

1

CEPC Physics and Detector

Jianbei Liu

(On behalf of the CEPC physics and detector group)

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

The 2023 International Workshop on the Circular Electron Positron Collider University of Edinburgh July 3, 2023

CEPC physics program

Operation mode			ZH	Z	W+M-	tī
	\sqrt{s} [GeV]			91	160	360
	Rur	n time [years]	7	2	1	-
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
$\begin{array}{c} \textbf{CDR} \\ \textbf{(30 MW)} \end{array} \int L dt \text{ [all begin{subarray}{c} \\ \hline \\ $		∫ <i>L dt</i> [ab⁻¹, 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run Time [years]		10	2	1	5	
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
st)		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
ate		Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
3 (L		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
Į	50 MW	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	21.6	100	6.9	1.0
		Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

- The centerpiece: precise measurement of the Higgs boson properties (width, couplings, mass ...)
- huge measurement potential for precision tests of SM: electroweak physics, flavor physics, QCD
- Searching for exotic or rare decays of H, Z, B and τ, and new physics
- Top quark physics

An extremely versatile machine with a broad spectrum of physics opportunities

→ Far beyond a Higgs factory

Milestones and activities of CEPC physics studies

- ◆ Public documents released: CDR(2018) → Higgs white paper (2019) → Snowmass white paper (2022) → Flavor white paper to come out soon → more in preparation (EWK white paper, New physics white paper)
- **CEPC** physics and detector workshops in series: May 2019, April 2021, August 2023
- * Physics studies for the IAS-HEP program and Snowmass exercise
- ***** Communication and collaboration with international partners: ECFA studies ...

***** O(100) Journal / arXiv papers

Translated the latest accelerator performance into Higgs measurements

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	$360{ m GeV},1~{ m ab}^{-1}$		
	ZH	ZH vvH		\mathbf{vvH}	\mathbf{eeH}
inclusive	0.26%		1.40%	\	\backslash
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\boxed{\mathrm{Br}_{upper}(H \to inv.)}$	0.07%				
Γ_H	1.	65%		1.10%	

Higgs width measurement benefits enormously from 360-GeV run

Exploring the full potential of the CEPC with the latest TDR design for Higgs measurements by combining 240-GeV and 360-GeV runs.

Outperforming HL-LHC significantly

Choice of the optimal energy point

Top mass uncertainties (MeV) Optimistic Conservative Statistics 9 24 8 Theory Quick scan 2 17 17 $\alpha_{\rm S}$ Width 10 10 Experimental efficiency 5 Background 2 14 2 Beam energy 3 Luminosity spectrum Total 24 57

The top quark mass can be measured with an unprecedented precision (one order of magnitude better than hadron colliders can achieve) .

Measuring two parameters simultaneously by using two energy points

Measurement with a single energy point

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	$2.1 { m MeV} [37-41]$	$0.1 { m MeV} (0.005 { m MeV})$	${\cal Z}$ threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 { m MeV} [37-41]$	$0.025~{\rm MeV}~(0.005~{\rm MeV})$	${\cal Z}$ threshold	E_{beam}
Δm_W	$9 { m MeV} [42-46]$	$0.5 { m MeV} (0.35 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	$49 { m MeV} [46-49]$	$2.0 { m MeV} (1.8 { m MeV})$	$WW\xspace$ threshold	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \mathrm{MeV}^{a}$	tt threshold	
ΔA_e	$4.9\times 10^{-3}\ [37,5155]$	$1.5\times 10^{-5}~(1.5\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, 53]$	$3.5\times 10^{-5}~(3.0\times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
ΔA_{τ}	$4.3\times 10^{-3}\ [37,5155]$	$7.0\times 10^{-5}~(1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20\times 10^{-5}~(3\times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37, 56]	$30\times 10^{-5}~(6\times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 \ (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2\times 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2\times 10^{-4}~(3\times 10^{-6})$	Z pole	E_{beam} and t channel
δR^0_μ	0.002 [37-41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	$0.017 \ [37-41]$	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
δN_{ν}	0.0025 [37, 66]	$2\times 10^{-4}~(3\times 10^{-5}$)	ZH run $(\nu\nu\gamma)$	Calo energy scale

Precision Electroweak Measurements at the CEPC 0.100 Current accuracy CEPC: baseline 0.010 Relative Error 0.001 10 10 10 10 Mw Rh R Re R_{μ} R_t A^b_{FB} A^c_{FB} A^e_{FB} A^µ_{FB} A^t_{FB} N_v

CEPC is expected to improve the current precision by 1-2 orders of magnitude, offering a great opportunity to test the consistency of the SM.

