

THE UNIVERSITY

The 2023 International Workshop on the Circular Electron Positron Collider, European Edition University of Edinburgh 3–6 July 2023

CEPC Accelerator General Status Overview

Jie Gao

3-6. July. 2023, University of Edinburgh, The 2023 International Workshop on CEPC (EU Edition)

Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

CEPC Optimization Design Philosophy

Main Timeline of CEPC Accelerator Development

Pre-CDR in 2015

 CEPC CDR Vol. I, Accelerator http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf
 CEPC CDR Vol. II, Physics and Detector http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
 CEPC Accelerator white paper to Snowmass21, arXiv:2203.09451

CEPC Video (BIM design)

http://cepc.ihep.ac.cn/Qinhuang_Island.mp4
 http://cepc.ihep.ac.cn/Huzhou.mp4
 http://cepc.ihep.ac.cn/Changsha.mp4

Progress report in 2016

CEPC Accelerator IARC Meeting 2019-2022

The 2019 CEPC International Accelerator Review Committee International Accelerator Review Committee (IARC) under IAC

Review Report

December 6, 2019

The 2021	CEPC	International	Accelerator	Review
		Committe	e	

Review Report

The review meet Circular Electron Committee (IARC (MDI) sessions of

May 19, 2021

The IARC was pli TDR. The quality even if not alread luminosity perforr improving the forr 2021 Second CEPC IARC Meeting

ninosity perforr proving the forr The CEPC Inter

The IARC is plea due to the Covid would like to that IARC meeting. help and hospitali

IARC Committee October 20th, 2021

2022 First CEPC IARC Meeting

The Circular I The Circular Electron Positron Cc currently hosted Academy of S accelerator in 2 Committee (IAC Committee (IAC cadeury of sa International to advise on all n the study of the

IARC Committee June 17th, 2022

The Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report (TDR) phase for the CEPC accelerator in 2019, with a completion tar-

All IARC reports (**2019-2022**) on IAC2022 Meeting Indico: <u>https://indico.ihep.ac.cn/event/17996/page/1415-materials</u>

The Committee congratulates the CE last months and presented at this me R&D of the hardware components lool the table of parameters for the high-lu and components for all accelerator sy lider. A total of 24 talks were presented on a variety of topics. The charges to CEPC IARC for this meeting are:

- 1. For the TDR, how are the accelerator design and the technology R&D progress towards the TDR completion at the end of 2022. Are there any important missing points in the accelerator design and optimization?
- 2. based on CEPC TDR design, the CEPC dedicated key technology R&D status and the technologies accumulated from the other IHEP responsible large-scale accelerator facilities, such as HEPS, could the CEPC accelerator group start the TDR editorial process and EDR preparation?
- 3. with the new progresses between CEPC and FCCee possible synergy and the continuing collaboration with SuperKEKB, are there more suggestions on the next steps of international collaborations?

Nov. 2019: <u>https://indico.ihep.ac.cn/event/9960/</u> May, 2021: <u>https://indico.ihep.ac.cn/event/14295</u> October, 2021: <u>https://indico.ihep.ac.cn/event/15177</u>].

June, 2022: https://indico.ihep.ac.cn/event/16801/

After the completeion of CEPC CDR in Nov. 2018, since the first CEPC IARC meeting in **2019**, there has been **toally 4 IARC meetings till 2022**, with each meeting a carefully written IARC report, which are very helpful for CEPC accelerator in TDR phase and beyond.

CEPC Accelerator International TDR Review June 12-16, 2023 in HKUST-IAS, Hong Kong, China

https://indico.ihep.ac.cn/event/19262/timetable/

CEPC Accelerator International TDR Cost Review Sept. 11-15, 2023 in HKUST-IAS

The Evolution: from CDR to TDR

Main Parameters (30	MW)		CDR (2018)	TDR (2023)					
	Higgs	W	Z (3T)	Z (2T)		Higgs	W	Z(2T)	ttbar	
Number of IPs			2		Number of IPs			2		
Circumference (km)		1	00		Circumference (km)		100.0			
Bunch number	242	1524	12	.000	Bunch number	268	1297	11934	35	
β function at IP $\beta_x * / \beta_y *$ (m/mm)	0.36/1.5	0.36/1.5	0.2/1.5	0.2/1.0	β functions at IP β_x^* / β_y^*	0.3/1	0.21/1	0 13/0 9	1 04/2 7	
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	1.21/3.1	0.54/1.6	0.18/4.0	0.18/1.6	Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.21/1	0.13/0.9	1.4/4.7	
Energy acceptance (%)	1.35	0.4	0	.23	Energy acceptance (%)	1.6	1.0	1.0	2.0	
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	16	115	0.5	

Key technology R&D in TDR phase

- SRF cavities & modules (1.3G & 650MHz)
- Key components of the positron source
- High performance accelerator (S&C-band)
- > Novel magnets: Weak field dipole, dual aperture magnets
- > Injection/extraction

- Electrostatic deflector
- Vacuum chamber with NEG coating
- Instrumentation, Feedback system
- Cryogenic system
- Magnet power supply

CEPC Higgs Factory and SppC in TDR

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradale to 50MW)

CEPC TDR Parameters

	Higgs	Z	W	tī				
Number of IPs	2							
Circumference (km)		1	00.0					
SR power per beam (MW)	30							
Half crossing angle at IP (mrad)	16.5							
Bending radius (km)		1	0.7					
Energy (GeV)	120	45.5	80	180				
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1				
Damping time $\tau_x / \tau_y / \tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6				
Piwinski angle	4.88	24.23	5.98	1.23				
Bunch number	268	11934	1297	35				
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)				
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0				
Beam current (mA)	16.7	803.5	84.1	3.3				
Momentum compaction (10-5)	0.71	1.43	1.43	0.71				
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7				
Emittance $\varepsilon_{\rm x}/\varepsilon_{\rm v}$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7				
Betatron tune v_x/v_y	445/445	266/267	266/266	445/445				
Beam size at IP σ_r / σ_v (um/nm)	14/36	6/35	13/42	39/113				
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9				
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20				
Energy acceptance (DA/RF) (%)	1.6/2.2	1.3/1.7	1.2/2.5	2.0/2.6				
Beam-beam parameters ξ_x / ξ_v	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1				
RF voltage (GV)	2.2	0.12	0.7	10				
RF frequency (MHz)			650	-				
Longitudinal tune v_s	0.049	0.035	0.062	0.078				
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	80/2800	60/700	81/23				
Beam lifetime (min)	20	80	55	18				
Hourglass Factor	0.9	0.97	0.9	0.89				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5				

