Infinite volume QED in finite volume lattice QCD calculations

Luchang Jin

University of Connecticut

May 30, 2023

QED in Weak Decays Higgs Centre for Theoretical Physics Higgs Centre Seminar Room School of Physics and Astronomy The University of Edinburgh

Outline

- Introduction to the finite volume effects in lattice QCD + QED
- QED correction to hadron masses & the infinite volume reconstruction method Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- Lattice calculation of the pion mass splitting
 Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]
- QED correction to meson leptonic decay rates
 Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]
- Summary and outlook

Lattice QCD + QED and finite volume effects

- No massless particles in QCD → Finite volume effects for many observables are exponentially suppressed by the spatial lattice size L.
 - Mass of a stable particle M. Lüscher, Commun.Math.Phys. 104, 177-206 (1986)
- QED include massless photon → Use treatments similar to QCD for QED leads to power-law suppressed finite volume effects.
 - Mass of a stable particle in QED_L M. Hayakawa and S. Uno, Prog. Theor. Phys. (2008).

$$\Delta M(L) = \Delta M(\infty) - \frac{q^2}{4\pi} \frac{\kappa}{2L} \left(1 + \frac{2}{mL} \right) + \mathcal{O}\left(\frac{1}{L^3}\right)$$
(1)

where $\kappa = 2.8372997 \cdots$. S. Borsanyi et al., Science 347, 1452 (2015).

- Start the derivation in the infinite volume (and in the continuum).
- Treat the QED part of the diagram analytically (and perturbatively).
- The hadronic part needs finite volume lattice QCD. Finite volume errors introduced.
 - Hadronic vacuum polarization (HVP) contribution to muon g 2:

T. Blum (2003) D. Bernecker, H. Meyer (2011)

- Start the derivation in the infinite volume (and in the continuum).
- Treat the QED part of the diagram analytically (and perturbatively).
- The hadronic part needs finite volume lattice QCD. Finite volume errors introduced.
 - QED corrections to the hadronic vacuum polarization (HVP):

T. Blum et al (2018)

- Start the derivation in the infinite volume (and in the continuum).
- Treat the QED part of the diagram analytically (and perturbatively).
- The hadronic part needs finite volume lattice QCD. Finite volume errors introduced.
 - Hadronic light-by-light (HLbL) contribution to muon g 2:

N. Asmussen et al (2016) T. Blum et al (2017)

- Start the derivation in the infinite volume (and in the continuum).
- Treat the QED part of the diagram analytically (and perturbatively).
- The hadronic part needs finite volume lattice QCD. Finite volume errors introduced.
- Does **NOT** work for calculating the QED correction to the mass of a stable hadron.

$$\Delta M = \mathcal{I} = \frac{1}{2} \int d^4 x \, \mathcal{H}_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x), \qquad (5)$$
$$\mathcal{H}_{\mu,\nu}(x) = \frac{1}{2M} \langle N | T J_{\mu}(x) J_{\nu}(0) | N \rangle, \quad S^{\gamma}_{\mu,\nu}(x) = \frac{\delta_{\mu,\nu}}{4\pi^2 x^2} \qquad (6)$$

– The hadronic function does not always fall exponentially in the long distance region. When $t \gg |\vec{x}|$:

$$\mathcal{H}_{\mu,\nu}(t,\vec{x}) \sim e^{-M\left(\sqrt{t^2 + \vec{x}^2} - t\right)} \sim e^{-M\frac{\vec{x}^2}{2t}} \sim O(1)$$
 (7)

- Truncate the integral: $\int d^4x \to \int_{-L/2}^{L/2} d^4x \&$ Approx the $\mathcal{H}(x)$: $\mathcal{H}(x) \to \mathcal{H}^L(x) \to \mathcal{H}^L(x)$ \to Power-law suppressed finite volume errors.