Global fit with SMEFT: new physics constrains

CEPC has potential to reveal new physics @10 TeV by combining Higgs, EWK and top measurements \rightarrow power of precision

A State of the sta

BSM searches: exotic decays, dark matter, SUSY, LLP ...

Significantly better detection sensitivity to dark matter and exotic decays than HL-LHC

Flavor physics studies

- Measuring BR($B^0_{(s)} \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$) uncert.($B^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$) ~ 0.45% uncert.($B^0_s \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$) ~ 4.5% [Not observed]
- Measuring $BR(B^0_{(s)} \to \eta^0 \eta^0 \to 4\gamma)$ uncert. $(B^0 \to \eta^0 \eta^0 \to 4\gamma) \sim 18\%$ [Not observed] uncert. $(B^0_s \to \eta^0 \eta^0 \to 4\gamma) \sim 0.95\%$ [Not observed]
- ► Measuring BR($B^0 \rightarrow K^{*0}\tau^+\tau^-$), BR($B_s \rightarrow \phi\tau^+\tau^-$), BR($B^+ \rightarrow K\tau^+\tau$ uncert.~ $\mathcal{O}(10^{-7} - 10^{-6})$ [Not observed]
- Measuring BR($B_s \rightarrow \tau^+ \tau^-$) uncert.~ $\mathcal{O}(10^{-5})$ [Not observed]
- Measuring α_s from $\bar{B}_s(B_s) \rightarrow D_s^{\pm} K^{\mp}$ uncert. $(\alpha_s) \sim 0.4^{\circ}$
- Measuring β_s from $\bar{B}_s(B_s) \rightarrow J/\psi\phi$ uncert. $(\beta_s) \sim 0.035^{\circ}$
- Measuring γ_s from $B^{\pm} \rightarrow \bar{D^0}(D^0)K^{\pm}$ uncert. $(\gamma_s) \sim \mathcal{O}(1^\circ)$

- Measuring BR($B_s^0 \to \mu^+\mu^-$), BR($B^0 \to \mu^+\mu^-$) BR($B^0 \to \mu^+\mu^-$) affected by $B^0 \to \pi^+\pi^-$ mis-ID
- ► Measuring $B_c \rightarrow \tau \nu$ uncert.(BR) ~ $\mathcal{O}(10^{-4})$ [Not observed] uncert.($|V_{cb}|$) ~ $\mathcal{O}(1\%)$
- Measuring BR($B_s \rightarrow \phi \nu \nu$) uncert. ~ $\mathcal{O}(1\%)$
- Measuring $\alpha(\phi_2)$ from $B^0 \to \pi^0 \pi^0 \to 4\gamma$ uncert.(α) ~ 0.4°
- Measuring $\mathsf{BR}(\tau \to \ell \nu \bar{\nu})$ Improvement: $\sim \mathcal{O}(10^2)$
- Measuring \(\tau\) lifetime Improvement: \(\circ \mathcal{O}(10^3)\)
- Measuring BR($\tau \rightarrow 3\mu$) and BR($\tau \rightarrow \mu\gamma$) Improvement: $\sim O(10 - 10^2)$
- Measuring BR($Z \rightarrow \ell \ell'$) with ($\ell \neq \ell'$) Limits ~ $\mathcal{O}(10^{-8} - 10^{-10})$

White paper draft

Contents 1 Introduction 1 2 Description of CEPC facility 2.1 Key Collider Features for Flavor Physics 3 2.2 Key Detector Features for Flavor Physics 3 3 Charged Current Semileptonic and Leptonic b Decays 9 4 Rare/Penguin and Forbidden b Decays 10 4.1 Dileptonic Modes 10 4.2 Neutrino Modes 11 4.3 Radiative Modes 12 4.4 Lepton Flavor Violating (LFV), Lepton Number Violating (LNV) and Barvon Number Violating (BNV) Decays 125 Hadronic b Decays and CP Violation Measurements 13 6 Spectroscopy and Exotics 14 7 Charm Physics 14 8 τ Physics 15 9 Flavor Physics at Higher Energies 16 9.1 Flavor Physics from Z Decays 17 9.2 Flavor Physics from W Decays 17 9.3 Flavor Physics from Higgs and Top 18 10 Production of BSM States from Heavy Flavor Decays 18 11 Two Photon and ISR Physics with Heavy Flavors 18 12 Summary 19

