QED corrections to the HVP contribution of the muon g-2

A. Bazavov, C.T.H. Davies, C. DeTar, A.X. El-Khadra,
E. Gámiz, S. Gottlieb, D. Hatton, H. Jeong, A.S. Kronfeld,
S. Lahert, G.P. Lepage, C. McNeile, E.T. Neil, G.S. Ray
J.N. Simone, R.S. Van de Water, and A. Vaquero

May 29, 2023

shortname QED corrections to the HVP contribution of the muon g-2

イロト イポト イヨト イヨト

Motivation

In Phys.Rev.D 100 (2019) 3, 034506 (1902.04223) FNAL/HPQCD/MILC published

 $10^{10}a_{\mu}^{HVP,LO,light} = 630.8(8.8)(13)$

• Second error of first line (13) (corresponds to 2% error.) is from the estimate of strong isospin breaking, electromagnetism, and quark-disconnected diagrams.

The goal is to compute the missing quantities to reduce the 2% error.

- Quenched QED and QCD analysis with an emphasis on schemes
- Start with charm (a_{μ}^{c}) , then look at strange (a_{μ}^{s}) and light (a_{μ}^{l})

(日) (四) (三) (三) (三)

Overview of analysis method

Measure connected vector correlator.

$$G_{ff'}(t) = Q_f Q_{f'} \sum_{\vec{x}} Z_V^2 \langle j_f^i(\vec{x}, t) j_{f'}^i(0) \rangle.$$

where f is a flavor index and Q_f is the charge.

The contribution to a_{μ} from $G_{ff'}(t)$ is then given by an integral over time:

$$a_{\mu,ff'}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \ G_{ff'}(t) \mathcal{K}_G(t) \,, \tag{1}$$

with the kernel $K_G(t)$.

- $G_{ff'}(t)$ gets noisy for large t. Replace $G_{ff'}(t)$ with fit model $G^{fit}(t)$ for $t > t^{\star}$
- We use Peter's g2tools https://github.com/gplepage/g2tools to compute the integral.

イロト 不得 トイラト イラト 二日

Charmonium properties from lattice QCDQCD+QED : Hyperfine splitting, J/ ψ leptonic width, charm quark mass, and a^c_{μ} HPQCD Collaboration, D. Hatton et al., Phys.Rev.D 102 (2020) 5, 054511, 2005.01845

- Calculation of QED contribution to J/ψ η_c mass splitting.
- Computation of QED contribution to mass of the charm quark *m_c*.
- J/ψ leptonic decay constant
- Computation of QED contribution to a_{μ}^{c} .

Avantages Good statisical precision for charmonium.

Disavantages Contribution is small to $a_{\mu}^{\rm HVP,LO}$

イロト イヨト イヨト イヨト 三日

- HISQ staggered action 2+1+1 flavours of sea quark mass. Configurations generated by the MILC collaboration.
- 6 lattice spacings: 0.15, 0.12, 0.09, 0.06, 0.045, and 0.03 fm
- Pseudo-scalar and vector correlators. Only charge neutral mesons.
- No disconnected diagrams
- Tuning (scheme choice)
 - No contribution of QED to scale setting.
 - Fix the charm mass from the J/ψ mass either in QCD or QCD+QED.

イロト 不得 トイラト イラト 二日

• HPQCD collaboration, $M_{J/\psi} - M_{\eta_c}$ (connected) = 120.3(1.1) MeV

• PDG,
$$M_{J/\psi} - M_{\eta_c} = 113.0(5)$$
 MeV

$$\Delta M_{\eta_c}^{
m annihiln} = +7.3(1.2) MeV$$

- Better to use J/ψ to fix mass of the charm quark mass in the simulation.
- Computation of disconnected diagrams complicated by η_c and η' mixing (Levkova and DeTar, 1012.1837).

(日) (四) (三) (三) (三)

From HPQCD, Hatton et al.,

- Lattice spacing from w_0 from pure QCD simulations.
- Tune m_c charm quark in QCD simulations to fix the J/ψ meson.
- Use m_c from QCD simulations in QCD+QED simulations.

ETMC 1901.10462, D. Giusti et al., GRS match the quark masses.

HPQCD 2005.01845, tune the charm quark mass in QCD+QED to J/ψ meson.

イロト イヨト イヨト イヨト

Calculating the QED correction to the hadronic vacuum polarisation on the lattice, Gaurav Ray et al., 2212.12031, Lattice 2022 presentation.

イロン 不同 とくほど 不同 とう

Including quenched QED with QCD

- Non-compact A_μ(k) generated in Feynman gauge for each QCD gluon field configuration.
- Electroquenched.
- Use the QED_L formulation to deal with zero modes.

 $U^{QCD+QED}_{\mu}=\exp(\textit{ieQA}_{\mu})U^{QCD}_{\mu}$

- We are currently computing **connected** QED+QCD correlators.
- The value of Z_V has been computed including quenched QED using the RI-SMOM scheme. (Hatton et al., HPQCD, PhysRevD.100.114513)

Follow HPQCD (2005.01845) study QED contributions to charmonium mesons.

イロト イヨト イヨト イヨト 三日

Details of the quenched QED+QCD calculation

- Random sources wall sources.
- The analysis is blinded
- Truncated solver method with 16 sloppy and 1 fine inversion on each lattice.
- Use charge averaging over +Q, -Q

We measure neutral vector and pseudo-scalar correlators.

