Isospin conventions for HVP and $\sigma_{\pi N}$ from a phenomenological perspective

Martin Hoferichter

b UNIVERSITÄT BERN Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

May 30, 2023

Converging on QCD+QED prescriptions

Higgs Centre for Theoretical Physics, Edinburgh

How to define the isospin limit?

• Typical ChPT convention for isospin limit

 \hookrightarrow charged particle masses $M_{\pi^+}, M_{K^+}, m_p, \ldots$

- Why? Most data available for charged particles
- Examples:
 - $\pi\pi: \pi^+\pi^-$ atoms, $\pi N \to \pi\pi N$ data
 - πN : $\pi^- p$, $\pi^- d$ atoms, $\pi N \rightarrow \pi N$ data

 \hookrightarrow natural to use charged-particle masses to minimize corrections

• Standard example: $\pi\pi$ scattering lengths Colangelo, Gasser, Leutwyler 2001

 $a_0^0 = 0.220(5)$ $a_0^2 = -0.0444(10)$

- IB corrections important when comparing to $K \to 3\pi$ and $K_{\ell 4}$ data due to neutral-pion thresholds
- a_0^{\prime} vanish in the chiral limit
 - \hookrightarrow choice of isospin conventions matters

• Pion–nucleon σ -term $\sigma_{\pi N}$

$$\sigma_{\pi N} = \hat{m} \langle N | \bar{u}u + \bar{d}d | N \rangle$$

 $\hat{m} = rac{m_u + m_d}{2}$

 \hookrightarrow defined in the isospin limit

Which one?

- Phenomenology: charged pion mass
- Lattice QCD: neutral pion mass

- Does it matter?
- Currently claimed precision:
 - Pionic atoms: $\sigma_{\pi N} = 59.0(3.5)$ MeV
 - Low-energy cross sections: $\sigma_{\pi N} = 58(5) \text{ MeV}$
 - Mainz 2303.08741: $\sigma_{\pi N} = 43.6(3.8) \text{ MeV}$
 - **RQCD** 2211.03744: $\sigma_{\pi N} = 43.9(4.7)$ MeV
 - \hookrightarrow 3.0 σ (Mainz), 2.6 σ (RQCD) tension with pionic atoms
- But: $\sigma_{\pi N} = \mathcal{O}(M_{\pi}^2)$
 - \hookrightarrow expect $2\Delta_{\pi}/M_{\pi} \simeq 6\%$ correction

• Estimate within ChPT 2305.07045:

$$\begin{aligned} \sigma_{\pi N} &= -4c_1 M_{\pi}^2 - \frac{9g_A^2 M_{\pi}^3}{64\pi F_{\pi}^2} + \mathcal{O}(M_{\pi}^4) \\ \bar{\sigma}_{\pi N} &= -4c_1 M_{\pi^0}^2 - \frac{9g_A^2 M_{\pi^0}^3}{64\pi F_{\pi}^2} + \mathcal{O}(M_{\pi}^4) \\ \Delta \sigma_{\pi N} &= \sigma_{\pi N} - \bar{\sigma}_{\pi N} = \Big\{ 3.7(1), 3.2(1), 3.1(1)(4) \Big\} \, \text{MeV} = 3.1(5) \, \text{MeV} \end{aligned}$$

 \hookrightarrow reduces tension to 2.4 σ (Mainz), 2.0 σ (RQCD)

- Not talking about this here, but:
 - Role of excited states 2105.12095, 2203.13862
 - Chiral extrapolation: 2301.06837 finds $\sigma_{\pi N} = 58.7(1.2)$ MeV from the RQCD data

effect	$\pi^0\gamma$	$\eta\gamma$	$ ho \!\!-\!\! \omega$ mixing	FSR	M_{π^0} vs. M_{π^\pm}	total
size in units of 10 ⁻¹⁰	4.64(4)	0.65(1)	2.71(1.36)	4.22(2.11)	-4.47(4.47)	7.8(5.1)

