volume and electromagnetic effects. [PRD90, 074509 (2014)]
- Determine m_c from mass of D_s . (Similarly for m_b .)

Graphical Summary

- Upper left shows tuning for m_l
- Upper right shows tuning for m_s
- Lower plot shows decay constant analysis: red octagon at lower left is f_{K^+} .
- Octagons on higher data set are f_{D^+} and f_{D_s}

Refinements

- Actually, we have to account for finite volume
- Targeted values are adjusted to a 5.5 fm box using staggered χ pt and continuum χ pt.
 - difference is part of systematic error
- ✦ Also need to adjust sea quark masses
 - relies on ensembles with unphysical sea-quark masses to estimate derivatives
 - iterative process to tune valence and sea masses consistently
 - more details in Sec. IV of PRD 90, 074509 (2014)

Table of Tuned Masses

◆ PRD90, 074509 (2014)

TABLE V. Tuned lattice spacings (using f_{π^+} to set the scale) and quark masses for the physical quark-mass ensembles. The quarkmass entries show the light-, strange- and charm-quark masses in units of the lattice spacing. The column labeled *am'* gives the run values of the sea-quark masses.

$a_{approx}(fm)$	$a_{\text{tuned}}(\text{fm})$	am'	<i>am</i> _{tuned}
0.15	0.15089(17)	0.00235/0.0647/0.831	0.002426(8)/0.06730(16)/0.8447(15)
0.12	0.12121(10)	0.00184/0.0507/0.628	0.001907(5)/0.05252(10)/0.6382(8)
0.09	0.08779(8)	0.0012/0.0363/0.432	0.001326(4)/0.03636(9)/0.4313(6)
0.06	0.05676(6)	0.0008/0.0220/0.260	0.000799(3)/0.02186(6)/0.2579(4)

- ♦ We have retuned ensembles at 0.15 and 0.12 fm.
- ✦ CalLat has generated a retuned 0.09 fm ensemble.
 - We are generating a larger volume ensemble with the same masses
 - In our original running, m_l was over 10% different from the tuned value for this lattice spacing.

Omega Baryon

- Omega baryon is a popular quantity for scale determination
 - no light valence quark
 - \bullet no reliance on V_{ud} as with f_{π}
 - electromagnetic effects expected to be small
- We have been measuring Omega baryon mass on physical mass ensembles.
- We have applied for time to add quenched QED to these calculations.
- ✦ Yin Lin has been leading this analysis.
 - Plan to compare results using this alternative scale.

Ω Baryon 0.09 fm

- Effective mass and fit for physical-mass ensemble with 0.09 fm
- Using two sources and two sinks, so four sets of correlators.
- 0.2% error
- This is preliminary

Ω Continuum Extrapolation

- Simple extrapolation including a^2 and a^4 terms
- Pion decay-constant used to set scale
- Red point to left is physical Ω mass
- Error on our value for continuum is 7 MeV or 0.4%
- Plan to increase statistics

Other Scales

+ Heavy-quark potential: r_0 or r_1

- we measure many Wilson loops as part of generation, but no one actively analyzing
- ◆ Alternative to f_{π} : F_{p4s} is a non-physical quantity with valence quark mass of $0.4m_s$
 - can be calculated with high precision
 - natural part of decay constant analysis
 - not a physical observable, but related to f_{π}
 - f_{π} itself has disadvantage of relying on V_{ud} from nuclear β -decay which has been recalculated recently and changed

Other Scales II

- Gradient flow: w_0 , again not a physical observable
 - can be calculated with high precision on each ensemble
 - CalLat has analyzed 10 of our ensembles with $a \ge 0.09$ fm and 12 of their own [PRD 103, 054511 (2021)]
 - we're completing remeasurement/analysis of all (>30) of our ensembles
- ✦ We have completely redone our analysis
 - use both Wilson (W) and Symanzik (S) actions for flow
 - observables include clover (C), Wilson (W), and tree-level improved Symanzik (S) definitions of action density
 - every configuration is included

Configurations

- Most ensembles have 1000 configurations
- For physical-mass 0.15, 0.12 fm have about 10,000 configs.
- For 0.09, >5,000
- For 0.06, >3,000
- Also configurations with reduced strange quark mass not shown

Gradient Flow on 0.09 fm

•
$$t \frac{d}{dt} (t^2 \langle S(t) \rangle) |_{w_0} = 0.3;$$
 $t^2 S_{corr}(t) = \frac{t^2 S(t)}{1 + \sum_{m=1}^4 C_m (a^{2m}/t^m)}$

• See Lüscher, JHEP 08:071,2010 and Fodor et al., JHEP 09:018,2014

Continuum Limit

- Six combinations of flow action and observable
- Lattice spacings 0.12, 0.09, 0.06 fm
- Simple fit including a^2 and a^4 terms with common intercept, *i.e.*, 13 parameters for 18 points.

Adding QED to QCD

- MILC has looked at meson masses using quenched QED PRD99, 034503 (2019)
- Craig McNeile will report next on current work from FNAL/HPQCD/MILC with quenched QED
- ♦ We have code for both compact and non-compact U(1)
 - We have not decided to generate $SU(3) \times U(1)$ ensembles
 - Will be using a perturbative approach for our HVP calculations, similar to approach of BMW Collaboration

Speculation on Future Calculations

- ◆ Have begun equilibration of $192^3 \times 384$ physical mass ensemble with *a* ≈ 0.03 fm.
 - original motivation was B meson physics
 - not completely clear that this is needed or practical given computing requirement for the physics program
- ✦ Exploring finite volume effects at 0.09 fm
- Precision of calculations in the field has reached the stage where we need to include QED
 - see previous slide