ΔM_{hadron} from gauge (non)-invariant operators

mostly based on

Nabeebaccus, RZJHEP'222209.06925Gauge invariant op.Rowe, RZsoon JHEP 2301.04972 ΔM_{hadron} Rowe, RZin preparation $B, D \rightarrow \ell \nu$

Converging on QCD & QED - 29-30 May 2023 Edinburgh

Overview

I. Universality of soft & collinear IR-logs

- soft-divergences (easy ones)
- coll-divergences (more work)
- Thm on structire dependent collinear divergences

II. A gauge invariant interpolating operator

- Modified (non-local) LSZ factor
- When needed. and when not (and relation Dirac dressing)

- **III.** $\Delta M = \Delta M_{QED} + \Delta M_{m_q}$
 - Cottingham formula & Feynman Hellmann

Summary

Recap on IR sensitive terms for Rates

- d=4 IR-divergences are **logarithmic**:
 - "soft" photon momentum $k \to 0$ (trivial)
 - "collinear" photon momentum $k \propto p_{ex}$ (subtle) $\alpha \ln m_e/m_b$ can be 10-20% and are **physical effect**
- Kinoshita-Lee-Nauenberg theorem (1962)
 Total (decay) rates all divergences (IR-logs)
 cancel since physical observables are finite

Exceptions:

ia) not photon-inclusive **soft+coll** ib) differential not kinematic-inclusive **coll** iii) $\Gamma \supset m_{\ell}^2 \ln m_{\ell}$ as finite cancelation not needed **coll** example and exception: leptonic decays with V-A interactions

based on Ward identity (Low-Burnett-Kroll-Goldberger-Gell-Mann thm)

•

Soft-Logs: virtual

- KLN-thm (or Bloch-Nordsieck 1937):
 - 1) real and virtual soft have to **cancel**.
 - 2) they do so point by point in phase space
 - 3) textbooks done at diagrammatic level of scalar QED

Beyond scalar QED,/ pt-like resolving hadrons

Structure-dependent level?

Nothing new as soft-divergences do not resolve hadrons

``soft-logs are (relatively) easy"

Collinear-Logs:

- New elements: $p_{\mu} = (E,0,0,E)$ and E can be large!
 - cancellation not point by point \Rightarrow not at diff-level in general
 - there are **IR-safe** and **IR-non-safe** kinematics Nabeebaccus, Isidori, RZ JHEP 2020 2009.00929

Experiment: e.g. LHCb for R_K cannot always choose

- Scalar QED: can be computed and infer as above. All good?
 - Structure dependent level? hard as not universal
 - since scalar QED logs up 10-20% in $B \rightarrow Kee$, $\Delta R_K = O(10\%)$
 - \Rightarrow have to take seriously if large and small scales

however, one can show

Show: coll-logs are universal (with KLN)

eikonal part

1) Real emission in scalar QED:
$$\mathscr{A} = \hat{Q}_{\ell_1} \frac{a_{\ell_1}}{\ell_1 \cdot k} + \delta \mathscr{A}$$

$$\int_{\gamma} |\mathscr{A}|^2 \propto \int_{\gamma} \hat{Q}_{\ell_1}^2 \left| \frac{a_{\ell_1}}{\ell_1 \cdot k} \right| + \hat{Q}_{\ell_1} \frac{2Re[\delta \mathscr{A} a_{\ell_1}]}{\ell_1 \cdot k} + |\delta \mathscr{A}|^2$$

coll-logs: $O(1)Q_{\ell_1}^2 \ln m_{\ell_1}$ **coll-safe* coll-safe**

* a) by gauge invariance $\mathscr{A} = \epsilon^{\mu} \mathscr{A}_{\mu} \Rightarrow k \cdot \mathscr{A} = 0$ b) in collinear region $\ell_1 \propto k \Rightarrow \cdot \ell_1 \cdot \mathscr{A} = \mathcal{O}(m_{\ell_1}^2)$

- 2) Hence $\delta A \rightarrow \delta A + A_{structure}^{B,K}$, no new <u>real</u> collinear logs
- 3) Since real & virtual cancel (in IR-safe kinematics), by **KLN-thm** \Rightarrow no new <u>virtual</u> collinear logs either

``the trick"

Gauge invariance acts as custodian that sweeps away all the ``dangerous'' hc logs beyond pt-like app.