BMWc 2017, Jegerlehner

Detailed comparison between e⁺e⁻ data and lattice QCD

 \hookrightarrow window quantities, isospin breaking

- Can do much better than previous estimates, but still caveats:
 - Cannot cover all channels
 - Scheme dependence
- Dominant effects:
 - Radiative channels $\pi^0\gamma$, $\eta\gamma$: data
 - $\rho-\omega$ mixing: residue in dispersive representation
 - FSR: scalar QED + dispersive corrections
 - M_{π^0} vs. $M_{\pi^{\pm}}$ for 2π channel: IAM + Omnès
 - *KK*: resonance/threshold enhancement

Decomposition of pion form factor

$$F_{\pi}^{V}(s) = \underbrace{\Omega_{1}^{1}(s)}_{\text{elastic } \pi\pi \text{ scattering}} \times \underbrace{G_{\omega}(s)}_{\text{isospin-breaking } 3\pi \text{ cut}} \times \underbrace{G_{\text{in}}(s)}_{\text{inelastic effects: } 4\pi, \dots}$$

Omnès factor

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi}\int_{4M_\pi^2}^{\infty} \mathsf{d}s' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

 \hookrightarrow can get pion-mass dependence from IAM Guo et al. 2009

- $G_{\omega}(s)$ describes ρ - ω mixing in terms of residue $\epsilon_{\rho\omega}$
- Gin(s) parameterized as normal or conformal polynomial
 - \hookrightarrow free parameters can be matched to $\langle r_{\pi}^2 \rangle$ (and c_{π})
- Pion-mass dependence of $\langle r_{\pi}^2 \rangle$ at two loops known Bijnens, Colangelo, Talavera 1998

 \hookrightarrow new LEC r_{V1}^r (from resonance saturation or lattice calculation of $\langle r_{\pi}^2 \rangle$)

Predicting the pion-mass dependence from the IAM

•
$$\bar{a}_{\mu}^{\text{HVP}}[\pi\pi]$$
 only $I = 1$ correlator (with $\epsilon_{\rho\omega} = 0$)

• Isospin breaking due to pion mass difference:

$$\mathbf{a}_{\mu}^{\mathsf{HVP}}[\pi\pi]\big|_{\boldsymbol{M}_{\pi^{\pm}}} - \mathbf{a}_{\mu}^{\mathsf{HVP}}[\pi\pi]\big|_{\boldsymbol{M}_{\pi^{0}}} = -7.67(4)_{\mathsf{ChPT}}(3)_{\mathsf{polynomial}}(4)_{\langle r_{\pi}^{2} \rangle}(21)_{r_{\mathsf{V1}}^{r}}[22]_{\mathsf{total}}$$

M. Hoferichter (Institute for Theoretical Physics)

ρ – ω mixing and FSR

- Can get FSR and $\epsilon_{\rho\omega}$ contributions from dispersive fits to 2π
- Higher-order terms $\mathcal{O}(e^2\epsilon_{
 ho\omega})$ small, $\lesssim 0.1$
- Line shape matters Wolfe, Maltman 2009, we use

$$\begin{aligned} G_{\omega}(s) &= 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\operatorname{Im} g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}} \right)^4 \\ g_{\omega}(s) &= 1 + \epsilon_{\rho\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s} \qquad \epsilon_{\rho\omega} \to \operatorname{Re} \epsilon_{\rho\omega} + i\operatorname{Im} \epsilon_{\rho\omega} \frac{\left(1 - \frac{M_{\pi}^2}{s}\right)^3}{\left(1 - \frac{M_{\pi}^2}{M_{\omega}^2}\right)^3} \theta(s - M_{\pi^0}^2) \end{aligned}$$

to account for radiative channels $ho o \pi^0 \gamma, \ldots o \omega$

Results:

$$a_{\mu}^{\mathsf{HVP}}[\pi\pi,\mathsf{FSR},\mathsf{Born}] = 4.24(2)$$
 $a_{\mu}^{\mathsf{HVP}}[\pi\pi,\rho-\omega] = 3.68(17)$