CEPC Detector Conceptual Designs

Detector requirements and R&D status

Sub-detector	Specification	Requirement	CEPC prototype
Pixel detector	Spatial resolution	$\sim 3 \mu{ m m}$	$3 - 5 \mu m$ [14–16]
TPC/drift chamber	dE/dx (dN/dx) resolution	$\sim 2\%$	~ 4% [19–21]
Scintillator-W ECal	Energy resolution Granularity	$< 15\%/\sqrt{E({ m GeV})}$ $\sim 2 \times 2 \ { m cm}^2$	Prototype built and tested
4D crystal ECal	EM energy resolution 3D Granularity	$\sim 3\%/\sqrt{E(\text{GeV})}$ $\sim 2 \times 2 \times 2 \text{ cm}^3$	Prototyping [25] $\sim 3\%/\sqrt{E(\text{GeV})}$ $\sim 2 \times 2 \times 2 \text{ cm}^3$
Scintillator-Steel HCal	Support PFA, Single hadron σ_E^{had}	$< 60\%/\sqrt{E({ m GeV})}$	Prototype built and tested
Scintillating	Support PFA		Prototyping
glass HCal	Single hadron σ_E^{had}	$\sim 40\%/\sqrt{E({\rm GeV})}$	$\sim 40\%/\sqrt{E({\rm GeV})}$
Low-mass	Magnet field strength	$2 \mathrm{T} - 3 \mathrm{T}$	Prototyping
Solenoid magnet	Thickness	$< 150 \mathrm{~mm}$	

R&D for the baseline detector concept

- Vertex Detector
- Silicon tracker
- ***** TPC
- PFA calorimetry : ECAL and HCAL
- Muon detector

Vertex detector sensor R&D timeline

All developed with TowerJazz CIS 180 nm process

JadePix4 Design finalized, to be taped off

		S.P. resolution	Integration time	Average power	
	JadePix-4	<5 µm	~1 µs	< 100 mW/cm ²	
	JadePix-3	<3 µm	<100 µs	< 100 mW/cm ²	
an <mark>hour connor the cond</mark>	0	ptimized	for fast re	adout	
Taichupix2	Ful	I-size T	aichupi	Х	
		1	Pire	15.9 mm TCPX3	25.7 mr

Chip size: 5 mm × 5 mm Pixel size: 25 µm × 25 µm

14.8

- BA

-

1024*512 pixel array, FE-I3-like

High speed, deadtime~50ns@40MHz, time stamp precision 25/50ns

Full-size chips produced and tested

JadePix3 characterization and beam test

Tested with electrical pulse, infra-red laser beam, radioactive source: Threshold: 90 e- to 140 e-Noise hit rate < 1×10⁻¹⁰/frame/pixel Power consumption: ~90 mW/cm² Spatial resolution < 3um (laser)

Beam test @DESY

TaichuPix3 production and characterization

12 TaichuPix3 wafers produced, thinned and diced

wafers tested on a probe station for chip selection and yield evaluation

Probe card for wafer test

An example of wafer test result

TC3 at BSRF 1W2B beamline

 Average threshold ~215 e, threshold dispersion ~43 e, temporal noise ~12 e @ nominal bias setting

The chips radiation hardness proved up to 3 Mrad TID

TaichuPix3 beam test @ DESY

342 Threshold

342 367 Threshold ≿ [e]

342 367 Threshold 5 [e]

Spatial resolution ~5um, Efficiency >98%

TaichuPix3 vertex detector prototype

New pickup tools

Ladder on wire bonding machine

Dummy ladder glue automatic dispensing using gantry

Dummy Ladder on holder

TaichuPix3 vertex detector prototype beam test @ DESY

Silicon Tracker using HV-CMOS: ATLASPix → CEPCPix

- * Efforts being made to explore foundries in China for a few years
 - SMIC 55nm without HV: MPW in October 2022 to verify the DNW structure; 25*150um² for 3*2mm², a variety of passive diode arrays with simple amplifiers.
 - SMIC 55nm with HV: MPW planned for August 2023. Will be real validation of the sensor with high resistance wafer. Will explore variation of diode structure. Will add analog amplifiers and switch circuit.

Characterization of the SMIC 55nm chips

✤ 40 chips with SMIC 55nm (non-HV) received at the end of April 2023. Lab tests are underway.