Mini-summary:

Gauge invariance controls IR-logs

1) soft-logs: no problem

2) coll-logs: more subtle - no structure dep. if KLN applies

when does KLN-thm not apply?

- When LO amplitude is chirally suppressed:
 - e.g. $\mathscr{A}_{P \to \ell \nu} \propto m_{\ell}$ for V-A interaction \Rightarrow it's interesting!*
 - N.B. $\mathscr{A}_{P \to \ell \nu} \propto \mathcal{O}(1)$ for S-P interaction (Yukawa) no further coll-logs
- Described in notes 2205.06194 RZ & relation to splitting function applied J/Ψ -resonance in $B \rightarrow Kee$ Isidori, Lancierini, Nabeebaccus, RZ 2205.08635

* seen for $B_s \rightarrow \ell \ell$ in Beneke, Bobeth, Szafron'17 (thuogh they do not think in this way...)

The problem: requires interpolating operator

Standard operator not gauge invariant *

$$J_B \equiv \bar{u}\gamma_5 b \to e^{i\lambda Q_B} \bar{u}\gamma_5 b \qquad A \to A + \partial \lambda$$

- Lattice cancel gauge dependence $t_E \rightarrow \infty$ (sufficiently large) $Z_B(gauge) \times \text{amplitude} \times e^{-E_B t_E} + \dots$
- Continuum: rely quark hadron duality with no simple factorisation

(1) **universal IR-logs not reproduced** (2) in $P \rightarrow \ell \nu$ (pert. QCD/QED at least) we

(2) **observable IR safe** ΔM

we can get away with it

Quark-hadron duality & IR-logs do not commute

* In real emission, that is for the $B^+ \rightarrow \gamma$ form factor, we were able to get away with it

(1) A solution for IR-sensitive observables

leptonic decay

 $P \to \ell \nu$

New gauge interpolating operator (modification of LSZ factor - later)

on-shell correlations are gauge invariant

$$J_B = \bar{u}\gamma_5 b \to J'_B = \Phi_B J_B \qquad Q_{\Phi_B} + Q_B = 0$$

Some new diagrams (selection)

The main formula and procedure

*

$$\Gamma(B \to \ell \nu)_{\delta_{ex}} = \frac{1}{\langle \Phi_B | B \rangle} \times [\langle \Phi_B | B \rangle \Gamma(B \to \ell \nu)_{\delta_{ex}}]$$

where both terms are computed separately

• LSZ (dispersion) variable p_B^2 , the one between J'_B and H_W

$$LSZ(p_B^2, p_{\Phi_B}^2) \propto \lim_{p_{B,\Phi_B}^2 \to m_B^2} (p_B^2 - m_B^2) (p_{\Phi_B}^2 - m_B^2)$$

*
$$\Gamma(B \to \ell \nu)_{\delta_{ex}} = \int_{\delta_{ex}} d\phi_{\gamma} \left(\Gamma(B \to \ell \nu) \delta(\phi_{\gamma}) + \frac{d^3}{d\phi_{\gamma}} \Gamma(B \to \ell \nu \gamma) \right) \quad \text{where } m_B \, \delta_{ex} = 2\Delta E_{\gamma}$$

What about the LSZ denominator $\langle \Phi_B | B \rangle^*$?

 Diagrams (selection below) contain both real and virtual Like an inclusive quantity and thus IR finite

mostly skip

 $\wedge \wedge \wedge \wedge \wedge$

or as off-shell in $p_B^2 \Rightarrow$ **IR finite**, by **Kinoshita-Poggio-Quinn theorem**

⇒ decay rate has no memory of its interpolating operator & reproduces correct logs, collinear and $\ln \delta_{ex}$ -terms

* More precisely $\langle \Phi_B | B \rangle$ is $\langle \Phi_B | J'_B | B \rangle$ and reduces to $\propto f_B$ with no Φ_B

Conceptual remarks

- Things that were not clear at beginning Φ_B -scalar:
- 1) mass m_{Φ_B} : turns out it is m_B , which makes sense
- 2) does Φ_B -scalar make α_{QED} run? No: can understand Dirac dressing* where it clear (backup)

* can and is used for C*-boundary approach e.g Lucini, Patella, Ramos, Tantallo'15 +

(1) ΔM , an IR-safe observable

$$\Delta m_H = m_{H^+} - m_{H^0} , \qquad H = B, D, K, \pi, p ,$$

• At our level of precision (20%) the following split is good enough:

