HVP with C^{*} boundary conditions from lattice QCD(+QED)

Paola Tavella

Institut für Theoretische Physik ETH Zürich

May 30, 2023

RC^{*} collaboration : Anian Altherr, Lucius Bushnaq, Isabel Campos-Plasencia, Marco Catillo, Alessandro Cotellucci, Madeleine Dale, Alessandro De Santis, Patrick Fritzsch, Roman Gruber, Tim Harris, Javad Komijani, Jens Luecke, Marina Marinkovic, Sofie Martins, Letizia Parato, Agostino Patella, Joao Pinto Barros, Sara Rosso, Nazario Tantalo & Paola Tavella

1. Motivation

2. C* boundary conditions * Implementation

 \star RC^{*} ensembles

3. Methods for HVP and status of the work

- \star Results for QCD
- * Isospin breaking effects
- \star Results for QCD+QED

Motivation

- new results from the muon g-2 experiment expected soon
- lattice results for the window are in good agreement and in tension with R-ratio

Motivation

Isospin symmetry is violated at the percent level

- strong IBE $\sim \mathcal{O}((m_d m_u)/\Lambda_{QCD})$
- QED effects $\sim \mathcal{O}(\alpha_{EM})$

IBE effects are important for high-precision calculations of *decay rates of mesons*, *HVP contribution to g-2, etc.*

Theoretical issue of including QED in a finite periodic box:

- classical picture: Gauss law forbids a net non-zero charge
- path-integral: charged particles' propagation is forbidden due to symmetry under large gauge transformations

Currently used prescriptions for including QED:

- non-local constraints to remove the zero-modes of the photon [Hayakawa & Uno, 0804.2044] e.g QED_L, where $\sum_{\vec{x}} A_{\mu}(x_0, \vec{x}) = 0$
- infrared regulator m_γ (QED_M) [Endres et al., 1507.08916]
- QED_{∞} [Blum et al., 1705.01067; Feng & Jin, 1812.09817]
- QED_C [Kronfeld & Wiese, 1991, 1992; Polley, 1993; Lucini et al., 1509.01636]

• ...

1. Motivation

2. C * boundary conditions

* Implementation* RC* ensembles

3. Methods for HVP and status of the work

- \star Results for QCD
- * Isospin breaking effects
- \star Results for QCD+QED

1. Motivation

2. C* boundary conditions * Implementation

 \star RC* ensembles

3. Methods for HVP and status of the work

- \star Results for QCD
- * Isospin breaking effects
- \star Results for QCD+QED

Local prescription for QED in a finite box \rightarrow C-periodicity of fields in spatial directions

$$\begin{aligned} A_{\mu}(x+L_{i}\hat{i}) &= -A_{\mu}(x) \qquad U_{\mu}(x+L_{i}\hat{i}) &= U_{\mu}^{*}(x) \\ \psi(x+L_{i}\hat{i}) &= C^{-1}\overline{\psi}(x) \qquad \overline{\psi}(x+L_{i}\hat{i}) &= -\psi^{T}(x)C \end{aligned}$$

 $[+] A_{\mu}(x) \text{ is C-odd} \implies p_i = \frac{\pi}{L_i}(2l_i + 1), \quad l_i = 0, 1, ..., L_i - 1$

[+] charged-states propagation is possible

[+] suppressed finite-volume effects [Lucini et al., 1509.01636 ; Martins & Patella, 2212.09565]

[-] violations of flavour and charge conservation (by boundary effects)

[-] more expensive simulations [Bushnaq et al., 2209.13183]

• Action in the doublet formulation

$$S_{F}^{hop} = -\frac{1}{2} \sum_{x \in \Lambda_{phys}, \mu} \overline{\chi}(x) \frac{(1+\gamma_{\mu})}{2} \mathbb{V}_{\mu}^{\dagger}(x-\mu) \chi(x-\hat{\mu}) + \overline{\chi}(x) \frac{(1-\gamma_{\mu})}{2} \mathbb{V}_{\mu}(x) \chi(x+\hat{\mu})$$

with

$$\chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix} \qquad \mathbb{V}_{\mu}(x) \equiv \begin{pmatrix} U_{\mu}(x)e^{iqA_{\mu}(x)} & 0 \\ 0 & U_{\mu}^{*}(x)e^{-iqA_{\mu}(x)} \end{pmatrix}$$

