

Overview of the Future Circular Collider

Dr Sarah Williams, on behalf of the FCC collaboration

Introduction

https://home.cern/science/accele rators/future-circular-collider

- Lots of synergies between CEPC and FCC (-ee).
- Today I'll discuss the FCC project and progress on the feasibility study, with a focus on FCC-ee.
- For more detailed overviews of the status see the slides at the <u>London FCC week</u>.

Thanks to the numerous collaborators whose slides/schematics have been used in these slides © CEPC: 100km Higgs/EW factory in China (could be followed by SppC pp collider)

~90 km Higgs/EW factory at CERN (...to be followed by FCC-hh)

 $\Sigma_{\rm F}^{\rm PF}$ Dr Sarah Williams: CEPC workshop (3-6th June 2023)

The 2020 European Strategy Update

Following ~ 2 years of concensus gathering within the community, the ESU made several key recommendations to the community:

- 1. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy
- 2. Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage

Following the 2020 ESU, the FCC feasibility study was launched in 2021, aiming to provide input by 2025 to feed into the next ESU...

FCC integrated programme

Comprehensive long-term programme maximises physics opportunities at the intensity and energy frontier:

- 1. FCC-ee (Z, W, H, $t\bar{t}$) as high-luminosity Higgs, EW + top factory.
- 2. FCC-hh (~ 100 TeV) to maximise reach at the energy frontier, with pp, AA and e-h options.

FCC-ee and -hh synergies

Integrated programme combines precision at the intensity frontier (FCC-ee) giving indirect sensitivity to a multitude of NP as well as unique direct sensitivity to lowmass and weakly interacting BSM physics, with discovery potential at the energy frontier (FCC-hh) that will extend the precision achieved at FCC-ee!

UNIVERSITY OF CAMBRIDGE Dr Sarah Williams: CEPC workshop (3-6th June 2023)

FCC-ee and -hh synergies - Higgs measurements

- FCC-ee can provide a model independent measurement of g_{HZZ} through measuring σ_{ZH} . This provide standard candle to normalize the measurement of other Higgs couplings.
- FCC-ee will measure ttZ couplings through $ee \rightarrow t\bar{t}$. This gives a second standard candle used to extract g_{ttH} and g_{HHH} at FCC-hh.
- FCC-hh will provide the statistics to access rarer Higgs decays (H → μμ, H → Zγ) and ~ 20 million HH events to give precise ultimate tests of the EWPT.

FCC-ee and -hh synergies - BSM

|c_{rr/}/f | [TeV

See slides by G. Salam at FCC

0.10

0.05

ω 0.00

Direct FCC-ee sensitivity ...plus indirect acces FUTURE CIRCULAR COLLIDER -0.05 a range of BSM **HNLs** -0.10 phenomena through ı Alps precise measurements ou **Exotic Higgs decays** CLIC, the pro SM parameters... estimate of fu ic une FCC precision gain LEP $\Upsilon \rightarrow inv. + \gamma$ $10^{3} -$ Γz $(g - 2)_{u}$ sin²0^{eff} $1/\alpha_{QED}(m_7^2)$ HB stars RZ $\alpha_s(m_Z^2)$ [from EW] σ_{had}^0 LHC SN1987a Rb FCC-ee A_{FB}^{b} , 0 10^{-3} A^{pol, τ} FB τ lifetime - U (1)_Y τ mass - SU (2) τ leptonic ($\mu v_{\mu} v_{\tau}$) B.R. cosmology mw 10^{-6} Γw $\alpha_s(m_W^2)$ [from EW] 10⁻³ 10⁻⁶ 10³ 10^{-9} N, m_a [GeV] m_{top} Γ_{top} $\lambda_{top}/\lambda_{top}^{SM}$ FCC-ee stat m_a : ALP mass, $c_{\nu\nu}$: ALP-photon coupling ttZ couplings FCC-ee stat+syst Fig. 5. Elect: 10 100 1000 raints are current uncertainty / FCC-ee uncertairDarker shades ^ممِّN Dr Sarah

measurement

FCC-ee and -hh synergies - BSM searches More details in FCC TDR and ESU submissions here

Cover full mass range for discovery of WIMP dark matter candidates

Substantial discovery reach for heavy resonances

In summary- exciting possibilities to discover/characterize NP that could be indirectly predicted through precision measurements at FCC-ee

FCC timelines

Taken from slides by F. Gianotti at FCC week.

Dr Sarah Williams: CEPC workshop (3-6th June 2023)

FCC ring placement

Taken from slides by M. Benedikt at FCC week. CIRCULAR

Major achievement: optimization of the ring placement

Layout chosen out of ~ 100 initial variants, based on geology and surface constraints (land availability, access to roads, etc.), environment (protected zones), infrastructure (water, electricity, transport), etc. "Éviter, reduire, compenser" principle of EU and French regulations

Lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold superperiodicity, possibility of 2 or 4 IPs

Whole project now adapted to this placement

For scale, a ~ 100km ring centered on Edinburgh Waverley

FCC-ee accelerators

- FCC
- Separate rings for electrons and positrons and full-energy top-up booster Arc cell length ring in same tunnel. sss@IP (PA, PD, PG, PJ) 1400 m
- Max 50MW^sSyffch/fötföfl[,]r^Padiat²60^mper collider ring^{zimuth} ^PA^{(f}ūff^{ast)}perating range. Arc length 9 616.586 m
- Asymmetrie day out limits photomson synchrotro readiation 500m upstream of IP towards detectors, and generates large 30mrad crossing angle.
- Crab waist technique to optimize luminosity.

4 possible experimental sites at PA, PD, PG and PJ with RF stations at PH, PL and injection/extraction and collimation in PB/PF straights.