- Used QCD sum rules double dispersion relation. Why not earlier?
 - 1) intrerpolating operators not understood
 - 2) cuts are subtle (and we gained experience from leptonic case)

Cottingham Formula & QCD sum rules

$$\Delta m_B|_{\text{QED}} \equiv \delta m_{B^+}|_{\text{QED}} - \delta m_{B^0}|_{\text{QED}}$$
$$\delta m_B|_{\text{QED}} = \frac{-i\alpha}{2m_B(2\pi)^3} \int d^4q \, T^{(B)}_{\mu\nu}(q) \Delta^{\mu\nu}(q) + \mathcal{O}(\alpha^2)$$

hadronic object: Cottingham tensor needs evaluation

$$T^{(B)}_{\mu\nu}(q) = i \int d^4x e^{-iq \cdot x} \langle B|Tj_{\mu}(x)j_{\nu}(0)|B\rangle$$

Remarks:

- Cottingham's contribution, euclideanisation relating it to strcut. fcts
- Formula in doubt until '79 Collins showed how renormalisation works
- spelled in more detail deDivitiis 1303.4896 "Roman paper"
- Recently pion by Feng, Jin ,Riberdy 2108.05311 @1% level

* Q: Why not Cottingham for m_q -effects as well? A:no good for sum rule approximation

The computation

1) Cutkowsky rules cuts

2) spurious momenta to distinguish two cuts

main part

cancels

 $\mathcal{O}(m_q^2)$

suppressed

$$\delta_{qq'}m_B = rac{1}{Z_B^2} \int_{m_+^2}^{ar{\delta}^{(a)}(m_+^2)} ds \, e^{rac{(m_B^2-s)}{M^2}} \int_{m_+^2}^{ar{\delta}^{(a)}(s)} d ilde{s} \, e^{rac{(m_B^2- ilde{s})}{M^2}}
ho_{\Gamma_{qq'}}(s, ilde{s}) \, ,$$

compact expressions

$$\begin{split} \rho_{\Gamma_{bq}} &= \frac{N_c \alpha Q_q Q_b m_+^2}{32\pi^3 m_B} \cdot \frac{\sqrt{\lambda}\tilde{\lambda}}{s\tilde{s}} \left(A + \frac{B}{b} \ln\left(\frac{\mathbf{a} + \mathbf{b}}{\mathbf{a} - \mathbf{b}}\right) \right) \\ \mathbf{a} &= m_q^2 - \frac{1}{4\sqrt{s\tilde{s}}} \left(s\tilde{s} + (m_+ m_-)^2 \right) + \left\{ q \leftrightarrow b \right\}, \quad \mathbf{b} = \frac{1}{2} \sqrt{\frac{\lambda\tilde{\lambda}}{s\tilde{s}}}, \quad A = m_-^2, \\ B &= \left\{ Y\tilde{Y}s\tilde{s} + \frac{1}{2}m_q^2 \sqrt{s\tilde{s}}(Y + \tilde{Y}) - \frac{1}{4}m_-^2 \left(s + \tilde{s} + 4m_bm_q + 2m_q^2 \right) - \frac{1}{4}m_+^2 \sqrt{s\tilde{s}} \right\} + \left\{ q \leftrightarrow b \right\} \\ m_{\pm} &= m_b \pm m_q, \quad \lambda = \lambda(s, m_b^2, m_q^2), \quad Y = \frac{s - m_+ m_-}{2s} \end{split}$$

Finally .. results

- Italic ones are not ours: π use double soft-pion thm on Cottingham* π, K GMOR better than Feynman-Hellmann
- Uncertainty 20% work ok, central values accidentally good, proof of principle and of course not competitive with BMW et al uncertainty: quark mass & duality parameterisation

* Goldstones challenge quark hadron duality (also direct instantons relevant)

- Gauge invariance governs IR-logs
- Thm: no structure-dependent coll. logs unless chiral suppression as in $P \rightarrow \ell \nu$ with V-A interaction
- Presented new gauge invariant interpolating operator $J'_B = \Phi_B J_B$ which **reproduces** all **IR-sensitive terms** (in $B \rightarrow \ell \nu$ in preparation)
- ΔM is **IR-safe** and **gauge variant operator works** Results within 20%, it was fun to do!