Outline

- Introduction to the finite volume effects in lattice QCD + QED
- QED correction to hadron masses & the infinite volume reconstruction method Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- Lattice calculation of the pion mass splitting
 Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]
- QED correction to meson leptonic decay rates
 Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]
- Summary and outlook

QED correction to hadron masses

- Evaluate the QED part, the photon propagator, in infinite volume.
- The hadronic function does not always fall exponentially in the long distance region \rightarrow Separate the integral into two parts ($t_s \leq L$):

• For the short distance part, $\mathcal{I}^{(s)}$ can be directly calculated on a finite volume lattice:

$$\mathcal{I}^{(s)} \approx \mathcal{I}^{(s,L)} = \frac{1}{2} \int_{-t_s}^{t_s} dt \int_{-L/2}^{L/2} d^3 x \, \mathcal{H}^{L}_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x)$$

• For the **long distance part**, $\mathcal{I}^{(l)}$, a different treatment is required.

The infinite volume reconstruction (IVR) method

• For the long distance part, we can evaluate $\mathcal{H}_{\mu,\nu}(x)$ indirectly in the infinite volume.

$$\mathcal{I}^{(l)} = \int_{t_s}^{\infty} dt \int d^3 x \, \mathcal{H}_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x) \tag{10}$$

 Note that when t is large (t > t_s), the intermediate states between the two currents are dominated by the single particle states (possibly with small momentum). Therefore:

$$\mathcal{H}_{\mu,\nu}(x) \approx \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{2E_{\vec{p}}} \frac{1}{2M} \langle N|J_{\mu}(0)|N(\vec{p})\rangle \langle N(\vec{p})|J_{\nu}(0)|N\rangle \right] e^{i\vec{p}\cdot\vec{x} - (E_{\vec{p}} - M)t}$$
(11)

- We only need to calculate the form factors: $\langle N(\vec{p})|J_{\nu}(0)|N\rangle$!
- Values for all \vec{p} are needed. Inversely Fourier transform the above relation at t_s !

$$\int d^3 x \,\mathcal{H}_{\mu,\nu}(t_s,\vec{x}) e^{-i\vec{p}\cdot\vec{x} + (E_{\vec{p}}-M)t_s} \approx \frac{1}{2E_{\vec{p}}} \frac{1}{2M} \langle N|J_{\mu}(0)|N(\vec{p})\rangle \langle N(\vec{p})|J_{\nu}(0)|N\rangle$$
(12)

Master formula for QED correction to hadron masses 10/27

• The final expression for QED correction to hadron mass is split into two parts:

$$\Delta M = \mathcal{I} = \mathcal{I}^{(s)} + \mathcal{I}^{(l)}$$

- For the short distance part: $\mathcal{I}^{(s)} \approx \mathcal{I}^{(s,L)} = \frac{1}{2} \int_{-t_*}^{t_s} dt \int_{1/2}^{L/2} d^3 x \, \mathcal{H}^L_{\mu,\nu}(x) S^{\gamma}_{\mu,\nu}(x) (13)$
- For the long distance part: $\mathcal{I}^{(l)} \approx \mathcal{I}^{(l,L)} = \int_{-L/2}^{L/2} d^3x \ \mathcal{H}^L_{\mu,\nu}(t_s,\vec{x}) L_{\mu,\nu}(t_s,\vec{x})$
- For Feynman gauge:

$$S_{\mu,\nu}^{\gamma}(x) = \frac{\delta_{\mu,\nu}}{4\pi^2 x^2} \qquad L_{\mu,\nu}(t_s,\vec{x}) = \frac{\delta_{\mu,\nu}}{2\pi^2} \int_0^\infty dp \frac{\sin(p|\vec{x}|)}{2(p+E_p-M)|\vec{x}|} e^{-pt_s}$$

- Only use $\mathcal{H}^{L}_{\mu,\nu}(t,\vec{x})$ within $-t_{s} \leq t \leq t_{s}$.
- Choose $t_s = L/2$, finite volume errors and the ignored excited states contribution to $\mathcal{I}^{(l)}$ are both exponentially suppressed by the spatial lattice size L.

- Derivation is in the **infinite volume**.
- QED interactions are treated perturbatively in infinite volume.
- Exploit the property of some Euclidean space-time hadronic matrix elements at long distance in infinite volume. e.g.

$$\mathcal{H}_{\mu,\nu}(x) = \frac{1}{2M} \langle N|T J_{\mu}(x) J_{\nu}(0)|N\rangle$$

$$\approx \int \frac{d^{3}p}{(2\pi)^{3}} \left[\frac{1}{2E_{\vec{p}}} \frac{1}{2M} \langle N|J_{\mu}(0)|N(\vec{p})\rangle \langle N(\vec{p})|J_{\nu}(0)|N\rangle \right] e^{i\vec{p}\cdot\vec{x}-(E_{\vec{p}}-M)t}$$
(14)
(15)

The **infinite volume** hadronic matrix elements can therefore be **reconstructed** by **finite volume** hadronic matrix elements with exponentially suppressed finite volume errors.