TPC: going from pad to pixel

· CEPC TPC detector prototyping roadmap:

- From TPC module to TPC prototype R&D for beam test
- Low power consumption FEE ASIC R&D (reach <5mW/ch including ADC)
- Achievement by far:
- Supression ions hybrid GEM+Micromegas module
 - IBFxGain ~1 at Gain=2000 validation with GEM/MM readout
- Spatial resolution of σ_{rφ}≤100 µm by TPC prototype
- dE/dx for PID: <4% (as expected for CEPC baseline detector concept)

TPC prototype with integrated 266 nm UV laser

Current full CEPC TPC reconstruction: 6 mm pads → ~4.8% dE/dx resolution

 $6mm \rightarrow 1mm$: 15% improved resolution via the charge summation (dE/dx)

 $6mm \rightarrow 0.1mm$: 30% improved resolution via the cluster counting (dN/dx)

High readout granularity VS the primary cluster size optimization ongoing at IHEP

R&D on Macro-Pixel TPC readout for CEPC

- Macro-Pixel TPC ASIC chip was started to developed in this year and 1st prototype wafer has done in last year.
- The first version ROIC has been received and under testing. Interposer PCB
- The **TOA and TOT** can be selected as the initiation function in the ASIC chip.
 - $1 \text{mm} \times 6 \text{mm} \rightarrow 500 \mu \text{m} \times 500 \mu \text{m}$ pixel readout
 - Higher precision and higher rate (MHz/cm²)
 - Gain of the amplification: >40mV/fC
 - Channels: 128
 - Time resolution: 14bit (5ns bin)
 - Time discriminator: TOA (Time of Arrival)
 - Power consumption: <1mW/pixel (1st prototype)
 - ~400mW/cm²
 - 100mW/cm² (Goal and final design)
 - Technology: 180nm CMOS -> 60nm CMOS
 - High metal coverage: 4-side bootable

Principle of Macro-Pixel TPC readout

1st readout PCB board and the ASIC layout

High granularity Sci-W ECAL and Sci-Fe HCAL (AHCAL)

Scintillator + SiPM AHCAL Prototype

Scintillator-W ECAL Prototype

Sci-W ECAL and AHCAL technological prototypes

Sci-W ECAL

Sci-Fe HCAL

Calo	Sampling No.	Sensitive detector	Absorber	Granulari ty	Electroni cs	Absorb length	Energy Resolution	weight	Transverse size
Sci-W ECAL	32	PSD+SiPM	W-Cu	5mm×5 mm	SP-2E	22 X ₀	16%@ 1 GeV	0.3 T	23cm*23cm
AHCAL	40	PSD+SiPM	Fe	40mm×4 0mm	SP-2E	4.7 NIL	60%@ 1 GeV	5.0 T	72cm*72cm

Standalone and combined beam tests @ CERN SPS

U. Shinshu: Tohru Takeshita

U. Tokyo: Ryunosuke Masuda, Tatsuki Murata, Wataru Ootani,, Yuki Ueda Weizmann: Luca Moleri, Giannis Maniatis

- Two weeks at H8@SPS in Oct, 2022
 Two weeks at H2@SPS in April, 2023
- ♦ Two weeks at T9@PS in May, 2023
 - e^{\pm} : 0.5-250 GeV/c
 - π[±] : 1-120 GeV/c
 - High energy μ for calibration

65 million events collected in total

Test beam data analysis task force

- Taskforce on data conversion and analysis (same groups that participated the CERN beamtest)
 - Data conversion and cross checks (4): Jiaxuan Wang, Yukun Shi; Yuzhi Che; Francois Lagarde
 - Event display (5): Siyuan Song, Zhen Wang; Yuzhi Che, Baohua Qi, Hengyu Wang
 - Data analysis and software tooling (5): Hongbin Diao, Jiaxuan Wang, Yukun Shi; Yuzhi Che, Peng Hu; Francois Lagarde
 - Full simulation and validation (5): Dejing Du, Baohua Qi; Yukun Shi; Zhen Wang, Zixun Xu
 - Arbor clustering studies (3): Yuzhi Che, Hengyu Wang, Xin Xia
 - Japanese groups on ScW-ECAL performance (5): Ryunosuke Masuda, Tatsuki Murata, Wataru Ootani, Tohru Takeshita, Yuki Ueda