CEPC TDR Parameters (upgrade)

	Higgs	Z	W	tī				
Number of IPs		2						
Circumference (km)		100.0						
SR power per beam (MW)		50						
Half crossing angle at IP (mrad)		16.5						
Bending radius (km)		10.7						
Energy (GeV)	120	45.5	80	180				
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1				
Damping time $\tau_x / \tau_v / \tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6				
Piwinski angle	4.88	29.52	5.98	1.23				
Bunch number	446	13104	2162	58				
Bunch spacing (ns)	355 (53% gap)	23 (10% gap)	154	2714 (53% gap)				
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0				
Beam current (mA)	27.8	1340.9	140.2	5.5				
Momentum compaction (10-5)	0.71	1.43	1.43	0.71				
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7				
Emittance $\varepsilon_x / \varepsilon_v$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7				
Betatron tune v_x / v_y	445/445	266/267	266/266	445/445				
Beam size at IP σ_x / σ_v (um/nm)	14/36	6/35	13/42	39/113				
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9				
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20				
Energy acceptance (DA/RF) (%)	1.6/2.2	1.3/1.5	1.2/2.5	2.0/2.6				
Beam-beam parameters ξ_x / ξ_v	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1				
RF voltage (GV)	2.2	0.1	0.7	10				
RF frequency (MHz)		650						
Longitudinal tune v_s	0.049	0.032	0.062	0.078				
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	86/400	60/700	81/23				
Beam lifetime (min)	20	71	55	18				
Hourglass Factor	0.9	0.97	0.9	0.89				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8				

CEPC Power and Energy Upgrade Plan

J.Y. Zhai

		Baseline		Po	wer Upgra	de	Energy Upgrade				
	Higgs	W	Ζ	Higgs	W	Z		tť			
Collider SR power / beam [MW]		30			50		30 50			50	
Beam energy [GeV]	120	80	45.5	120	80	45.5]	180		
Luminosity / IP $[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	5	16	115	8.3	26.7	192	0.5	5		0.8	
Collider 650 MHz cavities	2-0	cell	1-cell	2-0	cell	1-cell	Add 5-cell	Existing 2-cell	Add 5-cell	Existing 2-cell	
RF voltage [GV]	2.2	0.7	0.12	2.2	0.7	0.1	10 (6.1	+ 3.9)	10 (6.	1 + 3.9)	
Beam current / ring [mA]	16.7	84	801	27.8	140	1345	3.4	1		5.6	
Cavity number	192	96×2	30×2	336	168×2	50×2	192	336	192	336	
Cryomodule number	32	32	60	56	56	100	48	56	48	56	
Klystron number	96	96	60	168	168	100	48	168	96	168	
Klystron power [kW]	800	800	1200	800	800	1200	800	800	800	800	
Collider 4.5 K equiv. heat load [kW]	44.4	28.1	15.2	41.9	20	20.1	128	.3	12	128.3	
Prostor 1.3 CHz position			0	الموال			Add	Existing	Add	Existing	
Booster 1.5 GHz cavities			9	-cen			9-cell	9-cell	9-cell	9-cell	
Extraction RF voltage [GV]	2.17	0.87	0.46	2.17	0.87	0.46	9.7 (7.53	+ 2.17)	9.7 (7.5	53 + 2.17)	
Beam current [mA]	1	3.1	16	1.4	5.3	30	0.1	2	C	.19	
Cavity number	96	96	32	96	96	32	256	96	256	96	
Cryomodule number	12	12	4	12	12	4	32	12	32	12	
SSA number	96	96	32	96	96	32	256	96	256	96	
SSA power [kW]	25	25	25	30	30	40	10	10	10	10	
Booster 4.5 K equiv. heat load [kW]	7.8	3.1	3.5	8.1	3.2	3.7	11.	4	1	1.4	
Total RF length [m]	704	704	384	1088	1088	608	236	68	2	368	
Total 4.5 K equiv. heat load [kW]	52.2	31.2	18.7	50.0	23.2	23.8	139	.7	1.	39.7	

2023-July-03 J. Gao

CEPC Operation Plan

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
Η*	240	10	50	8.3	2.2	21.6	$4.3 imes10^6$
			30	5	1.3	13	$2.6 imes10^6$
Z	01	2	50	192**	50	100	$4.1 imes 10^{12}$
	91	Z	30	115**	30	60	$2.5 imes 10^{12}$
W	160	1	50	26.7	6.9	6.9	$2.1 imes 10^8$
	100	L.	30	16	4.2	4.2	$1.3 imes10^8$
$t\overline{t}$	360	5	50	0.8	0.2	1.0	$0.6 imes 10^6$
		-	30	0.5	0.13	0.65	$0.4 imes 10^{6}$

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

2023-July Galculated using 3,600 hours per year for data collection.