 Much more sophisticated treatment is needed for a muti-hadron system. Christ, Feng, Karpie, Nguyen [PoS LATTICE2021 (2022) 312]

Outline

- Introduction to the finite volume effects in lattice QCD + QED
- QED correction to hadron masses & the infinite volume reconstruction method Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- Lattice calculation of the pion mass splitting
 Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]
- QED correction to meson leptonic decay rates
 Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]
- Summary and outlook

- Coulomb gauge fixed wall sources are used to interpolate the pion interpolating operators.
- Fixed time separation between the vector current operator and the closest pion interpolating operators: $t_{\rm sep} \approx 1.5$ fm.

$$\mathcal{H}_{\mu,\nu}^{L}(t,\vec{x}) = L^{3} \frac{\langle \pi(t+t_{\mathsf{sep}})J_{\mu}(t,\vec{x})J_{\nu}(0)\pi^{\dagger}(-t_{\mathsf{sep}})\rangle_{L}}{\langle \pi(t+t_{\mathsf{sep}})\pi^{\dagger}(-t_{\mathsf{sep}})\rangle_{L}^{[*]}}$$
(16)

- Diagrams are similar to the π⁻ → π⁺ee neutrinoless double beta (0ν2β) decay.
 D. Murphy and W. Detmold (2018), Tuo, Feng, and Jin (2019)
- At O(α_{QED}, (m_u − m_d)/Λ_{QCD}), all UV divergence are canceled. The two diagrams are the only diagrams contributing to m_{π[±]} − m_{π⁰}. RM123 (2013)
- In particular, the pion mass splitting at leading order does not depend on $m_u m_d$.

^{[*]:} Need to correct the around the world effects.

Lattice QCD Ensembles from RBC/UKQCD

14 / 27

48I

641

- Domain wall fermion action (preserves Chiral symmetry, no O(a) lattice artifacts).
- Iwasaki gauge action.
- $M_{\pi} = 135 \text{ MeV}$ *, L = 5.5 fm box, $1/a_{48I} = 1.73 \text{ GeV}$, $1/a_{64I} = 2.359 \text{ GeV}$.

*: Valence pion mass. Slightly different from the 139 MeV unitary pion mass used in the ensemble generation.

RBC/UKQCD, PRD [arXiv:1411.7017]

Lattice QCD Ensembles from RBC/UKQCD

- For 24D, 32D, 32Dfine, $M_{\pi} \approx 140 \text{ MeV}$
- For 24DH, $M_{\pi} \approx 340$ MeV

RBC/UKQCD, PRD [arXiv:1411.7017]

27

15 /

Finite volume effects and t_s dependence of Δm_{π}

16 /

• The difference between 32D and 24D is -0.035(16) MeV. This is consistent with a scalar QED calculation, which yields -0.022 MeV.

	Disc (MeV)	Conn (MeV)	Total (MeV)
Feyn	0.051(9)(22)	4.483(40)(28)	4.534(42)(43)
Coul	0.052(2)(13)	4.508(46)(42)	4.560(46)(41)
Coul-t	0.018(1)(4)	1.840(22)(39)	1.858(22)(41)

Finite volume corrections (the differences between the 32D and 24D ensembles) are included in table.

Coulomb potential in pion mass difference

- The Coulomb potential contribution to the pion mass difference. The curve is the partial sum respect to the spatial separation of the two equal-time current operators.
- This plot provide some interesting pion shape information.

Preliminary results for kaons and pions

- QED correction to masses of π^0 , π^{\pm} , K^0 , K^{\pm} .
- Results from the 64I ensemble.
- Plot by Joshua Swaim (current UCONN graduate student).

 Calculation performed by reusing propagators generated for the lattice HLbL calculation at MIRA.