• Fields and their charge-conjugates associated with different space-time points

$$S_{F}^{hop} = -\frac{1}{2} \sum_{x \in \Lambda_{ext}, \mu} \overline{\psi}(x) \frac{(1+\gamma_{\mu})}{2} V_{\mu}^{\dagger}(x-\mu) \psi(x-\mu) + \overline{\psi}(x) \frac{(1-\gamma_{\mu})}{2} V_{\mu}(x) \psi(x+\mu)$$

• Action in the doublet formulation

$$S_{\mathsf{F}}^{\mathsf{hop}} = -\frac{1}{2} \sum_{x \in \Lambda_{\mathsf{phys}},\mu} \overline{\chi}(x) \frac{(1+\gamma_{\mu})}{2} \mathbb{V}_{\mu}^{\dagger}(x-\mu) \chi(x-\hat{\mu}) + \overline{\chi}(x) \frac{(1-\gamma_{\mu})}{2} \mathbb{V}_{\mu}(x) \chi(x+\hat{\mu})$$

with

$$\chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix} \qquad \mathbb{V}_{\mu}(x) \equiv \begin{pmatrix} U_{\mu}(x)e^{iqA_{\mu}(x)} & 0 \\ 0 & U_{\mu}^{*}(x)e^{-iqA_{\mu}(x)} \end{pmatrix}$$

• Fields and their charge-conjugates associated with different space-time points

$$S_{F}^{hop} = -\frac{1}{2} \sum_{x \in \Lambda_{ext}, \mu} \overline{\psi}(x) \frac{(1+\gamma_{\mu})}{2} V_{\mu}^{\dagger}(x-\mu) \psi(x-\mu) + \overline{\psi}(x) \frac{(1-\gamma_{\mu})}{2} V_{\mu}(x) \psi(x+\mu)$$

• Action in the doublet formulation

$$S_{\mathsf{F}}^{\mathsf{hop}} = -\frac{1}{2} \sum_{x \in \Lambda_{\mathsf{phys}},\mu} \overline{\chi}(x) \frac{(1+\gamma_{\mu})}{2} \mathbb{V}_{\mu}^{\dagger}(x-\mu) \chi(x-\hat{\mu}) + \overline{\chi}(x) \frac{(1-\gamma_{\mu})}{2} \mathbb{V}_{\mu}(x) \chi(x+\hat{\mu})$$

with

$$\chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix} \qquad \mathbb{V}_{\mu}(x) \equiv \begin{pmatrix} U_{\mu}(x)e^{iqA_{\mu}(x)} & 0 \\ 0 & U_{\mu}^{*}(x)e^{-iqA_{\mu}(x)} \end{pmatrix}$$

• Fields and their charge-conjugates associated with different space-time points

$$S_{F}^{hop} = -\frac{1}{2} \sum_{\mathbf{x} \in \Lambda_{ext}, \mu} \overline{\psi}(\mathbf{x}) \frac{(1+\gamma_{\mu})}{2} V_{\mu}^{\dagger}(\mathbf{x}-\mu) \psi(\mathbf{x}-\mu) + \overline{\psi}(\mathbf{x}) \frac{(1-\gamma_{\mu})}{2} V_{\mu}(\mathbf{x}) \psi(\mathbf{x}+\mu)$$

C* boundary conditions

- Lattice is doubled in direction $\hat{1}$: $L_1 = 2L$, $L_k = L$, k = 2, 3
- Orbifold construction, e.g $\psi(x + L_k \hat{k}) = \psi(x + \frac{L_1}{2}\hat{1})$
- Effective periodicity of 2L

1. Motivation

2. C* boundary conditions

 \star Implementation

 $\star~\text{RC}^{\star}$ ensembles

3. Methods for HVP and status of the work

- \star Results for QCD
- * Isospin breaking effects
- \star Results for QCD+QED

RC* collaboration's program

Seven ensembles generated thus far with the openQ*D code https://gitlab.com/rcstar/openQxD

First results in Bushnaq et al., 2209.13183

- details about the simulations
- calculations of meson masses, the Ω^- baryon, and the octet baryons
- cost analysis