The 2023 International Workshop on CEPC (EU Edition)

Collider Lattice Design for all Operational Modes (H,Z,W,ttbar)

CEPC Key Technology R&D

Represented Key Technologies for the CEPC	Specification Met	\checkmark	Accelerator	Fraction
	Prototype		🗸 Magnets	27.3%
	Manufactured		Vacuum	18.3%
			RF power source	9.1%
			Mechanics	7.6%
Booster			🗸 Magnet power supplies	7.0%
			SC RF	7.1%
Collider			Cryogenics	6.5%
Position Contraction			Linac and sources	7.6% 7.0% 7.1% 6.5% 5.5% 5.3% 2.4% 2.4%
Linac		3	Instrumentation	5.3%
	The axis injection of the second		Control	2.4%
			Survey and alignment	2.4%
			Radiation protection	1.0%
Key technology R&D spans all co	omponent lists in CEPC CDF	ζ	SC magnets	0.4%

2023-July-03 J. Gao

The 2023 International Workshop on CEPC (EU Edition)

Damping ring

14 0.2%

Key Technology Readiness

- CEPC received ~ 260 Million CNY from MOST, CAS, NSFC, etc for the key technology R&D
- Large amount of key technology validated in other project by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 30% cost of acc. components	 High efficiency klystron SRF cavities Positron source High performance accelerator 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Electrostatic deflector MDI
BEPCII / HEPS ~ 60% cost of acc. components	 > High precision magnet > Stable magnet power source > Vacuum chamber with NEG coating > Instrumentation, Feedback system 	 Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

~10% remaining (the machine integration, commissioning etc.) and is anticipated to be completed by 2026, and the international contribution/collaboration may be needed and welcome.

Experiences in e+e- Collider Operation@IHEP

- BEPCII is in stable operation, and the beam current exceeds 900mA with the peak luminosity of 1.1×10³³cm⁻²s⁻¹;
- In the last operation year, the accumulated luminosity reached as high as 8.1 fb⁻¹;
- Rich experiences in achieving high luminosity have been accumulated;

- Introduction
- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

CEPC Collider Design

Dynamic Apertures with errors

Radiation loss in all magnets

Tapering

Crab waist sextupole

Maxwellian fringes

Kinematic terms

Finite length of sextupole

Study of Beam-Beam Effects in CEPC

Yuanzhang

Parameters of CEPC Booster

D. Wang

Injection		tt	H	W	2	2
Beam energy	GeV	30				
Bunch number		35	268	1297 3978 5967		
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69
Beam current	mA	0.12	0.62	3.1	10.5	16.0
Energy spread	%			0.025		
Synchrotron radiation loss/turn	MeV			6.5		
Momentum compaction factor	10-5			1.12		
Emittance	nm			0.076		
Natural chromaticity	H/V		-(372/-269		
RF voltage	MV	761.0	346.0		300.0	
Betatron tune v_x/v_y			321	.23/117.1	8	
Longitudinal tune		0.14	0.0943	C).0879	
RF energy acceptance	%	5.7	3.8		3.6	
Damping time	S			3.1		
Bunch length of linac beam	mm	0.4				
Energy spread of linac beam	%		0.15			
Emittance of linac beam	nm			6.5		

		tt	1	I	W	Z	
Extraction		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis injection	
Beam energy	GeV	180	12	20	80	45.5	
Bunch number		35	268	261+7	1297	3978	5967
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42
Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Bunches per pulse of Linac		1		[1	2	
Time for ramping up	S	7.1	4	.3	2.4	1.	0
Injection duration for top-up (Both beams)	s	29.2	23.1	31.8	38.1	132.4	
Current decay in Collider				3%			
Energy spread	%	0.15	0.0)99	0.066	0.037	
Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.0	34
Emittance	nm	2.83	1.	26	0.56	0.1	9
Betatron tune v_x/v_y				321.27/1	17.19		
RF voltage	GV	9.7	2.	17	0.87	0.4	16
Longitudinal tune		0.14	0.0	943	(0.0879	
RF energy acceptance	%	1.78	1.59		2.6	3.	4
Damping time	ms	14.2	47.6		160.8	87	'9
Natural bunch length	mm	1.8	1.	85	1.3	0.7	75
Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

CEPC Booster Design

Ax (m)

CEPC MDI Design

Sha Bai

CEPC SRF System Design and Upgrade Plan

Collider 650MHz Parameters

20/50 MW/SP power per beam for			1		
each mode Higgs/ttbar shared cavities	ttbar 30	/50 MW	Higgs	w	z
for the two rings. W/Z separate cavities.	New	Higgs	30/50 MW	30/50 MW	30/50 MW
HL-Z cavities bypass.	cavities	cavities			
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.5	/ 0.8	5/8.3	16 / 26.7	115 / 192
RF voltage [GV]	10 (6.1	+ 3.9)	2.2	0.7	0.12/0.1
Beam current / beam [mA]	3.4	/ 5.6	16.7 / 27.8	84 / 140	801 / 1345
Bunch charge [nC]	3	2	21	21.6	22.4 / 34.2
Bunch length [mm]	2	.9	4.1	4.9	8.7 / 10.6
650 MHz cavity number	192	336	192/336	96 / 168 / ring	30 / 50 / ring
Cell number / cavity	5	2	2	2	1
Gradient [MV/m]	27.6	25.2	24.9 / 14.2	15.9 / 9.1	17.4 / 8.7
Q0 @ 2 K at operating gradient	3E10	3E10	3E10	3E10	2E10
HOM power / cavity [kW]	0.4 / 0.66	0.16 / 0.26	0.4 / 0.67	0.93 / 1.54	2.9 / 6.2
Input power / cavity [kW]	188 / 315	71 / 118	313 / 298	313 / 298	1000
Optimal Q∟	1E7 / 6E6	9E6 / 5.4E6	1.6E6 / 9.5E5	8E5 / 2.7E5	1.5E5 / 3.8E4
Optimal detuning [kHz]	0.01 / 0.02	0.02 / 0.03	0.1 / 0.2	0.7 / 2	6.7 / 21.7
Cavity number / klystron	4 / 2	2	2	2	1
Klystron power [kW]	800	800	800	800	1200
Klystron number	48 / 96	168	96 / 168	96 / 168	60 / 100
Cavity number / cryomodule	4	6	6	6	1
Cryomodule number	48	56	32 / 56	32 / 56	60 / 100
Total cavity wall loss @ 2 K [kW]	12.1	7.1	3.9 / 2.3	1.6 / 0.9	0.45 / 0.2