Outline

- Introduction to the finite volume effects in lattice QCD + QED
- QED correction to hadron masses & the infinite volume reconstruction method Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- Lattice calculation of the pion mass splitting
 Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]
- QED correction to meson leptonic decay rates
 Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]
- Summary and outlook

QED correction to meson leptonic decay rates

• Diagram A:

$$H^{(2)}_{\mu,\rho,\sigma}(t_1, t_2, \vec{x}) = \int d^3 \vec{w} \langle 0 | T \{ J^W_{\mu}(0) J^{\mathsf{EM}}_{\rho}(t_1, \vec{w} + \vec{x}) J^{\mathsf{EM}}_{\sigma}(t_2, \vec{w}) \} | \pi(\vec{0}) \rangle$$
(17)

• Diagram B and D:

$$H_{\mu,\rho}^{(1)}(x) = H_{\mu,\rho}^{(1)}(x_t, \vec{x}) = \langle 0|T\{J_{\mu}^{W}(0)J_{\rho}^{\mathsf{EM}}(x)\}|\pi(\vec{0})\rangle$$
(18)

• Diagram C and E ($f_{\pi} \approx 130 \text{ MeV}$):

$$H^{(0)}_{\mu} = H^{(0)}_{t} \delta_{\mu,t} = \langle 0 | J^{W}_{\mu}(0) | \pi(\vec{0}) \rangle = -im_{\pi} f_{\pi} \delta_{\mu,t}$$
(19)

$$\mathcal{H}^{(1)}_{\mu,\rho}(x_t, \vec{x}) = \langle 0 | \mathcal{T} \{ J^W_{\mu}(0) J^{\mathsf{EM}}_{\rho}(x) \} | \pi(\vec{0}) \rangle$$
(20)

- Goal is to obtain the infinite volume hadron matrix elements with even for large |x|.
- Short distance region $x_t \ge -t_s$. Can be directly approximated in finite volume.

$$H^{(1)}_{\mu,\rho}(x_t, \vec{x}) \approx H^{(1,L)}_{\mu,\rho}(x_t, \vec{x})$$
 (21)

Long distance region x_t ≤ −t_s. Can be approximated by the single pion intermediate states contribution.

$$H^{(1)}_{\mu,\rho}(x_t,\vec{x}) \approx \int \frac{d^3\vec{p}}{(2\pi)^3} \langle 0|J^W_{\mu}(0)|\pi(\vec{p})\rangle \frac{e^{-(E_{\pi,\vec{p}}-M_{\pi})|x_t|-i\vec{p}\cdot\vec{x}}}{2E_{\pi,\vec{p}}} \langle \pi(\vec{p})|J^{\mathsf{EM}}_{\rho}(0)|\pi(\vec{0})\rangle$$
(22)

$$= \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} e^{-(E_{\pi,\vec{p}}-M_{\pi})(|x_{t}|-t_{s})+i\vec{p}\cdot\vec{x}} \int d^{3}\vec{x}' H^{(1)}(-t_{s},\vec{x}') e^{-i\vec{p}\cdot\vec{x}'}$$
(23)

$$\approx \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} e^{-(E_{\pi,\vec{p}}-M_{\pi})(|x_{t}|-t_{s})+i\vec{p}\cdot\vec{x}} \int_{-L/2}^{L/2} d^{3}\vec{x}' H^{(1,L)}(-t_{s},\vec{x}') e^{-i\vec{p}\cdot\vec{x}'}$$
(24)

- As long as $t_s \lesssim L$, the above two approximations only have exponentially suppressed effects.

Infrared divergence

- Derivation in infinite volume will encounter logarithmic infrared divergence.
- Fortunately, the divergence cancel analytically between diagrams.
- Use "T" to represent the tree level diagram. We will have IR divergence cancellation between:
 - "TA" and "DD"; "TB" and "DE"

Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]

- "TC" and "EE" (Pure QED)

Carrasco, Lubicz, Martinelli, Sachrajda, Tantalo, Tarantino, and Testa [Phys.Rev.D 91 (2015) 7, 074506]

Outline

- Introduction to the finite volume effects in lattice QCD + QED
- QED correction to hadron masses & the infinite volume reconstruction method Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- Lattice calculation of the pion mass splitting
 Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]
- QED correction to meson leptonic decay rates
 Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026]
- Summary and outlook