Our setup allows for two ways of including isospin breaking effects:

- non-isosymmetric configurations at several unphysical values of α_{EM} and $m_u m_d$ + extrapolation to the physical point
- isosymmetric configurations with C^{\star} b.c. + RM123 method

QCD+QED ensembles

- Lüscher-Weisz SU(3) gauge action ($\beta = 3.24$)
- Wilson action for compact U(1) field
- $N_f = 1 + 2 + 1$ of O(a)-improved Wilson fermions
- Periodic boundary conditions in time, C* b.c. in space

- Volume: A=64x32, B=80x48, C=96x48
- $\bullet\,$ Lattice spacing $\simeq 0.05$ fm
- Pion mass between 360 and 500 MeV
- $m_\pi L \sim 3$ and $m_\pi L \sim 5$

QCD+QED ensembles

• Renormalization scheme ¹: $(8t_0)^{1/2}$, $\alpha_R(t_0)$, ϕ_0 , ϕ_1 , ϕ_2 , ϕ_3

$$\begin{split} \phi_0 &= 8t_0(m_{K^{\pm}}^2 - m_{\pi^{\pm}}^2) &\to 0 \quad (\text{fixes } m_s - m_d) \quad [\phi_0^{\text{phys}} = 0.992] \\ \phi_1 &= 8t_0(m_{K^{\pm}}^2 + m_{\pi^{\pm}}^2 + m_{K^0}^2) \to 2.11 \quad (\text{fixes } m_s + m_d + m_u) \quad [\phi_1^{\text{phys}} = 2.26] \\ \phi_2 &= 8t_0(m_{K^0}^2 - m_{K^{\pm}}^2)/\alpha_R &\to 2.36 \quad (\text{fixes } \delta m_{strong}/\delta_{EM}) \quad [\phi_2^{\text{phys}} = 2.36] \\ \phi_3 &= \sqrt{8t_0}(m_{D_5^{\pm}}^2 + m_{D^{\pm}}^2 + m_{D^0}^2) \to 12.1 \quad (\text{fixes } m_c) \quad [\phi_3^{\text{phys}} = 12.0] \end{split}$$

ensemble	V	flavor	β	α
A400a00b324	$64 imes 32^3$	3 + 1	3.24	0
B400a00b324	$80 imes 48^3$	3 + 1	3.24	0
A450a07b324	$64 imes 32^3$	1 + 2 + 1	3.24	0.007299
A380a07b324	$64 imes 32^3$	1 + 2 + 1	3.24	0.007299
A500a50b324	$64 imes 32^3$	1 + 2 + 1	3.24	0.05
A360a50b324	$64 imes 32^3$	1 + 2 + 1	3.24	0.05
C380a50b324	$96 imes 48^3$	1 + 2 + 1	3.24	0.05

 1 we used the CLS \textit{N}_{f} = 2 + 1 value of $\sqrt{\textit{8t}_{0}}$ = 0.415 fm [Bruno et al., 1608.08900]

1. Motivation

2. C* boundary conditions * Implementation * RC* ensembles

3. Methods for HVP and status of the work

- * Results for QCD
- * Isospin breaking effects
- \star Results for QCD+QED

ensemble	V	flavor	α	<i>a</i> [fm] ²	$m_{\pi^\pm}[MeV]$
A400a00b324	$64 imes 32^3$	3 + 1	0	0.05393(24)	398.5(4.7)
B400a00b324	$80 imes 48^3$	3 + 1	0	0.05400(14)	401.9(1.4)
A450a07b324	$64 imes 32^3$	1 + 2 + 1	0.007299	0.05469(32)	451.2(4.3)
A380a07b324	$64 imes 32^3$	1 + 2 + 1	0.007299	0.05323(28)	383.6(4.4)
A500a50b324	$64 imes 32^3$	1 + 2 + 1	0.05	0.05257(14)	495.0(2.8)
A360a50b324	$64 imes 32^3$	1 + 2 + 1	0.05	0.05054(27)	358.6(3.7)
C380a50b324	$96 imes 48^3$	1 + 2 + 1	0.05	0.050625(79)	386.5(2.4)

- Reported measurements performed on 4 ensembles
- Ref: Altherr et al., 2212.11551, 2301.04385