Booster 1.3GHz Parameters

30/50 MW Collider SR power per beam. 30 GeV injection. Higgs & ttbar half filled.	ttbar 30	/50 MW	Higgs	w	z
Higgs on-axis injection with bunch swapping. Z injection from empty ring.	New cavities	Higgs cavities	30/50 MW	30/50 MW	30/50 MW
Extraction beam energy [GeV]	18	30	120	80	45.5
Extraction average SR power [MW]	0.0	05	0.5 / 0.67	0.02 / 0.04	0.05 / 0.1
Bunch charge [nC]	1.	.1	0.78 (20.3)	0.73	0.81
Beam current [mA]	0.12/	0.19	0.63 (1) / 1 (1.4)	3.1 / 5.3	16 / 30
Injection RF voltage [GV]	0.7	'61	0.346	0.3	0.3
Extraction RF voltage [GV]	9.7 (7.53	3 + 2.17)	2.17	0.87	0.46
Extraction bunch length [mm]	1.	.8	1.86	1.3	0.75
Cavity number (1.3 GHz 9-cell)	256	96	96	96	32
Module number (8 cavities / module)	32	12	12	12	4
Extraction gradient [MV/m]	28.3	21.8	21.8	8.7	13.8
Q ₀ @ 2 K at operating gradient	2E10	3E10	3E10	3E10	3E10
QL	4E7	4E7	1.2E7	7.3E6 / 4.4E6	1.2E7 / 6.3E6
Cavity bandwidth [Hz]	33	33	110	178/296	111 / 208
Peak HOM power per cavity [W]	0.5 /	/ 0.8	~ 75 / ~ 100	11.8 / 19.6	146 / 272
Average HOM power per cavity [W]	0.2 /	0.32	~ 10 / ~ 15	3.8 / 6.3	80 / 150
Input peak power per cavity [kW]	8.3 / 9.2	5.1 / 5.9	22 / 32	10.9 / 18.1	17 / 32
Input average power per cavity [kW]	0.3	0.2	6.5 / 9.2	0.3 / 0.5	2.5 / 4.5
SSA power [kW] (1 carily) SSA)	1-030L G	ao 10	25 / 30	25 / 30	25 / 40
Total cavity wall loss @ 2 K [kW]	0.36	0.05	0.5	0.02	0.08

- CEPC TDR SRF layout and parameters are designed to meet physics requirements;
- RF system design optimized for Higgs 30/50 MW. Power and energy upgrade by adding cavities, RF power sources and cryogenic plants and other systems are compatible;
- Use dedicated high current 1-cell cavity for 10-50 MW Z. Solve the FM & HOM CBI problems nternational Workshop on CEPC (EU Edition) 23

CEPC Collective Instabilities

Impedance	budget	nm			
Components	oonents Number Z ₁₁ /n, mΩ L, nH		<i>L</i> , nH	k _{loss} , V/pC	k _y , kV/pC/m
Resistive wall	-	6.2	329.2	363.7	11.3
RF cavities	60	0.5	24.8	101.2	0.5
Flanges	37714	5.2	276.1	37.3	5.2
BPMs	1808	0.04	2.0	9.5	0.2
Bellows	15949	2.9	154.6	87.4	3.9
Gate Valves	500	0.2	11.4	14.5	0.4
Pumping ports	5316	0.3	18.4	2.3	0.2
Collimators	16	0.04	1.7	23.4	0.6
IP chambers	2	0.004	0.2	0.3	0.05
Electro-separators	20	-0.1	-5.4	34.5	0.1
Taper transitions	48	0.04	2.3	2.5	0.09
Total		15.3	815.3	676.6	22.5

- No show stoppers exist for Higgs, W and ttbar;
- Main constraints from the beam collective effects are at the Z;
- The Booster show no constraints from single bunch and CSR effect, however, bunch-by-bunch feedback is required to damp the TRWI;
- No constraints observed from the Damping ring, and the impedance will lengthen the bunch by ~2%, which still meet the requirement from injections

CEPC Electron and Positron Injection Linac Designs

- Linac energy increases to 30 GeV, with S+C band Accelerator;
- Start-to-end simulations were conducted for both electron/positron beams, with quality satisfying requirements.

CEPC Damping Ring Parameters

D. Wang

	DR V3.0
Energy (Gev)	1.1
Circumference (m)	147
Number of trains	2 (4)
Number of bunches/trian	2
Total current (mA)	12.4 (24.8)
Bending radius (m)	2.87
Dipole strength $B_0(T)$	1.28
U ₀ (kev/turn)	94.6
Damping time x/y/z (ms)	11.4/11.4/5.7
Phase/cell (degree)	60/60
Momentum compaction	0.013
Storage time (ms)	20 (40)
δ ₀ (%)	0.056
$\varepsilon_0 \text{ (mm.mrad)}$	94.4
injection σ_z (mm)	4.4
Extract σ_z (mm)	4.4
ε_{inj} (mm.mrad)	2500
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)	166(97)/75(3)
$\delta_{inj}/\delta_{ext}$ (%)	0.18 /0.056
Energy acceptance by RF(%)	1.8
f _{RF} (MHz)	650
V _{RF} (MV)	2.5
Longitudinal tune	0.0387

CEPC Transport Lines and Timing

CEPC Machine Protection, Beam Abort and Dump System

- A set of kicker magnets has been used to dilute the beam horizontally and vertically;
- The area of bunch distribution in front of dump is assumed to be 6cm x 6cm; These dimensions haven' been optimized yet.
- The length of transfer tunnel is about 100m; the diameter is about 2m, considering the vacuum equipment, pipe installation.