Summary and outlook

- We invent the infinite volume reconstruction (IVR) method, eliminates all power-law suppressed finite volume errors in QED self-energy calculations.
 Feng and Jin [Phys.Rev.D 100 (2019) 9, 094509]
 Christ, Feng, Jin and Sachrajda [Phys.Rev.D 103 (2021) 1, 014507]
- We have used this method to calculate the pion mass splitting $m_{\pi^\pm} m_{\pi^0}$. Feng, Jin, and Riberdy [Phys.Rev.Lett. 128 (2022) 5, 052003]

Reference	$m_{\pi^\pm}-m_{\pi^0}({ m MeV})$	
RM123 2013	$5.33(48)_{stat}(59)_{sys}$	
R. Horsley et al. 2015	4.60(20) _{stat}	
RM123 2017	$4.21(23)_{stat}(13)_{sys}$	
This work	$4.534(42)_{stat}(43)_{sys}$	
RM123 2022	$4.622(64)_{stat}(70)_{sys}$	

The experimental value is 4.5936(5) MeV.

Summary and outlook

- The IVR method and the 4-point hadronic function have more applications:
 - Two-photon Exchange Contribution to the muonic-hydrogen Lamb Shift from Lattice QCD. Fu, Feng, Jin and Lu [Phys.Rev.Lett. 128 (2022) 17, 172002]
 - $\pi^-
 ightarrow \pi^+ e^- e^-$ neutrinoless double beta (0u 2eta) decay.

$$g_{\nu}^{\pi\pi}(\mu)\Big|_{\mu=m_{\rho}} = -10.89(28)_{\text{stat}}(33)_{L}(66)_{a}$$

Tuo, Feng, and Jin [Phys.Rev.D 100 (2019) 9, 094511]

- Electroweak box diagrams in $\pi^- \rightarrow \pi^0 e^- \bar{\nu}_e$. Feng, Gorchtein, Jin, Ma, and Seng [Phys.Rev.Lett. 124 (2020) 19, 192002] Ma, Feng, Gorchtein, Jin, and Seng [Phys.Rev.D 103 (2021) 114503]
- $\mathcal{K} \rightarrow \ell \nu_{\ell} \ell'^+ \ell'^-$ Tuo, Feng, Jin and Wang [Phys.Rev.D 105 (2022) 5, 054518]
- QED correction to the meson leptonic decay formulation. Christ, Feng, Jin, Sachrajda, and Wang [arXiv:2304.08026] There are mature lattice QCD calculations using QED_L.
 RM123 [Phys.Rev.D 100 (2019) 3, 034514], RBC-UKQCD [JHEP 02 (2023) 242]

Thank You!

Leptonic functions

29 / 27

$$L^{(0)}_{\mu} = \bar{u}(\vec{p}_{\nu})\gamma_{\mu}(1-\gamma_{5})\nu(\vec{p}_{\ell})$$
(25)

$$L^{(1)}_{\mu,\rho}(ix_{\mathsf{M}}^{t},\vec{x}) = \bar{u}(\vec{p}_{\nu})\gamma_{\mu}(1-\gamma_{5})S_{\ell}(0;ix_{\mathsf{M}}^{t},\vec{x})\gamma_{\rho}v(\vec{p}_{\ell})e^{-i\vec{p}_{\ell}\cdot\vec{x}}e^{iE_{\ell}x_{\mathsf{M}}^{t}}$$
(26)

$$= -i \int \frac{d\vec{p}_{M}^{t}}{(2\pi)} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \tilde{L}^{(1)}_{\mu,\rho}(ip_{M}^{t},\vec{p}) e^{i\vec{p}\cdot\vec{x}} e^{-ip_{M}^{t}x_{M}^{t}}$$
(27)

$$\tilde{L}^{(1)}_{\mu,\rho}(i\rho_{\mathsf{M}}^{t},\vec{p}) = \bar{u}(\vec{p}_{\nu})\gamma_{\mu}(1-\gamma_{5})\tilde{S}_{\ell}(-i\rho_{\mathsf{M}}^{t}-iE_{\ell},-\vec{p}-\vec{p}_{\ell})\gamma_{\rho}\nu(\vec{p}_{\ell})$$
(28)

where

$$S_{\ell}(x;y) = \int \frac{d^4p}{(2\pi)^4} \tilde{S}_{\ell}(p) e^{ip \cdot (x-y)} \qquad \tilde{S}_{\ell}(p_t,\vec{p}) = \frac{-i\gamma_{\mu}p_{\mu} + m}{p^2 + m^2}$$
(29)