 $^{^2}$ a is determined using the $N_f = 2 + 1$ value of $\sqrt{8t_0} = 0.415$ fm from Bruno et al., 1608.08900

HVP calculation

• Time-momentum representation

$$\begin{split} G(t) &= -\frac{1}{3} \sum_{k=1,2,3} \sum_{\vec{x}} \left\langle V_k^{c,l}(x) V_k^l(0) \right. \\ s_\mu^{HVP} &= \left(\frac{\alpha}{\pi}\right)^2 \sum_t G(t) \tilde{K}(t;m_\mu) \end{split}$$

• Two discretizations of the vector current

$$\begin{split} \mu' \\ V'_{\mu}(x) &= \sum_{f} q_{f} \overline{\psi}_{f}(x) \gamma_{\mu} \psi_{f}(x) \\ V^{c}_{\mu}(x) &= \sum_{f} \frac{1}{2} q_{f} \Big[\overline{\psi}_{f}(x+\hat{\mu}) \left(1+\gamma_{\mu}\right) U^{\dagger}_{\mu}(x) \psi_{f}(x) - \overline{\psi}_{f}(x) \left(1-\gamma_{\mu}\right) U_{\mu}(x) \psi_{f}(x+\hat{\mu}) \Big] \end{split}$$

• Extrapolation of the signal at large t (single-exponential for now)

 μ

HVP calculation

By considering the different Wick contractions:

$$\langle V_k^{\prime}(x)V_k^{\prime}(0)
angle = \sum_{f,f^{\prime}} q_f q_{f^{\prime}} \operatorname{tr} \left[\gamma_k D_f^{-1}(x|x)
ight] \cdot \operatorname{tr} \left[\gamma_k D_{f^{\prime}}^{-1}(0|0)
ight] +$$

 $-\sum_f q_f^2 \operatorname{tr} \left[\gamma_k D_f^{-1}(x|0) \gamma_k D_f^{-1}(0|x) \right]$

- $D_f^{-1}(x|y)$ quark propagator from y to x
- γ_k Dirac matrices (k = 1, 2, 3)

QCD configurations \rightarrow leading HVP (w/o IBE effects) QCD+QED configurations \rightarrow full HVP

ensemble	V	flavor	α	a[fm]	$m_{\pi^{\pm}}[MeV]$
A400a00b324	64×32^{3}	3 + 1	0	0.05393(24)	398.5(4.7)
B400a00b324	$80 imes 48^3$	3 + 1	0	0.05400(14)	401.9(1.4)
A450a07b324	64×32^{3}	1 + 2 + 1	0.007299	0.05469(32)	451.2(4.3)
A380a07b324	64×32^{3}	1 + 2 + 1	0.007299	0.05323(28)	383.6(4.4)
A500a50b324	64×32^{3}	1 + 2 + 1	0.05	0.05257(14)	495.0(2.8)
A360a50b324	64×32^{3}	1 + 2 + 1	0.05	0.05054(27)	358.6(3.7)
C380a50b324	96×48^{3}	1 + 2 + 1	0.05	0.050625(79)	386.5(2.4)

1. Motivation

2. C* boundary conditions * Implementation * RC* ensembles

3. Methods for HVP and status of the work * Results for QCD

* Isospin breaking effects
 * Results for QCD+QED

ensemble	V	β	α	$\kappa_{u,d,s}$	κ_c	c ^{SU(3)} SW
A400a00b324	$64 imes 32^3$	3.24	0	0.1344073	0.12784	2.18859
B400a00b324	$80 imes 48^3$	3.24	0	0.1344073	0.12784	2.18859

• Study of the signal-to-noise ratio for different discretizations of the correlator: G''(t), $G^{cl}(t)$, $G^{cc}(t)$

ensemble	V	β	α	$\kappa_{u,d,s}$	κ_c	c _{SW} (3)
A400a00b324	$64 imes 32^3$	3.24	0	0.1344073	0.12784	2.18859
B400a00b324	$80 imes 48^3$	3.24	0	0.1344073	0.12784	2.18859

• V^{I}_{μ} requires a renormalization constant and O(a)-improvement

 $V^{R}_{\mu,f}=Z^{m_f}_V(V^{I}_{\mu,f}+$ ac $_V\partial_
u au_{\mu
u,f})$ [Bhattacharya et al., 0511014]

 $egin{aligned} \mathcal{R}(t) = rac{\sum_{ec{x},k} \left\langle V_f^c(x) V_f'(0)
ight
angle}{\sum_{ec{x},k} \left\langle V_f'(x) V_f'(0)
ight
angle} \end{aligned}$

ensemble	$Z_V^{m_{l/s}}$	$Z_V^{m_c}$
A400a00b324	0.6745(12)	0.6066(2)
B400a00b324	0.6752(10)	0.6066(4)

QCD with C^* b.c.