 \hookrightarrow to leading order, ρ - ω mixing is purely $\mathcal{O}(\delta) = \mathcal{O}(m_u - m_d)$

・ロト ・回ト ・ヨト ・ヨト … ヨ

- Why *KK*?
 - ϕ resonance close to $\bar{K}K$ threshold
 - Isospin breaking from masses enhanced
- $\bullet\,$ Threshold region dominated by isoscalar form factor via $\phi\,$ Stamen et al. 2022
 - \hookrightarrow analyzed in terms of ϕ resonance parameters
- Significant isospin breaking in residues

$$c_{\phi}^{K^+K^-} = 0.977(6)$$
 $c_{\phi}^{\bar{K}^0K^0} = 1.001(6)$

 \hookrightarrow dominant source of uncertainty

• Need separation of kaon mass into $\mathcal{O}(e^2)$ and $\mathcal{O}(\delta)$

 $\hookrightarrow \textbf{Cottingham formula}$

Kaon mass separation: Cottingham formula

• Cottingham formula for EM self energies:

$$(M_{K}^{2})_{\text{EM}} = \frac{ie^{2}}{2} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{T_{\mu}^{\mu}}{k^{2} + i\epsilon}$$

$$\stackrel{\text{elastic}}{\rightarrow} \frac{\alpha}{8\pi} \int_{0}^{\infty} ds \left[F_{K}(-s)\right]^{2} \left(4W + \frac{s}{M_{K}^{2}}\left(W - 1\right)\right) \qquad W = \sqrt{1 + \frac{4M_{K}^{2}}{s}}$$

• Fit of dispersive representation to e^+e^- data Stamen et al. 2022

$$\begin{array}{ll} (M_{K^{\pm}}^{2})_{\mathsf{EM}} &= 2.12(2)(17) \times 10^{-3} \, \mathrm{GeV}^{2} \\ (M_{K^{0}}^{2})_{\mathsf{EM}} &= 7(2)(17) \times 10^{-6} \, \mathrm{GeV}^{2} \\ (\Delta M_{\pi}^{2})_{\mathsf{EM}} &= 1.3(3) \times 10^{-3} \, \mathrm{GeV}^{2} \end{array} \right\} \epsilon = \frac{(\Delta M_{K}^{2})_{\mathsf{EM}}}{(\Delta M_{\pi}^{2})_{\mathsf{EM}}} - 1 = 0.63(40)$$

gives

$$M_{K^{\pm}} = (494.58 - 3.05_{\delta} + 2.14_{e^2}) \text{ MeV} \qquad M_{K^0} = (494.58 + 3.03_{\delta}) \text{ MeV}$$

Isospin breaking in $\bar{K}K$ channel

Results

$$\begin{aligned} a_{\mu}^{\mathsf{HVP}}[K^+K^-, \leq 1.05\,\mathsf{GeV}] &= 18.45(20) & a_{\mu}^{\mathsf{HVP}}[K^0\bar{K}^0, \leq 1.05\,\mathsf{GeV}] = 11.83(15) \\ a_{\mu}^{\mathsf{HVP}}[K^+K^-, \mathsf{FSR}] &= 0.75(4) \\ a_{\mu}^{\mathsf{HVP}}[K^+K^-, e^2] &= -3.24(17) & a_{\mu}^{\mathsf{HVP}}[K^0\bar{K}^0, e^2] = -0.02(0) \\ a_{\mu}^{\mathsf{HVP}}[K^+K^-, \delta] &= 4.98(26) & a_{\mu}^{\mathsf{HVP}}[K^0\bar{K}^0, \delta] = -4.62(23) \\ a_{\mu}^{\mathsf{HVP}}[K^+K^-, e^2\delta] &= -0.33(1) \end{aligned}$$

- Note:
 - K⁰ self energy negligible, but indirect O(e²) effect from the K[±] contribution to the φ spectral function
 - Remaining differences between "isospin limit" K^+K^- (16.29) and \bar{K}^0K^0 (16.47) due to c_{ab} and isovector form factor
- Isospin-breaking effects huge due to threshold/resonance enhancement
 - \hookrightarrow higher-order terms $\mathcal{O}(e^2\delta)$ in K^+K^- larger than in $2\pi!$