For small \vec{k} , we have:

$$\tilde{L}_{\mu,\rho}^{(1)}(i|\vec{k}|,\vec{k}) \approx -\tilde{L}_{\mu,\rho}^{(1)}(-i|\vec{k}|,-\vec{k})$$
(30)

$$i\mathcal{M}_{\rm T} = -i\frac{G_F}{\sqrt{2}}V_{ud}^*H_{\mu}^{(0)}L_{\mu}^{(0)}$$
(31)

$$i\mathcal{M}_B = -i\frac{G_F}{\sqrt{2}}V_{ud}^*(-(-ie)^2)\int d^4x \int d^4y \,H_{\mu,\rho}^{(1)}(x)L_{\mu,\rho'}^{(1)}(y)S_{\rho,\rho'}^{\gamma}(x;y)$$
(32)

$$i\mathcal{M}_{D} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(ie)\int d^{4}x \,H_{\mu,\rho}^{(1)}(x)e^{-i\vec{p}_{\gamma}\cdot\vec{x}}e^{|\vec{p}_{\gamma}|x_{t}}L_{\mu}^{(0)}\epsilon_{\lambda,\rho}^{*}(\vec{p}_{\gamma})$$
(33)

$$i\mathcal{M}_{E} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-ie)H_{\mu}^{(0)}\tilde{L}_{\mu,\rho}^{(1)}(i|\vec{p}_{\gamma}|,\vec{p}_{\gamma})\epsilon_{\lambda,\rho}^{*}(\vec{p}_{\gamma})$$
(34)

27

31

Focusing on the long distance part of diagram "B" and "D" (source of the divergence)

$$i\mathcal{M}_{B}^{L} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-(-ie)^{2})\int_{-\infty}^{-t_{s}}dx_{t}\int d^{3}\vec{x}\int d^{4}y \,H_{\mu,\rho}^{(1)}(x_{t},\vec{x})L_{\mu,\rho'}^{(1)}(y)S_{\rho,\rho'}^{\gamma}(y;x)$$
(35)

$$i\mathcal{M}_{D}^{L} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(ie)\int_{-\infty}^{-t_{s}}dx_{t}\int d^{3}\vec{x}\,H_{\mu,\rho}^{(1)}(x_{t},\vec{x})e^{-i\vec{p}_{\gamma}\cdot\vec{x}}e^{-|\vec{p}_{\gamma}||x_{t}|}L_{\mu}^{(0)}\epsilon_{\lambda,\rho}^{*}(\vec{p}_{\gamma})$$
(36)

27

32

Use Feynman gauge for photon propagator and ignores the region $x_t > y_t$ [*]:

$$i\mathcal{M}_{B}^{L} \approx -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-(-ie)^{2}) \\ \times \int_{-\infty}^{-t_{s}} dx_{t} \int d^{3}\vec{x} \int d^{4}y \, H_{\mu,\rho}^{(1)}(x_{t},\vec{x}) L_{\mu,\rho}^{(1)}(y) \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \frac{e^{i\vec{k}\cdot(\vec{y}-\vec{x})-|\vec{k}|(y_{t}-x_{t})}}{2|\vec{k}|}$$
(37)
$$= -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-(-ie)^{2}) \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \frac{1}{2|\vec{k}|} \\ \times \int_{-\infty}^{-t_{s}} dx_{t} \int d^{3}\vec{x} \, H_{\mu,\rho}^{(1)}(x_{t},\vec{x}) e^{-i\vec{k}\cdot\vec{x}} e^{-|\vec{k}||x_{t}|} \tilde{L}_{\mu,\rho}^{(1)}(-i|\vec{k}|,-\vec{k})$$
(38)

[*]: Since $x_t \leq -t_s$, the contribution of the region $x_t > y_t$ is small and does not contribute to the IR divergence.