BACKUP

The issue with charged meson & interpolating operators

• 1st step: consider $\bar{d}\gamma_5 b\bar{\nu}\nu$ - interaction

no QED effects

 $\mathscr{A} \propto f_B^{-1} \lim_{p_B^2 \to m_B^2} (p_B^2 - m_B^2) \Pi(p_B^2)$

• 2nd step: leptonic decay (charged meson)

* GI = gauge invariance, $\ln m_{\gamma}$ soft logs (known Low theorem)

Relation to Dirac-dressing

• Dirac'55 proposed to take current \mathcal{J}_{μ} satisfying $\partial \cdot \mathcal{J} = \delta^{(4)}(x)$ then

 $\Psi_{\mathcal{J}} \equiv U_{\mathcal{J}}(x)\Psi(x) , \qquad \qquad U_{\mathcal{J}}(x) = \exp[iQ_{\psi}] d^4y A(y) \cdot \mathcal{J}(x-y)]$

is gauge invariant, as $U_{\mathcal{J}}(x) \to \exp(-i\lambda(x)Q_{\Psi}) U_{\mathcal{J}}(x)$ under $A \to A + \partial \lambda$

- Specific realisations* of ${\mathscr J}$

$$\begin{aligned} \mathcal{J} &= \partial \,\varphi(\vec{x}) \,, \, \Box_4 \varphi(\vec{x}) = \delta^{(4)}(x) \,, & \vec{\mathcal{J}} = \delta(x_0) \vec{\partial} \varphi(\vec{x}) \,, \, \Box_3 \varphi(\vec{x}) = \delta^{(3)}(x) \,, \\ U_{\mathcal{J}} &= e^{-iQ_\psi \int d^4 y \, \partial \cdot A(y) \varphi(x-y)} & U_{\mathcal{J}} = e^{-iQ_\psi \int d^3 y \, \vec{\partial} \cdot \vec{A}(y) \varphi(x-y)} \\ &\to 1 \,, \, \partial A = 0 \,, \, \text{Lorenz gauge} & \to 1 \,, \, \vec{\partial} \vec{A} = 0 \,, \, \text{Coulomb gauge} \end{aligned}$$

Nice **duality** between \mathcal{J}_a and $gauge_a$ (just a trick...)

* can and is used for C*-boundary approach e.g Lucini, Patella, Ramos, Tantallo'15 +

.... summary

 May use dressed gauge invariant operator and "dual" gauge (as gauge invariant) to simplify computation.

$$J_B \to \hat{J}_B(\mathcal{J}_a) = \bar{u}_{\mathcal{J}_a} \gamma_5 b_{\mathcal{J}_a}$$

(before $J'_B = \Phi_B J_B$)

• Q1: are all $\hat{J}_B(\mathcal{J}_a)$ equally valid interpolating operators?

Seems to me the answer is no, as IR-logs have to be reproduced*

- Lorenz gauge, we do not see soft logs
- Coulomb gauge: might be there (did not look too closely ...)
- Q2: is there a relation to J'_B interpolating current with Φ_B -scalar? Yes ...

* For IR-insensitive observables such as mass shifts probably all ok

$$J'_B = \Phi_B J_B$$
 as Dirac dressing

$$(p_{\phi_B} = p, m_B = m, p^2 = m^2)$$

• The current $\mathcal{J}^{(\Phi_B)}$ realises Φ_B -field as $\varphi(x) = -i\Delta_F(x,m)$ is propagator

$$\mathcal{J}^{(\Phi_B)} = (\partial - i2p)e^{ixp}\,\varphi(x) \ , \ (\Box_4 + m^2)\varphi(x) = \delta^{(4)}(x) \ ,$$

and the $U_{\mathcal{J}}$ turns into interaction with correct scalar QED Feynman rule

$$U_{\mathcal{J}^{(\Phi_B)}}(x) = \exp(-Q_B \int d^4 y e^{i(x-y)p} (2p-i\partial) \cdot A(y) \Delta_F(x-y,m))$$

(N.B. for higher order need iterated integrals; GI works out ok)

• Q2b Is there a dual gauge that trivialises $U_{\mathcal{J}^{(\Phi_B)}} = 1$?

Yes, it is a special axial gauge

$$\Delta_{\mu\nu}\Big|_{\Phi_B-\text{gauge}} = \frac{1}{k^2} \left(-g_{\mu\nu} - n^2 \frac{k_{\mu}k_{\nu}}{(n\cdot k)^2} + \frac{k_{\{\mu}n_{\nu\}}}{n\cdot k} \right) \ , \quad n = 2p-k$$