¢			Extraction kicker	Septum	Dilution kickers
	Length ((m)	2	20	10
		Z	281		
,	Magnetic flux	WW	494		40
	(Gauss)	Higgs	741	7000	40
	ttbar	1110			

Beam dump graphite core (example) temperature rise

	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	182.5
Ne/bunch/10 ¹⁰	14	13.5	14	20
Bunch number (50MW)	415	2162	19918	58
Max. temperature rise	510 ± 15°C	1020 ± 30°C	2620 ± 15°C	
Maximum temperature rise by one bunch	7.31 ± 0.03°C	5.38 ± 0.03°C	3.76 ± 0.02°C	10.08 ± 0.04°C

Radiation and Environment Studies

Radiation in the rock around the tunnel							
				Case 1			
		Half-life	Specific activity/GB1 8871	Activity/ GB1887 1	Stat. error (%)		
	Ar37	35d	4.45E-08	8.52E+01	0.697		
	C136	3e5a	1.45E-11	2.77E-02	0.563		
	S35	87d	9.35E-09	1.79E+00	6.826		
	P33	25d	5.57E-09	1.07E+00	8.923		
	P32	14d	1.44E-06	2.76E+03	5.557		
Beam	Si31	2.6h	6.82E-04	1.31E+05	0.123		
losses	Na24	15h	3.26E-01	6.24E+06	0.113		
@Z-pole	Na22	2.6y	7.20E-04	1.38E+03	1.322		
	F18	1.8h	7.62E-04	1.46E+03	2.468		
	O15	122 s	1.34E-03	2.58E+01	0.694		
	C14	5700y	3.47E-10	6.65E-02	1.337		
	Be7	53d	2.09E-05	4.00E+02	1.632		
	H3	12a	5.90E-09	1.13E+00	0.884		
		17.22	Case 1				
		Half-life	Specific activity/GB1 8871	Activity/ GB1887 1	Stat. error (%)		
SR @ttbar	C14	5700a	1.5e-12	2.9e-4	99		
	H3	12a	9.5e-11	1.8e-2	71		

	Radiation in the air of the tunnel							G.Y.	Tang
				Case 1			Case 2		
		Half -life	Specific activity/GB 18871	Activity /GB188 71	Stat. error (%)	Specific activity/ GB18871	Activit y/GB1 8871	Stat. error (%)	
	015	122s	2.7e-4	0.13	52	3.2e-4	0.15	17	
	C14	5700 a	7.7e-7	3.6	1	3.2e-7	1.5	0.5	
	Be7	53d	1.1e-5	5.4	57	1.0e-5	4.8	27	
Beam	H3	12a	3.5e-9	1.7e-2	32	3.9e-9	1.8e-2	10	
losses	P32	14d				1.9e-7	9.0	100	
pole	P33	25d	1.9e-8	9.0e-2	100	3.8 0 -9	1.8e-2	100	
•	C 136	3e5a			<u></u>	1.6e-14	7.7e-7	100	
	C138	37m				7.e-5	3.6	61	
	Ar37	35d	6.1e-9	0.29	59	1.4e-9	6.5e-2	38	
	Ar41	2h	1.4e-3	0.65	12	5.4e-4	0.26	6	
SR @ttba	C14	5700 a	6.5e-6	31	2	2.5e-6	11.7	3	
r	Ar41	2h	1.5e-2	7.2	20	3.3e-3	1.6	29	

Radiation in the cooling water

				Case 1			Case 2	
		Half -life	Specific activity/GB 18871	Activity /GB188 71	Stat. error (%)	Specific activity/ GB18871	Activit y/GB1 8871	Stat. error (%)
Beam losses @Z- pole	015	122s	2.44	2.76	10	2.37	2.67	3
	C14	5700 a	3.5e-7	3.9e-3	23	3.4e-7	3.9e-3	9
	Be7	53d	1.3e-2	15.2	34	1.3e-2	14 .4	12
	H3	12a	2.3e-6	2.6e-2	22	2.8e-6	3.2e-2	7
SR Øttbar				N	one			

O

Preliminary Studies on CEPC Ground Motion

Y.W. Wang, C. Meng

Ground motion will increase cause beam orbit variation and also beam emittance

Amplitudes of ground motion (<100Hz) 4nm, 10nm, correspond to 1% or 6% Luminosity reduction

Ground vibration transmission to colliding beams

Z (m)

CEPC beam orbit variation in linac due to ground motion With ground motion amplitude of 100nm, linac effective emittance increse 20%

Ground vibration in different sites, LHC site is a good reference~3nm

2023-July-03 J. Gao

CEPC Polarized Beam Studies

Key issues of study:

- Energy calibration in collider ring with transverse polarization (self polarization & inj. polarization)
- Longitudinal polarization for collision
- Polarization beam injection, positron polarization and ramping in booster 2023-July-03 J. Gao The 2023 International Workshop on CEPC (EU Edition)

CEPC Plasma Injector (alternative option) and TF Plan

Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

CEPC TDR R&D Status of Key Technologies

CEPC SRF Facilities and Components

J.Y.Zhai, Peng Sha

Mid-T (medium temperature furnace baked) cavities have higher gradient and **Q** than Nitrogen doped cavities with less EP process (1 vs 3)

IHEP PAPS is in full operation since 2021 CEPC 650 MHz 2-cell Cavity CEPC 650 MHz 1-cell Cavity

3E10@20MV/m.

Mid-T 1.3 GHz 9-cell vertical test avg.4.3E10@ 31 MV/m

Mid-T 1.3 GHz 9-cell horizontal test (SEL) 3.1E10@21 MV/m, avg. 24.6 MV/m 35

20233430,0302.3GaGao

The 2023 Internation Worksheeting CEPC (EU Edition)

The New SRF facility at IHEP

J.Y. Zhai, P. Sha

Vacuum furnace: Nitrogen doping, annealing, baking

Pre-tuning of 1.3 GHz 9-cell cavity

Optical inspection

Vertical test Dewar

Electro-polishing 2023-July-03 J. Gao

Pure water system Furnace for Nb3Sn coating The 2023 International Workshop on CEPC (EU Edition)

Vertical test of SRF cavities
CEPC Collider 650 MHz 2 x 2-cell Test Cryomodule

J.Y. Zhai, P. Sha

- DC photo-cathode gun voltage conditioned up to 400 kV
- Cavity frequency, HOM coupler double notch filter, tuner, vacuum, cryogenics perform well
- Cavity magnetic field at 2 K < 2 mG (large beam pipe North to South)
- LLRF system commissioning and high power test ongoing
 - Optimizing the outer conductor helium gas cooling of the input coupler. Cavity early quench if with poor coupler cooling.