Use IVR for $H^{(1)}_{\mu,
ho}(x_t,ec{x})$ $(x_t\leq -t_s)$

$$\int d^{3}\vec{x} \, H^{(1)}_{\mu,\rho}(x_{t},\vec{x}) e^{-i\vec{p}\cdot\vec{x}} = \int d^{3}\vec{x} \, H^{(1)}_{\mu,\rho}(-t_{s},\vec{x}) e^{-i\vec{p}\cdot\vec{x}} e^{-(E_{\pi,\vec{p}}-M_{\pi})(|x_{t}|-t_{s})}$$
(39)

27 '

33 /

We obtain:

$$i\mathcal{M}_{B}^{L} \approx -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-(-ie)^{2})\int \frac{d^{3}\vec{k}}{(2\pi)^{3}}\frac{1}{2|\vec{k}|} \times \frac{e^{-|\vec{k}|t_{s}}}{E_{\pi,\vec{k}}+|\vec{k}|-M_{\pi}}\int d^{3}\vec{x}\,H_{\mu,\rho}^{(1)}(-t_{s},\vec{x})e^{-i\vec{k}\cdot\vec{x}}\tilde{L}_{\mu,\rho}^{(1)}(-i|\vec{k}|,-\vec{k})$$
(40)

$$i\mathcal{M}_{D}^{L} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(ie)\frac{e^{-|\vec{p}_{\gamma}|t_{s}}}{E_{\pi,\vec{p}_{\gamma}} + |\vec{p}_{\gamma}| - M_{\pi}}\int d^{3}\vec{x}\,H_{\mu,\rho}^{(1)}(-t_{s},\vec{x})e^{-i\vec{p}_{\gamma}\cdot\vec{x}}L_{\mu}^{(0)}\epsilon_{\lambda,\rho}^{*}(\vec{p}_{\gamma})$$
(41)

Use $e^{-i\vec{k}\cdot\vec{x}} = 1 + (e^{-i\vec{k}\cdot\vec{x}} - 1)$. The second term vanishes when $\vec{k} \to 0$ and its contribution is IR finite. Pick the IR divergence piece:

$$\int d^{3}\vec{x} \, H^{(1)}_{\mu,\rho}(-t_{s},\vec{x})e^{-i\vec{k}\cdot\vec{x}} \to \int d^{3}\vec{x} \, H^{(1)}_{\mu,\rho}(-t_{s},\vec{x}) = H^{(0)}_{\mu}\delta_{\rho,t} \tag{42}$$

27

34

$$i\mathcal{M}_{B}^{L,\text{div}} \approx -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}(-(-ie)^{2})\int \frac{d^{3}\vec{k}}{(2\pi)^{3}}\frac{1}{2|\vec{k}|}\frac{e^{-|\vec{k}|t_{s}}}{E_{\pi,\vec{k}}+|\vec{k}|-M_{\pi}}H_{\mu}^{(0)}\tilde{L}_{\mu,t}^{(1)}(-i|\vec{k}|,-\vec{k})$$
(43)

$$i\mathcal{M}_{D}^{L,\text{div}} = -i\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}\left(ie\right)\frac{e^{-|\vec{p}_{\gamma}|t_{s}}}{E_{\pi,\vec{p}_{\gamma}} + |\vec{p}_{\gamma}| - M_{\pi}}H_{\mu}^{(0)}L_{\mu}^{(0)}\epsilon_{\lambda,t}^{*}(\vec{p}_{\gamma})$$
(44)

Combining diagram "T" and "B", we obtain

$$\Gamma_{TB}^{L,\text{div}} = \frac{1}{2M_{\pi,\text{phys}}} \int d\Phi_2(E_{\pi}, \vec{p}_{\pi}; \vec{p}_l, \vec{p}_{\nu}) 2\text{Re}[\mathcal{M}_T^{\dagger}\mathcal{M}_B^{L,\text{div}}]$$
(45)

$$\approx \frac{1}{2M_{\pi,\text{phys}}} \int d\Phi_2(E_{\pi}, \vec{p}_{\pi}; \vec{p}_l, \vec{p}_{\nu})$$

$$\times \left| \frac{G_F}{\sqrt{2}} V_{ud}^* \right|^2 (-(-ie)^2) H_{\nu}^{(0)\dagger} H_{\mu}^{(0)} \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2|\vec{k}|}$$

$$\times \frac{e^{-|\vec{k}|t_s}}{E_{\pi,\vec{k}} + |\vec{k}| - M_{\pi}} 2\text{Re} \Big[L_{\nu}^{(0)\dagger} \tilde{L}_{\mu,\rho}^{(1)}(-i|\vec{k}|, -\vec{k}) \Big]$$
(46)