Deo

- Coordination: Yong Liu
- Institutions involved in the taskforce
 - China (14): IHEP, SJTU, USTC
 - Japan (5): U. Shinshu, U. Tokyo
- Weekly meetings: updates, questions and discussions
 - <u>https://indico.ihep.ac.cn/category/322/</u>
- Welcome new members to join
 - <u>A full task list (evolving)</u> prepared for data analysis

ruar	y 2023		Taskfor	ce Meeting on CERN Testbeam Data				
	Feb 23	Taskforce Meeting on CERN Testbeam Data	Thursday 16 Feb 2023, 14:00 → 15:00. Acar/Shangbai V 200M					
	Feb 20	CEPC Calorimeter Group Meeting (protected)	🛓 Yong Liu (instructe of High Energy Physics)					
	Feb 16	Taskforce Meeting on CERN Testbeam Data	Descripti	on Please be noted about the unusual starting time at 2PM GMT+8.				
8	Feb 09	Taskforce Meeting on CERN Testbeam Data		Meeting ID: 87065064970 Meeting LRL, https://us06web.zoom.uk/j/87065064970?pwd=QI80RndP2FZkcVkvR3IKVMkFSM25EUT09				
	Feb 06	CEPC Calorimeter Group Meeting (protected)		Password: 189923				
a	Feb 02	Taskforce Meeting on CERN Testbeam Data 144	o → 14:10	News Speakers: Haitan Yang (Shargha Jule Tang Drivering), Janber Lia (Drivering of Science and Technology of China), Mandi Ruan (HEP), Yong Lia (Institute of New Texns Device)	© 10m			
uary	2023							
8	Jan 23	CEPC Calorimeter Group Meeting (protected)	0 14:20	ScW-ECAL data: crosschecks and performance Speakers: Januan Wang (hiveney of Scince and Technology of Olivia), Tatsuki Murata (the University of Takye), Yuki Ueda (the University of Takye), Yuzthi Chew notes:	© 10m			
	Jan 12	Taskforce Meeting on CERN Testbeam Data		🔀 High-Low Gain Ratio				
	Jan 09	CEPC Calorimeter Group Meeting (protected)	0 . 14-20	AUCAL data: crosscharke and parformance	0.10-			
	Jan 05	Taskforce Meeting on CERN Testbeam Data	- 14.55	Speakers: Francois Lagarde (SJTU), Peng Hu (HeP), Ryunosuke Masuda (The University of Tokyo), 開始 石 (中国昭平田市大学)	Grun			
emb	er 2022			🖹 AHCAL_Total_Add.p 🖹 MPDiscriptif 🖹 MPDini.pdf 🖹 muon calibration.pdf 🔁 Update.MPJ.Unitor.				
	Dec 29	Taskforce Meeting on CERN Testbeam Data	0 → 14:40	Simulation and validation Speakers: Baohua QI (HEP), Dejing Du (HEP), Zhen Wang	© 10m			
Ē	Dec 26	CEPC Calorimeter Group Meeting (protected)		AHCAL_Data_Calbr.				
	Dec 22	Taskforce Meeting on CERN Testbeam Data	0 → 14:50	Event display, PID and clustering studies Speakers: Siguan Song (Daugwa Jaa Tang Innershi), Yuzhi Che (PIO), Zhen Wang, 恆宇 汪, 欣 夏 (周郎所)	@ 10m			
	Dec 15	Taskforce Meeting on CERN Testbeam Data		🔀 report_0216_full_co				

Preliminary Results

Display of hadronic showers : display of the imaging power

• The calorimeter system is able to contain high energy hadronic showers and record their details.

Scintillator Muon Detector R&D

The 4th Detector Concept

- Drift chamber
- *****TOF detector
- *****Crystal ECAL
- *****Glass-scintillator HCAL

Drift chamber simulation and design optimization

Optimized drift chamber design, detector R&D

Radius extension	800-1800mm
Length of outermost wires $(\cos\theta=0.82)$	5143mm
Thickness of inner CF cylinder:	200µm
Outer CF frame structure:	Equivalent CF thickness 1.63mm
Thickness of end Al plate	35mm
Cell size:	~ 18 mm × 18 mm
Number of cell	24766
Ratio of field wires to sense wires	3:1
Gas mixture	He/iC ₄ H ₁₀ =90:10

Developed High bandwidth preamplifier

Synergy with IDEA, Collaboration with INFN

Joint test beam and data analysis efforts, regular meetings

TOF detector options

MRPC

AC-LGAD

1、时间分辨: <35ps

3、TOF面积:~77m²

4、电子学道数:37632

2、PID of π/k : 2.5GeV @3 σ

5、电子学功耗:17mW/道

6、造价估算:3420万RMB (MRPC 784万元)

High granularity crystal ECAL with long bars

Crystal ECAL R&D

Light Yield vs Stochastic Term

Crystal ECAL module prototype and beam test

2*2*12cm³ crystal bars with 3*3mm² SiPMs

Module dimensions

Module assembling at CERN PS beam site

Tested with 10 GeV μ and π , and 0.5-5 GeV e

Data analysis is underway

A new AHCAL concept with glass scintillator tiles

CEPC detector: highly granular calorimeter + tracker

- Boson Mass Resolution (BMR) ~4% has been realized in baseline design
- Further performance goal: BMR 4%→3%

.