 \bullet Connected LO-HVP for lattice volumes 64×32^3 and 80×48^3

ensemble	n. cnfg	type	am _V ^{u/d/s}	$a_{\mu}^{u/d/s} imes 10^{-10}$	am_V^c	$a^{c}_{\mu} imes 10^{-10}$
A400a00b324	200		0.2644(50)	338(8)	0.8463(5)	7.83(8)
		cl	0.2652(55)	334(9)	0.8462(5)	6.18(7)
B400a00b324	108		0.2522(33)	402(9)	0.8458(9)	7.81(9)
		cl	0.2530(32)	397(9)	0.8454(8)	6.16(7)

1. Motivation

2. C* boundary conditions * Implementation * RC* ensembles

3. Methods for HVP and status of the work * Results for QCD

- \star Isospin breaking effects
- * Results for QCD+QED

Isosymmetric QCD configurations are generated with $m_u = m_d$, $\alpha_{em} = 0$

To include the strong and the QED ibe:

• perturbative expansion in $\alpha = e^2/4\pi$ and $\delta m = (m_d - m_u)/\Lambda_{QCD}$ [De Divitiis et al. 1303.4896]

$$\langle O(U, A, \psi, \bar{\psi}) \rangle_{QCD+QED} = \frac{1}{Z} \int \mathcal{D}U\mathcal{D}A \det[U, A] \exp(-S_g) \exp(-S_\gamma)O(U, A, \psi, \bar{\psi}) \langle V_{QCD+QED} \rangle + \frac{1}{Z} \int \mathcal{D}U\mathcal{D}A \det[U, A] \exp(-S_g) \exp(-S_\gamma)O(U, A, \psi, \bar{\psi}) \rangle$$

 $\rightarrow \det[U,A] \simeq \det[U] + \mathit{e_{sea}}det[U,A]' + \mathit{e_{sea}^2}det[U,A]''$

 $ightarrow {\cal O}_{QCD+QED} \simeq {\cal O}_{isoQCD} + \delta m {\cal O}_{\delta m}' + e_{val} {\cal O}_e' + e_{val}^2 {\cal O}_e''$

$$\begin{split} \left\langle V_k^{c,l}(x)V_k^l(0) \right\rangle &= \left\langle V_k^{c,l}(x)V_k^l(0) \right\rangle \bigg|_{e=0,m_f=\hat{m}} + \frac{1}{2}e^2 \frac{\partial^2}{\partial e^2} \left\langle V_k^{c,l}(x)V_k^l(0) \right\rangle \bigg|_{e=0,m_f=\hat{m}} + \\ &+ (m_f - \hat{m}) \frac{\partial}{\partial m_f} \left\langle V_k^{c,l}(x)V_k^l(0) \right\rangle \bigg|_{e=0,m_f=\hat{m}} + \dots \end{split}$$

[+] no need to generate new configurations

[+] corrections are measured as $\mathcal{O}(1)$ observables

[-] calculations of many diagrams needed

Photon propagator

• The photon field is Gaussian distributed in momentum space

$$S_{\gamma}^{Feyn.} = rac{1}{2} \sum_{k,\mu,
u} ilde{A}_{\mu}^{*}(k) \hat{k}_{
u}^{2} ilde{A}_{\mu}(k), \qquad \hat{k}_{\mu} = 2\sin{(rac{k_{\mu}}{2})}, \qquad k_{\mu} = rac{(2x_{\mu} + c_{\mu})\pi}{L_{\mu}}$$