27 '

35 /

27

36

Combining diagram "D" and "E" and use the above replacement, we obtain

$$\Gamma_{DE}^{L,\text{div}} = \frac{1}{2M_{\pi,\text{phys}}} \int d\Phi_{3}(E_{\pi}, \vec{p}_{\pi}; \vec{p}_{l}, \vec{p}_{\nu}, \vec{p}_{\gamma}) 2\text{Re}\left[\mathcal{M}_{E}^{\dagger}\mathcal{M}_{D}^{L,\text{div}}\right] \qquad (48)$$

$$\rightarrow \frac{1}{2M_{\pi,\text{phys}}} \int \frac{d^{3}\vec{p}_{\gamma}}{(2\pi)^{3}} \frac{1}{2|\vec{p}_{\gamma}|} \int d\Phi_{2}(E_{\pi} - |\vec{p}_{\gamma}|, \vec{p}_{\pi} - \vec{p}_{\gamma}; \vec{p}_{l}, \vec{p}_{\nu}) \\
\times \left|\frac{G_{F}}{\sqrt{2}}V_{ud}^{*}\right|^{2} (-(ie)^{2})H_{\mu}^{(0)\dagger}H_{\nu}^{(0)} \\
\times \frac{e^{-|\vec{p}_{\gamma}|t_{s}}}{E_{\pi,\vec{p}_{\gamma}} + |\vec{p}_{\gamma}| - M_{\pi}} 2\text{Re}\left[\tilde{L}_{\mu,t}^{(1)}(i|\vec{p}_{\gamma}|, \vec{p}_{\gamma})^{\dagger}L_{\nu}^{(0)}\right] \qquad (49)$$

Finally, we verified that $\Gamma_{TB}^{L,\text{div}} + \Gamma_{DE}^{L,\text{div}}$ is IR finite.

Finally, we verify that $\Gamma_{TB}^{L,div} + \Gamma_{DE}^{L,div}$ is IR finite.

$$\Gamma_{TB}^{L,\text{div}} \approx \frac{1}{2M_{\pi,\text{phys}}} \int d\Phi_2(E_{\pi}, \vec{p}_{\pi}; \vec{p}_l, \vec{p}_{\nu}) \\ \times \left| \frac{G_F}{\sqrt{2}} V_{ud}^* \right|^2 (-(-ie)^2) H_{\nu}^{(0)\dagger} H_{\mu}^{(0)} \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{2|\vec{k}|} \\ \times \frac{e^{-|\vec{k}|t_s}}{E_{\pi,\vec{k}} + |\vec{k}| - M_{\pi}} 2\text{Re} \Big[L_{\nu}^{(0)\dagger} \tilde{L}_{\mu,\rho}^{(1)}(-i|\vec{k}|, -\vec{k}) \Big]$$
(50)

37 / 27

$$\Gamma_{DE}^{L,\text{div}} = \frac{1}{2M_{\pi,\text{phys}}} \int \frac{d^{3}\vec{p}_{\gamma}}{(2\pi)^{3}} \frac{1}{2|\vec{p}_{\gamma}|} \int d\Phi_{2}(E_{\pi} - |\vec{p}_{\gamma}|, \vec{p}_{\pi} - \vec{p}_{\gamma}; \vec{p}_{l}, \vec{p}_{\nu}) \\ \times \left| \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} \right|^{2} (-(ie)^{2}) H_{\mu}^{(0)^{\dagger}} H_{\nu}^{(0)} \\ \times \frac{e^{-|\vec{p}_{\gamma}|t_{s}}}{E_{\pi,\vec{p}_{\gamma}} + |\vec{p}_{\gamma}| - M_{\pi}} 2\text{Re} \Big[\tilde{L}_{\mu,t}^{(1)}(i|\vec{p}_{\gamma}|, \vec{p}_{\gamma})^{\dagger} L_{\nu}^{(0)} \Big]$$
(51)