Module automatic cool-down experiment

- 1. 300 to 150 K: < 10 K/hr. Cavity top and bottom ΔT < 20 K
- 2. 150 to 4.5 K: Cavity surface > 1 K/min
- 3. 4.5 to 2 K

CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

J.Y. Zhai, P. Sha

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.								
Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spec	LCLS-II-HE Spec				
Average usable CW E _{acc} (MV/m)	23.1	3.0×10^{10} @	2.7×10 ¹⁰ @	2.7×10 ¹⁰ @				
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m				

The 2023 International Workshop on CEPC (EU Edition)

CEPC High Efficiency High Power Klystron Development and RF Power Distribution

CEPC Collider Ring Full-scale Dual-aperture Magnets

CEPC Full-scale Weak Field Dipole for Booster

Wen Kang

Magnet name	BST-63B- Arc	BST-63B- Arc-SF	BST-63B- Arc-SD	BST-63B-IR	
Quantity	10192	2017	2017	640	
Aperture [mm]	63	63	63	63] "
Dipole Field [Gs] @180 GeV	564	564	564	549] 4
Dipole Field [Gs] @120 GeV	376	376	376	366	
Dipole Field [Gs] @30 GeV	95	95	95	93	B× o
Sextupole Field [T/m ²] @180 GeV	0	16.0388	19.1423	0	By -2
Sextupole Field [T/m ²] @120 GeV	0	10.6925	12.7615	0	-4
Sextupole Field [T/m ²] @30 GeV	0	2.67315	3.19035	0	-8
Magnetic length [mm]	4700	4700	4700	2350] -:
GFR [mm]	± 22.5	±22.5	± 22.5	±22.5	
Field errors	$\pm 1 \times 10^{-3}$				

- Booster requires ~19k pieces of magnets (68km);
- Booster dipoles are required to work at the low field of 95 Gs (30GeV) with an error smaller than 1×10⁻³;
- Full length (4.7m) dipole was developed, and it meets the field specification;

CEPC Full-scale Booster Magnets (quadrupole,

sextupole, corrector in synergy with HEPS) W. Kang

Booster dipole

Quadrupole

The integral field uniformity at all field levels of full size booster dipole is better than $\pm 1 \times 10^{-3}$, and meet the specification

The field reproducibility of four excited cycles is better than $\pm 2.5 \times 10^{-4}$

Sextupole

CEPC Final Focus Superconducting Quadrupoles

- CCT and Cos2θ type SCQs were modeled, and their fields were calculated; the CEPC specifications have been met;
- A 0.5-m single aperture SCQ using Cos2θ technology has been developed. The electro-magnet excitation test showed the highest current reached 2500A (176 T/m), which exceeds the CEPC requirement (142T/m)

CEPC Electrostatic-Magnetic Deflector

Bin Chen

- The Electrostatic-Magnetic Deflector is a device consisting of perpendicular electric and magnetic fields.
- One set of Electrostatic-Magnetic Deflectors including 8 units, total 32 units will be need for CEPC.

	Filed	Effective Length	Good field region	Stability
Electrostatic separator	2.0MV/m	4m	46mm x11mm	5x10-4
Dipole	66.7Gauss	4m	46mm x11mm	5x10-4

Prototype of electrostatic magnetic separator

- Test result
 - ✓ Electric field uniformity (0.5‰) 46×30 mm² (simulation result);
 - ✓ Vacuum degree \leq 2.6×10⁻⁸Pa ;
 - ✓ Electric field intensity 3.15MV/m@±118 kV. Meet the specification 45

The 2023 International Workshop on CEPC (EU Edition)

CEPC Magnet Power Supply System

Bin Chen

Counting the power supplies for the collider, booster, linac, DR, Transport line, the total magnet quantity : 38435

Collider	Dipole		Quadrupole		Sextupole	Corrector	Magnet quantity
	D-aperture	S-aperture	D-aperture	S-aperture			
	3008	162	3016	1116	3144	7088	17534
Booster	Dipole		Quadrupole		Sextupole	Corrector	
	14866		3458		100	1200	19624
Linac	Dipole		Quadrupole		Solenoids	Corrector	
	15		364		37	275	691
Damping Ring	Dipole		Quadrupole		Sextupole	Corrector	
	86		130		72	60	348
Transport Line	Dipole		Quadrupole		Sextupole	Corrector	
	64		120		0	54	238
Total				38435			

Digital Power Supply Control Module (DPSCM)

Current Transducer

Both high and low voltage power suppliers for different magnets were designed, with satisfactory stability

Key components, such as the DPSCM and Current Transducer were developed, which are applied at HEPS

CEPC Injection & Extraction System

Jinhui Chen

Various kickers and septums are required

	Sub-system	Kicker Type	Kicker waveform	Septa Type	Thickness of septum
1	Damping ring inj./ext.	Slotted-pipe kicker	Half-sine/250ns	Horizontal LMS	φ22/3.5mm
2	Booster LE inj.	Strip-line kicker	Half-sine/50ns	Horizontal LMS	φ55/5.5mm
3	Booster ext. for CR off-axis inj.	Delay-line dipole kicker	Trapezoid /440- 2420ns	Vertical LMS	Ф55/6mm
4	Collider off- axis inj.	Delay-line NLK kicker	Trapezoid /440- 2420ns	Vertical LMS	Φ 75x56 /2mm
5	Booster ext. for CR on-axis inj.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Φ55/6mm
6	Booster HE inj.	NLK or Pulsed sextupole	Half- sine/0.333ms	Vertical LMS	Φ55/6mm
7	Collider swap out inj.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Ф 75 х 56/ 6mm
8	Collider swap out ext.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Ф 75 х 56/ 6mm
9	Collider beam dump	Delay-line dipole kicker	Trapezoid /440- 2420ns	Vertical LMS	Φ 75 x 56/ 6mm

- Experience gained in HEPS applies for CEPC
- HEPS has developed various types of devices including Septum, Fast Kick, and Pulse Generator, which are compatible with the CEPC.