• Propagator in the Feynman gauge is stochastically estimated with

$$\hat{A}_{\mu}(x) = rac{1}{\sqrt{N}} \sum_{k} rac{e^{-ikx}}{\sqrt{\hat{k}^2}} \tilde{B}_{\mu}(k), \qquad P(B) \propto \exp\left(-B_{\mu}^2(k)
ight)$$
 $\Lambda_{\mu
u}(x-y) = rac{\delta_{\mu
u}}{N} \sum_{k} rac{e^{ik(x-y)}}{\hat{k}^2} \simeq rac{1}{n_{src}} \sum_{i=1}^{n_{src}} \hat{A}^i_{\mu}(x) \hat{A}^i_{
u}(y)$

RM123 method

• Leading IB effects in the electro-quenched approximation $\implies e_{sea} = 0$

RM123 method

Work in progress...

1. Motivation

2. C* boundary conditions * Implementation * RC* ensembles

3. Methods for HVP and status of the work

* Results for QCD
* Isospin breaking effects
* Results for QCD+QED

QCD+QED with C^{\star} b.c.

Simulation details:

ensemble	V	β	α	κ_u	$\kappa_{d,s}$	κ_c	$c_{SW}^{SU(3)}$	$c_{SW}^{U(1)}$
A380a07b324	$64 imes 32^3$	3.24	0.007299	0.13459164	0.13444333	0.12806355	2.18859	1
A360a50b324	$64 imes 32^3$	3.24	0.05	0.135560	0.134617	0.129583	2.18859	1

• Wilson action with compact U(1) field

$$S_{g,U(1)} = rac{1}{8\pi q_{el}^2 lpha} \sum_{x} \sum_{\mu \neq
u} [1 - P_{\mu
u}^{U(1)}(x)]$$

with q_{el} elementary charge, $P_{\mu\nu}^{U(1)}$ plaquette

- $c_{SW}^{SU(3)}$ correct up to $O(\alpha)$ terms, tree level improvement for U(1)
- $N_f = 1 + 2 + 1 \rightarrow \text{non-physical degenerate } d \text{ and } s \text{ quarks}$

QCD+QED with C^{\star} b.c.

Figure: Integrand of the connected HVP contribution for the A380a07b324 ensemble

- Results for the mixed correlator $G^{cl}(x_0)$
- Ren. constants are not considered yet

$$V^{ extsf{R}}_{\mu}(x) = V^{ extsf{c}}_{\mu}(x) + \mathcal{O}\left(\partial_{
u} \mathcal{F}^{
u\mu}
ight)$$
 [Collins et al., 0512187]

• signal-to-noise ratio similar to the QCD case

ensemble	n. cnfg	α_R	flavor	am_V	$a_{\mu}^{ m HVP} imes 10^{10}$
A360a50b324	181	0.040633(80)	up	0.267(8)	309(11)
			down/strange	0.262(7)	77(2)
			charm		10.62(11)
A380a07b324	200	0.007081(19)	up	0.266(4)	331(7)
			down/strange	0.265(6)	83(2)
			charm		9.78(10)

1. Motivation

2. C* boundary conditions

* Implementation* RC* ensembles

3. Methods for HVP and status of the work

- \star Results for QCD
- \star Isospin breaking effects
- \star Results for QCD+QED

- We computed the connected HVP on two QCD and two QCD+QED ensembles with C* b.c.
- Signal-to-noise ratio good for QCD and at the physical $\alpha_{\it EM}$
- The results are not extrapolated: a \sim 0.05, 360 $< m_\pi <$ 400 MeV
- Ongoing work:
 - \star RM123 method for QCD ensembles
 - \star disconnected diagrams for QCD and QCD+QED
 - * variance-reduction techinques: low-mode averaging [De Grand & Schaefer, 0401011]
- Long-term:
 - \star generation of new ensembles
 - $\star\,$ extrapolation to the physical point