FCC-ee SRF system

Schematic taken from slides by F. Zimmerman at US Snowmass townhall

\$5500

500

RF for collider and booster in separate sections (collider in PH & 800 MHz, booster in ML- 800 MHz only) with fully separated technical infrastructure (cryogenics)

UNIVERSITY OF CAMBRIDGE Dr Sarah Williams: CEPC workshop (3-6th June 2023)

FCC-ee beam optics

Two new projects backed by CHART aim to explore use of HTS to improve energy efficiency. See CERN courier article here

Maximising energy efficiency is a major factor!

arc

- Focussing and defocusing by ~3000 quadrupoles and ~ 6000 sextupoles.
- Designs being considered to reduce power consumption (single-cells vs supercells).

interaction region

Dr Sarah Williams: CEPC workshop (3-6th June 2023)

New FCC-ee injector layout

UNIVERSITY OF CAMBRIDGE

Taken from <u>slides</u> by M. Benedikt at FCC week

Dr Sarah Williams: CEPC workshop (3-6th June 2023)

Summary of FCC-ee beam parameters

Taken from <u>slides</u> by F. Gianotti at FCC week.

Parameter	Ζ	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr] 4 IPs	87	9.3	3.5	0.65
beam lifetime (rad Bhabha + BS+lattice)	8	18	6	10
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10^8 WW LEP x 10^4	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs

Currently assessing technical feasibility of changing operation sequence (e.g. starting at ZH energy)

□ x 10-50 improvements on all EW observables

up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC

Δ x10 Belle II statistics for b, c, τ

FUTURE CIRCULAR

□ indirect discovery potential up to ~ 70 TeV

UNIVERSITY OF

□ direct discovery potential for feebly-interacting particles over 5-100 GeV mass range

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output

F. Gianotti

FCC-ee physics landscape

Schematics from <u>slides</u> by M. Selvaggi at FCC week

FCC-ee Physics landscape

FCC-ee Detector requirements

Higgs factory	Flavor "boosted" B/D/ r factory:	QCD - EWK most precise SM test	BSM feebly interacting particles
track momentum resolution (low X_0)	track momentum resolution (low X_0)	acceptance/alignment knowledge to 10 µm	Large decay volume High radial segmentation
IP/vertex resolution for flavor tagging	IP/vertex resolution	luminosity	- tracker - calorimetry - muon
PID capabilities for flavor tagging	PID capabilities Photon resolution, pi0		impact parameter
jet energy/angular resolution (stochastic and noise)	reconstruction		displacement triggerless
and PF			

- Broad landscape of
 physics opportunities, from
 precise measurements of
 Higgs/Top/EW parameters
 of SM, to unique flavour
 opportunities at tera-Z run,
 and direct+indirect BSM
 sensitivity.
- Significant effort ongoing to study detector concepts across range of physics analyses (including unconventional signatures from LLPs/FIPs).

Dr Sarah Williams: CEPC workshop (3-6th June 2023)

Detector concepts for FCC-ee

IDEA ("Innovative Detector for Electron-positron Accelerator")

...Plus new proposals ...

Full silicon vertex-detector+ tracker 3D high-granularity calorimeter Solenoid outside calorimeter Silicon vertex detector Short-drift chamber tracker. Dual-readout calorimeter

New proposal using liquid LAr calorimeter!

Easy to study impact of detector design on physics sensitivity through FCC software framework...

FCC analysis software

Schematic taken from <u>slides</u> by Brieuc Francois at FCC week

Sophisticated software ecosystem in place to perform simulations and physics/detector studies...

FCC analysis software

https://key4hep.github.io/key4hep-doc/

- Integrated in the Key4Hep ecosystem which also provides a common EDM for future collider studies.
- Central MC samples produced (in EDM4HEP format) to facilitate physics/detector studies.
- FCC Analysis software developed to analyse EDM4HEP files and support sensitivity/detector development studies.

Conclusions/outlook

- Mid-term review of FCC feasibility study being completed, with key milestones including ring placement.
- Lots of progress in defining accelerator layout + optics, studying detector concepts and physics sensitivity- with significant updates coming in the coming years.

Thanks for listening- I am happy to take questions!

Backup

FCC-ee physics runs ordered by energy

Image credit: Christophe Grojean

FCC-ee updated operation schedule- 4 IPs

Updated for mid-term review 2023

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163		240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
		•			$1.4510^{6}{ m HZ}$	1.910^{6}	$t\overline{t}$
Number of events $6 10^{12} \mathrm{Z}$		$2.410^8\mathrm{WW}$		+	$+330 \mathrm{k} \mathrm{HZ}$		
					45k WW \rightarrow H	$ $ +80k WW \rightarrow H	

CEPC Operation mode		ZH	Z	W+W-	ttbar
		~ 240	~ 91.2	~ 160	~ 360
F	Run time [years]	7	2	1	-
CDR (30MW)	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
	[ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107	-
Run time [years]		10	2	1	5
Latest (50MW)	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.83
	[ab-1, 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×107	5×105

Based on upgraded operation mode with 50MW power, more comparable with FCC-ee (more details in <u>slides</u> by João Guimarães da Costa in 2022 CEPC workshop).

Further details of integrated FCC programme

Taken from <u>slides</u> by F. Gianotti at FCC week.

	√s	L /IP (cm ⁻² s ⁻¹)	ar 10.5 Ar merurana in ha man	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top		Hada Da	2-4 experiments Total ~ 15 years of operation
рр FCC-hh	100 TeV		20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	√s _{eN} = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

Higgs coupling measurements

Taken from briefing book for 2020 ESU- improvements on Higgs coupling measurements in "kappa" framework:

- Red= linear e+e- collider colliders.
- Blue= circular e+e- machines.
- Orange= integrated FCC programme.