• 3π channel MH, Hoid, Kubis, Schuh, to appear:

- Estimate for FSR $\simeq 0.5$
- BaBar 2021 quotes $\rho \rightarrow 3\pi$ contribution in VMD fit ($\simeq -0.6$ in a_{μ}^{HVP} Boito et al. 2022), but within model context
- Can one really extract a (significant) ρ - ω mixing effect? Surprisingly, yes!
- Effect is large and cancels large part of 2π analog
- Why? Naive scaling

$$\left|\frac{a_{\mu}^{\rho-\omega}[3\pi]}{a_{\mu}^{\rho-\omega}[2\pi]}\right| \simeq \frac{9\epsilon_{\rho\omega}a_{\mu}[3\pi]}{\epsilon_{\rho\omega}a_{\mu}[2\pi]} \simeq 1$$

actually seems to work

• *R*-ratio from perturbative QCD

• QED corrections included in rhad Harlander, Steinhauser 2003, but $O(10^{-3})$ compared to leading-order result, and $10^{-3}a_{\mu}^{HVP}[\geq 1.8 \text{ GeV}] \lesssim 0.05$

Summing everything up

	SD window		int window		LD window		full HVP	
	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$	$\mathcal{O}(e^2)$	$\mathcal{O}(\delta)$
π ⁰ γ	0.16(0)	-	1.52(2)	-	2.70(4)	-	4.38(6)	-
$\eta\gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$ ho-\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2 <i>π</i>)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi 0}$ vs. $M_{\pi \pm}$ (2 π)	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
FSR (K^+K^-)	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass (K^+K^-)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass $(\bar{K}^0 K^0)$	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14(1)	0.08(3)	1.61(12)	1.02(20)	-2.44(16)	2.92(17)	-0.68(29)	4.04(39)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	-	-	-	-	-	-	-	3.32(89)

• Reasonable agreement with BMWc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021

- Adding 3π (FSR and $\rho \omega$ mixing) will remove tension in $\mathcal{O}(\delta)$
- Cancellation of individually sizable corrections!

Role of isospin breaking: energy dependence

Alternative to windows: Gaussian smearing ETMC 2022

$$R_{\sigma}(s) = \int_0^{\infty} ds' G_{\sigma}(\sqrt{s'} - \sqrt{s}) R(s') \qquad G_{\sigma}(\omega) = \frac{e^{-\omega^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}$$

• Cancellation for a_{μ} seems to involve a delicate balance with kernel K(s)

- Comparison of pion–nucleon *σ*-term between lattice QCD and phenomenology is getting sensitive to isospin conventions
 - \hookrightarrow reduces tension by about 3 MeV
- Phenomenological estimates for isospin-breaking effects from π⁰γ, ηγ, 2π(γ), KK(γ), 3π(γ)
- Decomposition of kaon mass from Cottingham formula in agreement with quark mass scheme
- Cancellations among various O(e²) and O(δ) effects
- Agreement with BMWc 2020 seems to improve when including 3π channel

Sixth plenary TI workshop

Muon g-2 Theory Initiative Sixth Plenary Workshop Bern, Switzerland, September 4-8, 2023

0 UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Local Organising Committee Gilberto Colangelo (Chair) Martin Hoferichter (Chair) Bai-Long Hoid Simon Holz Gurtej Kanwar Marina Marinković Letizia Parato Peter Stoffer Jan-Niklas Toelstede Urs Wenger

M. Hoferichter (Institute for Theoretical Physics)

http://muong-2.itp.unibe.ch/

Isospin conventions for HVP and $\sigma_{\pi N}$

Lee Roberts (Boston) Thomas Teubner (Liverpool) Hartmut Wittig (Mainz) May 30, 2023

Michel Davier (Orsav)

Tsutomu Mibe (KEK)

Aida El-Khadra (Illinois)

International Advisory Committee

Christoph Lehner (Regensburg)

Laurant Lellouch (Marseille)