Ensemble	$L^3 \times T$	<i>a</i> [fm]	no. meas	masses
very coarse	$32^{3} \times 48$	0.15	1844	$m_u m_d 3/5/7 m_l m_s$
coarse	$48^3 imes 64$	0.12	967	3/5/7 <i>m</i> ∣ m₅
fine	$64^3 imes 96$	0.09	596	3/5/7 <i>m_l m_s</i>

Ensembles have physical pion masses, but because of noise increassing we use $3/5/7m_l$ valence quark masses (following BMW) and extrapolate to m_l .

Definitions of δa^s_{μ}

QED correction to the $a_{\mu}^{\text{HVP,LO}}$, δa_{μ}^{f} ,

$$\delta a^{(f)}_{\mu} \equiv a^f_{\mu}(m_f, Q_f) - a^f_{\mu}(m_f, 0),$$

where f labels the quark flavour and the difference is evaluated at equal renormalised quark mass.

The QED correction to the connected strange $a_{\mu}^{\rm HVP,LO}$ is then

$$\delta a^{(s)}_{\mu} = a^{s}_{\mu}(m_{s}, -1/3e) - a^{s}_{\mu}(m_{s}, 0),$$

We originally extract QED corrections to a_{μ} at fixed bare quark mass (Δa_{μ}) and then convert to δa_{μ} using

$$\delta \mathbf{a}_{\mu} = \Delta \mathbf{a}_{\mu} - \delta \mathbf{m}_{\mathbf{q}} \frac{\partial \mathbf{a}_{\mu}}{\partial \mathbf{m}_{\mathbf{q}}}$$

• We are not currently including QED in the lattice spacing determination.

Noise in Δa^q_{μ}

- The error increases in Δa^q_μ as the light quark mass is reduced
- It is not clear that the noise follows a Lepage like argument for the signal to noise.
- The noise on the up quark contribution is much larger than for the down quark contribution.

イロト イヨト イヨト イヨト

Dashen-like scheme

- We have initially used a Dashen-like scheme developed by MILC (1807.05556) and BMW
- We did explore using the GRS scheme (QCD+QED and QCD results compared at fixed renormalized mass) used by the ETM collaboration.
- We followed the prescription used by MILC/FNAL lattice (1807.05556)

$$egin{aligned} M^2_{uu'} &= M^2_{dd'} = M^2_{nn'} \equiv M^2_{\pi^0} \ (M^2_{uu'})^\gamma &= 0 = (M^2_{dd'})^\gamma \end{aligned}$$

(日) (四) (三) (三) (三)

We define the mass m_l as the common u, d mass such that the charged pion in our pure QCD simulations has mass $(M_{\pi})^{\text{QCD}}$.

$$m_u = m_l(1 - \delta_u)$$

 $m_d = m_l(1 - \delta_d)$

The parameters δ_u and δ_d selected so that EM contributions to $M^2_{uu'}$ and $M^2_{dd'}$ vanish

$$(M^2_{uu'})^{\gamma} = 0 = (M^2_{uu'})^{\gamma}$$

Use the same δ_d for the strange quark.

$$m_S = m_s(1 - \delta_d)$$

イロト 不得 トイラト イラト 二日

Pseudoscalar meson masses at the strange quark

$$\Delta M_{xy}^2 \equiv M_{xy}^2 - M_{xy}^2 \Big|_{q_x = q_y = q_d = q_s = 0} \qquad \text{[fixed bare mass]},$$

(人間) とうけん ほう

From lattice 2022, 2212.12031

• Choice of scheme has increased the errors.

・ロト ・回ト ・ヨト ・ヨト

臣

Continum Chiral extrapolation of δa_{μ}^{l}

- Extrapolate from heavier masses to the physical mass (m_q)
- Individually extrapolate up and down correlators and the combine.

Combined chiral and continnum extrapolation

$$\delta a_{\mu}^{(d)}(a^2, m_q/m_l) = c_0^{(d)} \left(1 + c_1^{(d)}(a\Lambda)^2 + c_2^{(d)}m_q/m_l \right)$$

$$\delta a_{\mu}^{(u)}(a^2, m_q/m_l) = c_0^{(u)} \left(1 + c_1^{(u)}(a\Lambda)^2 + c_2^{(u)}m_q/m_l \right),$$

 $\Lambda=0.5~\text{GeV}$ for the typical QCD scale.

- This is the chiral fit model that BMW used.
- I have not found any chiral perturbation/effective field theory fit forms for the quark mass extrapolations.

イロン イヨン イヨン イヨン

Continuum limit of $\delta a'_{\mu}$

Preliminary results

blue down quark contribution red up quark contribution

イロト イヨト イヨト イヨト

臣

Summary of QED contribution to $\delta a'_{\mu}$

- The green band is the estimate for QED contribution by FNAL/HPQCD/MILC
- The results below are in different schemes.

イロト イヨト イヨト イヨト

- \bullet Status of results on including quenched QED with $a_{\mu}^{\rm HVP,LO}$
- Two critical issues: noise and the choice of scheme to compare QCD+QED with QCD.

TODO list

- Increasing the quenched QED statistics on the physical 0.09 fm ensemble.
- Develop better schemes for comparing $a_{\mu}^{\rm HVP,LO}$ in QCD and QCD+QED. Using suggestions from this workshop.
- Including QED in the disconnected diagrams. (In progress)
- Estimate of QED on setting the lattice spacing (Steve's talk)

イロト 不得 トイラト イラト・ラ