CEPC Vacuum System

New round pipe of Copper (3mm) with NEG coating (200nm) for collider ring in TDR SEY<1.2

✓ 180°C/24h activation 4.5×10^{-10} Torr ✓ 200°C/24h activation 2.5×10^{-10} Torr

Vacuum pipes and RF shielding bellows

Facility of pumping speed test have been finished in Dongguan

Vacuum chamber prototypes, copper & aluminum, with different shape/length were fabricated;

Yongsheng Ma

- NEG coating technology were developed;
- RF shielding bellow manufactured
- Vacuum technology applied and was tested at HEPS 48

CEPC Beam instrumentation

R&D Work supported by System Feedthrough **BEPCII HEPS/HEPS TF** CEPC R&D Funding $\sqrt{}$ $\sqrt{}$ **BPM** electronics V Beam position monitor V \checkmark fabrication Dimitry @Blue Double FB @Red Raw @Green V V Longitudinal feedback FB system system \checkmark $\sqrt{}$ Transverse feedback system Bl at the interaction point $\sqrt{}$ Bunch current monitor V $\sqrt{}$ Beam loss monitor

- Various types of beam instrumentation were developed with funding from HEPS, BEPCII and CEPC
- The <u>CEPC</u> requirements are met

Yanfeng Sui

CPEC Linac Injector Key Technology R&D

Jingru Zhang

Successful Linac Key Technologies for HEPS (S-band)

- The HEPS linac is a 500MeV S-band normal conducting RF system
- It has been successfully operated recently in 2023

HEPS linac tunnel

Electron gun

SHBs

S-band accelerating structure

J.YR. Zhang

C-band Linac in Operation at SINAP

- C-band RF accelerating structure and compressor at SARI (SXFEL) Shanghai
- One 50MW klystron to two accelerating structures with pulse compressor
- Average gradient more than 37.1 MV/m. and maximum gradient 41.7 MV/m
- It has long time stable operation now

CEPC Damping Ring RF Cavity

P. Zhang

5 cell normal conducting cavity installed at HEPS booster (similar to CEPC damping ring RF cavity)

CEPC Technology Demonstration in Synergy with Other Projects

China company made 850kW@4K cryogenic plant installed in IHEP South Ligh Source test facility in **Dongguan** (May, 2022) (Next step is 10~18kw@4K)

HEPS booster magnet unit (Jan. 2022)

HEPS S-band Linac in operation (March, 2023)

HEPS power source for magnets (June 2022)

50MW 50Hz C-band klystron by Institute AIR of CAS for Shanghai Soft XFEL (Nov. 2021)

HEPS storage ring sextupole magnets (Dec. 2021)

CEPC Mechanical Supports and Installation Tools

- The magnet supports in Collider, Booster, Linac and Damping Ring have been designed and analyzed.
- Transportation in the tunnel was considered.

2023-July-03 J. Gao

CEPC Installation and Alignment Technologies

Xiaolong Wang

Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

Power consumption of CEPC - Higgs

Jinshu Huang

-			Higgs 30MW						Higgs 50MW						
SN	System	Collider	Booster	Linac	BTL	IR	Surface building	Total	Collider	Booster	Linac	BTL	IR	Surface building	Total
1	RF Power Source	96.90	1.40	11.10				109.40	161.60	1.73	14.10				177.40
2	Crygenic system	9.72	1.71			0.14		11.57	9.17	1.77			0.14		11.08
3	Vacuum System	5.40	4.20	0.60				10.20	5.40	4.20	0.60				10.20
4	Magnet Power Supplies	44.50	9.80	2.50	1.10	0.30		58.20	44.50	9.80	2.50	1.10	0.30		58.20
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.30		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.80	1.00	0.60	0.20				1.00
8	Experimental devices					4.00		4.00					4.00		4.00
9	Utilities	37.80	3.20	1.80	0.60	1.20		44.60	46.40	3.80	2.50	0.60	1.20		54.50
10	General services	7.20		0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	204.12	21.61	<mark>16.8</mark> 0	1.90	5.84	12.00	262.27	276.87	22.60	20.50	1.90	5.84	12.00	339.71

Power consumption of CEPC – W & Z

Jinshu Huang

			W 50MW						Z 50MW						
SN	System	Collider	Booster	Linac	BTL	IR	Surface building	Total	Ring	Booster	Linac	BTL	IR	Surface building	Total
1	RF Power Source	1 <mark>61</mark> .60	0.10	14.10			0.000	175.80	169.30	0.34	14.10				183.74
2	Crygenic system	3.04	0.54			0.14		3.72	4.40	0.80			0.14		5.34
3	Vacuum System	9.90	4.20	0.60			8	14.70	9.90	4.20	0.60	97	5.X	0	14.70
4	Magnet Power Supplies	19.78	2.02	2.51	1.10	0.12		25.53	6.40	1.39	2.51	1.10	0.05		11.45
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.30		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.80	1.00	0.60	0.20	-			1.80
8	Experimental devices					4.00		4.00			5		4.00		4.00
9	Utilities	37.60	<mark>2.8</mark> 7	2.50	0.60	1.20		44.77	<u>32.64</u>	2.43	<mark>2.5</mark> 0	0.60	1.20		39.37
10	General services	7.20	8 8	0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	241.72	11.03	20.51	1.90	5.66	12.00	292.82	232.44	10.46	20.51	1.90	5.59	12.00	282.90

Power Consumption of CEPC - ttbar

Jinshu Huang

		ttbar 50MW								
SN	System	Collider	Booster	Linac	BTL	IR	Surface building	Total		
1	RF Power Source	161.60	0.24	14.10				175.94		
2	Crygenic system	27.53	2.32			0.14		29.99		
3	Vacuum System	9.90	4.20	0.60				14.70		
4	Magnet Power Supplies	100.10	13.00	2.50	1.10	0.30		117.00		
5	Instrumentation	1.30	0.70	0.20				2.20		
6	Radiation Protection	0.30		0.10				0.40		
7	Control System	1.00	0.60	0.20				1.80		
8	Experimental devices					4.00		4.00		
9	Utilities	55.00	4.80	2.50	0.60	1.20		64.10		
10	General services	7.20		0.30	0.20	0.20	12.00	19.90		
	Total	363.93	25.86	20.50	1.90	5.84	12.00	430.03		

Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

SppC Collider Parameters in TDR

-Parameter list (updated Feb. 2022)

Main parameters			Normalized rms transverse emittance	12	1177
Circumference	100	km	Deem life time due to hum off	1.4	μ
Beam energy	62.5	TeV	Beam me time due to burn-om	8.1	nour
Lorentz gamma	66631		Turnaround time	2.3	hour
Dipole field	20.00	Т	Total cycle time	10.4	hour
Dipole curvature radius	10415.4	m	Total / inelastic cross section	161	mbarn
Arc filling factor	0.780		Reduction factor in luminosity	0.81	
Total dipole magnet length	65442.0	m	Full crossing angle	73	urad
Arc length	83900	m	rms bunch length	60	mm
Total straight section length	16100	m	rms IP spot size	3.0	um
Energy gain factor in collider rings	19.53		Beta at the 1st parasitic encounter	28 625	m
Injection energy	3.20	TeV	rms spot size at the 1st parasitic encoun	20.025	111
Number of IPs	2		Stand anonety new hores	4.0	μii
Revolution frequency	3.00	kHz	Stored energy per beam	4.0	GJ
Revolution period	333.3	μs	SR power per ring	2.2	MW
Physics performance and beam param	eters	15	SR heat load at arc per aperture	26.3	W/m
Initial luminosity per IP	4.3E+34	$cm^{-2}s^{-1}$	Critical photon energy	8.4	keV
Beta function at initial collision	0.5	m	Energy loss per turn	11.40	MeV
Circulating beam current	0.19	A	Damping partition number	1	
Nominal beam-beam tune shift limit per	0.015		Damping partition number	1	
Bunch separation	25	ns	Damping partition number	2	
Bunch filling factor	0.756		Transverse emittenes demning time	0.51	hour
Number of bunches	10080			0.51	nou
Bunch population	4.0E+10		Longitudinal emittance damping time	0.25	hour
Accumulated particles per beam	4.0E+14				

Jingyu Tang Haocheng Xu Y.W. Wang

> Ecm=125TeV with dipole field of 20T

SppC Lattice Design@125TeV (20T) in TDR Haocheng Xu

Latest Performance of LPF1-U (SppC)

eld (T) 13 ~90% SSL 12.47 T @ 6865 A 12 Tesla Nb₃Sn+HTS 12 20 2*¢30 aperture 15T @ 4.2K NbTi+Nb₃Sn 2* \$\phi10 aperture 10T @ 4.2K Field (T) Nb₃Sn+HTS or HTS LPF1-U test after 2nd thermal cycle: 6865 A & 12.47 T @ 4.2 k 2* \$45 aperture 20T@4.2K LPF1-U first test result: 6664 A & 12.15 T @ 4.2 k- 2*Ø 14 mm With 10⁻⁴ field quality LPF1-S test result: 5507 A & 10.71 T @ 4.2 k- 2*0 12 mm LPF1 test result: 5122 A & 10.23 T @ 4.2 k- 2*Ø 10 mm 10 Test result of LPF1-S First test of LPF1-U 6 - LPF1-U test after 2nd thermal cycle 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 2018 2028 0 Training history

Picture of LPF1-U

Dual aperture superconducting dipole achieves 12.47 T at 4.2 K Entirely fabricated in China. The next step is reaching 16-20T vear

Qingjin Xu

Development of CCT dipole magnets for HL-LHC by IHEP

IHEP provides 13 units CCT twin-aperture dipole magnets for HL-LHC

Training History of the HL-LHC CCT Coils

Qingjin Xu

- AP1(CB12, 25 quenches 526A) reached ±422A after 11 quenches.
- AP2(CB09, 33 quenches 530A; after thermal cycle >500A) reached ±422A without any quenches.

Introduction

- CEPC Accelerator System Design and Optimizations in TDR
- CEPC Accelerator Key Hardware R&D Progresses in TDR
- CEPC power consumption
- SppC compatibility with CEPC
- CEPC siting, civil engineering, and installation
- Summary

CEPC Siting and Civil Engineering

CEPC Siting, Civil Engineering (Changsha site as an example)

CEPC Sites Engineering Geologies in TDR

CEPC Conventional Facility and Civil Engineering

Cables installed!

Electrical Equipment General Layout in Auxiliary

2023-July-03 J. Gao

CEPC IR Region

Name	L×w×h	Numb.
Experimental hall	50×30×30	×2
Axiliary hall	101.4×20× 26.2	×2
Booster tunnel	1679×3.5× 3.5	×4
Collider tunnel	1659.3x(6~ 11.4)x5	×4
Travel shaft	1200x7.5x7. 5	×2
Connection, electric cable and ventilation shaft	70x10x10	×2

CEPC Installation Strategy

X.L. Wang

- Installation and alignment scheme
- -Ring installation: phase I, phase II, each phase: half a ring

Participating and Potential Collaborating Companies in China (CIPC) and Worldwide

CEPC Accelerator International TDR Review June 12-16, 2023 in HKUST-IAS, Hong Kong, China

https://indico.ihep.ac.cn/event/19262/timetable/

CEPC Accelerator International TDR Cost Review Sept. 11-15, 2023 in HKUST-IAS
Summary

- The CEPC parameter and design optimizations with high luminosity (30MW and 50MW) operations, for all four energies are studied. The results demonstrate that the physics design satisfies the scientific goals.
- A comprehensive key technology R&D program has been carried out in TDR with CEPC key technologies in hands ready for industrialization preparation.
- The TDR design of the CEPC is compatible with future SppC.
- CEPC accelerator TDR international review meeting was held from June 12-16, 2023.
- Detailed preparation of CEPC accelerator EDR phase before construction working plan and beyond are underway, with the aim of starting the construction in "15th five-yearplan" (2026-2030).
- International collaboration and participation are warmly welcome.

Acknowledgements

- Thanks go to CEPC-SppC accelerator team's hard works, international and CIPC collaborations.
- Special thanks to CEPC IB, SC, IAC, IARC and TDR review committee's critical comments, suggestions and encouragement.