- New Option: Glass Scintillator HCAL (GS-HCAL)
 - Higher density provides higher sampling fraction
 - Doping with neutron-sensitive elements: improve hadronic response (Gd)

Key parameters	Value		Remarks	
Tile size	$\sim 30 \times 30 \text{ mm}^2$	Refere	nce CALICE-AHCAL, granularity, number of channels	
Tile thickness	~10 mm	Energ	y resolution, Uniformity and MIP response	
Density	Density 6-7 g/cm ³		ompact HCAL structure with higher density	
Intrinsic light yield 1000-2000 ph/MeV		Higher intrinsic LY can tolerate lower		
Transmittance	~75%		transmittance	
MIP light yield	MIP light yield ~150 p.e./MIP Energy threshold ~0.1 MIP		ds further optimizations: e.g. SiPM type, SiPM-glass coupling	
Energy threshold			nergy threshold ~0.1 MIP Higher light yield would help to achieve threshold	
Scintillation decay time	~100 ns	Mitigati	ion pile-up effects at CEPC Z-pole (91 GeV)	
Emission spectrum	Typically 350-600 nm	To m	atch SiPM PDE and transmittance spectra	

Design similar to baseline AHCAL

Better energy resolution than scintillator

Scintillator glass R&D

A collaboration with 11 institutes has been formed on large area glass scintillator R&D

→ scintillator glass with high density, large light yield, fast decay time and low cost.

Steady and impressive progress in meeting the targets of the R&D effort

Beam test of scintillator glass samples

Tested with 10 GeV μ @ CERN PS

Glass Scintillato # 1 Glass Scintillator # 3

Scintillator glass samples

Data analysis is ongoing

41

Light yields for MIP (10 GeV muon)

Index	Dimensions (mm)	Transmittance	Decay Time (ns)	Muon response (p.e./MIP)	Scale to 10mm thickness (p.e/MIP)
#1	33.5×27.6×5.1	69 %	300 (19%), 881	15	
#1 ESR				42	82
#2	30.2×29.5×6.6	61 %	114 (11%), 770	35	
#3	29.9×28.1×10.2	70 %	90 (6%), 754	66	65
#3 ESR				69	
#4	37.2×35.1×5.3	80 %	96 (6%), 1024	31	59
#5	40.0×35.1×4.2	78 %	335 (26%), 1068	38	
#6	30.3×29.8×9.4	55 %	134 (5%), 1132	67	71
#7	34.8×34.8×7.5	65 %	113 (27%), 394	60	
#8	27.8×25.6×5.0	81 %	136 (23%), 933	41	82
#9	34.6×34.7×7.5	49 %	141 (12%), 771	69	
#10	34.7×35.2×7.4	64 %	129 (10%), 819	74	100
#11	30.5×30.0×8.7	81 %	153 (12%), 1085	73	84

Other activities

Detector magnet R&D on both LTS (for baseline detector) and HTS (for the 4th detector) technologies

Seam background study has been closely following modifications and updates of the accelerator design including those of IR and beam pipe designs. Particle tracking, detector response simulation and other tools will continue to improve. Beam background with the updated accelerator design estimated by simple scaling indicates a significantly enhanced level of background in detectors. This would require rigorous measures for mitigation.

- CEPC physics studies constantly updated, improved and expanded to fully explore the CEPC physics potential.
- Intense R&D activities are underway on the baseline detector concept targeting key technologies of all sub detectors. Significant progress has been made and several R&D projects have reached milestones.
- The 4th detector effort has been ramping up on detailed simulation and global optimization, and even more on detector R&D.
- It is important to expand international collaboration and explore synergies with other international projects.
 - Existing collaboration: CALICE Collaboration (PFA calorimeters), LCTPC Collaboration (TPC), INFN(Drift chamber), CMOS tracker Collaboration (Silicon tracker), French and Spain institutes (CMOS pixel)