Backup slides

- C^{*} boundaries in $\hat{i} \implies p_i = \frac{\pi}{L}(2\mathbb{Z}+1)$ for A_{μ}
- the vector current is a C-odd operator
- zero-momentum projection is not possible
- the spatial integration domain in TMR should be set to

$$\left(-\frac{L}{2},\frac{L}{2}\right)^3$$

Vector current in the doublet formulation

$$V_{\mu}^{loc}(x) := -\chi^{T}(x) \mathcal{K} C \frac{\gamma_{\mu}}{2} \tau_{3} \chi(x), \qquad \chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{C}(x) \end{pmatrix}, \quad \mathcal{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Vector current in the doublet formulation

$$V_{\mu}^{loc}(x) := -\chi^{T}(x) \mathcal{K}C\frac{\gamma_{\mu}}{2} \tau_{3}\chi(x), \qquad \chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{C}(x) \end{pmatrix}, \quad \mathcal{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The (conn.) two-point functions has an extra Wick contraction

$$\chi(x)\chi(y) = -D^{-1}(x|y)KC^{-1}, \quad \left\langle \chi^{T}(x)KC\frac{\gamma_{\mu}}{2}\tau_{3}\chi(x)\chi^{T}(y)KC\frac{\gamma_{\nu}}{2}\tau_{3}\chi(y) \right\rangle$$

Vector current in the doublet formulation

$$V^{loc}_{\mu}(x) := -\chi^{T}(x) \mathcal{K}Crac{\gamma_{\mu}}{2} au_{3}\chi(x), \qquad \chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix}, \quad \mathcal{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad au_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The (conn.) two-point functions has an extra Wick contraction

$$\chi(x)\chi(y) = -D^{-1}(x|y)KC^{-1}, \quad \left\langle \chi^{T}(x)KC\frac{\gamma_{\mu}}{2}\tau_{3}\chi(x)\chi^{T}(y)KC\frac{\gamma_{\nu}}{2}\tau_{3}\chi(y) \right\rangle$$

Vector current in the doublet formulation

$$V^{loc}_{\mu}(x) := -\chi^{T}(x) \mathcal{K} C rac{\gamma_{\mu}}{2} au_{3} \chi(x), \qquad \chi(x) \equiv \begin{pmatrix} \psi(x) \\ \psi^{\mathcal{C}}(x) \end{pmatrix}, \quad \mathcal{K} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad au_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The (conn.) two-point functions has an extra Wick contraction

$$\chi(x)\chi(y) = -D^{-1}(x|y) \mathcal{K}C^{-1}, \quad \left\langle \chi^{\mathsf{T}}(x) \mathcal{K}C\frac{\gamma_{\mu}}{2} \tau_{3}\chi(x)\chi^{\mathsf{T}}(y) \mathcal{K}C\frac{\gamma_{\nu}}{2} \tau_{3}\chi(y) \right\rangle$$

In terms of Dirac spinors

$$\begin{split} &-\operatorname{tr}_{CD}[D^{-1}(x_1|y)\gamma_{\mu}\gamma_5 D^{-1\dagger}(x_1|y)\gamma_5\gamma_{\nu} - (D^{-1})(x_2|y)\gamma_{\mu}\gamma_5 (D^{-1})^{\dagger}(x_2|y)\gamma_5\gamma_{\nu}],\\ &\vec{x_1} \in (-L,L)^3, \qquad \vec{x_2} \in ((-2L,L) \cup (L,2L))^3 \end{split}$$

QCD with C^{*} b.c.: strange and charm contributions

 \bullet Connected LO-HVP for lattice volumes 64×32^3 and 80×48^3

ensemble	n. cnfg	type	am_V^s	$a_{\mu}^{s} imes 10^{-10}$	am_V^c	$a_{\mu}^{c} imes 10^{-10}$
A400a00b324	200		0.2808(22)	46.7(7)	0.8463(5)	7.83(8)
		cl	0.2796(29)	46.2(7)	0.8462(5)	6.18(7)
B400a00b324	108		0.2794(19)	48.5(7)	0.8458(9)	7.81(9)
		cl	0.2791(20)	48.0(7)	0.8454(8)	6.16(7)

QCD with C^{\star} b.c.: strange and charm contributions

• tuning of $\kappa_{s,c}^{\text{val}}$: change the valence hopping parameters such that $m_V^{s\bar{s}}$, $m_V^{c\bar{c}}$ match (disconnected and QED effects are neglected)

$$m_{\phi}^{phys}=1019.461(20){
m MeV}$$

 $m_{J/\psi}^{phys} = 3096.900(6) {
m MeV}$

QCD+QED with C^{\star} b.c.

• comparison of the relative error for three values of $\boldsymbol{\alpha}$

24 / 24