Direct BSM searches at FCC An overview

G.Polesello INFN Sezione di Pavia

BSM potential of FCC

Approaches:

- Direct detection of signals for new particles
- Precision measurements: deviations from SM expectation

Machines:

- FCC-ee: precision machine: clean environment, limited CMS range, very high statistics
- Fcc-hh: discovery machine: explore new energy regime

Main experimental thrust of PED BSM group:

- Define promising scenarios for direct BSM search at FCC-ee
- Requirements on detector design on the basis of detailed physics studies: recent work focused towards midterm report

Topic brilliantly reviewed at last FCC week by S. Williams and N. Valle. I'll heavily rely on these two talks

FCC-ee: physics vs detector requirements

FCC-ee Physics landscape

BSM QCD - EWK Higgs Flavor feebly interacting particles most precise SM test "boosted" B/D/r factory: factory Heavy Neutral Leptons $m_{H}^{}, \sigma, \Gamma_{H}^{}$ self-coupling CKM matrix (HNL) $\mathbf{m}_{\mathbf{7}}, \mathbf{\Gamma}_{\mathbf{7}}, \mathbf{\Gamma}_{\mathbf{inv}}$ **CPV** measurements $H \rightarrow bb, cc, ss, gg$ Charged LFV $\sin^2\theta_w$, R^Z , R_b , R_c Lepton Universality H→inv Dark Photons Z_p ee→H τ properties (lifetime, BRs..) H→bs, .. A_{EB}^{b,c}, **r** pol. $B_c \rightarrow \tau v$ Axion Like Particles (ALPs) $B_e \rightarrow D_e K/\pi$ α_s, Top $B_s \rightarrow K^* \tau \tau$ Exotic Higgs decays $\vec{B} \rightarrow K^* \vee V$ m_w, Г_w mtop, Ttop, ttZ, FCNCs $B_{c} \rightarrow \phi v v \dots$ FCC-ee Detector requirements BSM QCD - EWK Higgs Flavor feebly interacting particles most precise SM test "boosted" B/D/r factory: factory Large decay volume track momentum track momentum acceptance/alignment resolution (low X_o) resolution (low X_o) knowledge to 10 µm High radial segmentation - tracker IP/vertex resolution for IP/vertex resolution luminosity calorimetry flavor tagging - muon **PID** capabilities PID capabilities for flavor impact parameter tagging Photon resolution, pi0 resolution for large reconstruction displacement jet energy/angular resolution trigaerless (stochastic and noise) + timing and PF

FCC has very large menu of physics topics

Each of these poses a specific experimental challenge and pushes detector optimisation

Unique challenges from BSM: long-lived particles

Detector concepts at FCC-ee

CLD ("CLIC-like Detector")

IDEA ("Innovative Detector for Electron-positron Accelerator")

...**Plus new** proposals ... (easy to test in FCCSW setup)

Full silicon vertex-detector+ tracker 3D high-granularity calorimeter Solenoid outside calorimeter Silicon vertex detector Short-drift chamber tracker. Dual-readout calorimeter (solenoid inside) Note: all studies in this talk use the IDEA detector card in Delphes

Luminosity scenario

Lowest-risk baseline: 90.7 km ring, 8 surface points, 4-fold superperiodicity, possibility of 2 or 4 IPs

Whole project now adapted to this placement

4 Interaction points (IP): For Z pole run assume an Integrated luminosity of 240 ab-¹, corresponding to 8 10¹² Z

Most studies still based on old benchmark: 2 IP, 150 ab⁻¹

BSM: The broader research goal

At the end of the HL-LHC, if no BSM found: Top -down approach (theo): Develop solutions to big issues: naturalness, etc. compatible with LHC data

Bottom-up approach (exp):

Among well-motivated models: FCC-ee signatures to which LHC not sensitive

- Low mass: obligated, but also opportunity, LHC typically reduced sensitivity at low masses
- Low couplings: profit from TeraZ statistics, and better analysis efficiency because of cleaner environment

 \rightarrow Long lived particles

List of topics

Cross-check the list of ECFA-WRG1-SRCH (Rebeca Gonzalez-Suarez is convener both for us and for that group)

- Heavy Neutral Leptons *
- Exotic Higgs boson decays *
- Light SUSY scenarios and scenarios with light scalars
- Axion-like particles (ALP) *
- Z', dark photons and other light mediator scenarios

For items with * organised activity in our community, which I will review in this talk

Group organisation

BSM physics

Exp Conveners:

- Rebeca Gonzalez-Suarez, GP
- MC contact: Sarah Williams
- Indico category:
- https://indico.cern.ch/category/5664/
- Very active LLP group chaired by Juliette Alimena (~10-15 people) with bi-weekly working meetings
- Approaching critical mass for prompt signatures

January 2023 Jan 19 Searches for Long-Lived particles - planning 🖲 December 2022 Dec 15 Searches for Long-Lived particles - planning (*) Searches for Long-Lived particles - planning (*) Dec 08 Dec 01 Searches for Long-Lived particles - planning 🖲 November 2022 Nov 17 Searches for Long-Lived particles - planning (*) Nov 10 Searches for Long-Lived particles - planning (*) October 2022 Oct 27 Searches for Long-Lived particles - planning () Oct 13 Searches for Long-Lived particles September 2022 Sep 29 Searches for Long-Lived particles Sep 19 Searches for Long-Lived particles - planning 🖲 Sep 15 - Sep 16 FCC BSM Physics Programme Workshop

Workflow

- •Background files produced centrally based on FCC software.
- •Signal files produced either centrally or by analysis group.
- •DELPHES output stored in EDM4HEP format
- •Use FCCsoftware to produce ntuples for analysis based on FCCanalysis package
- •Two large production campaigns, spring2021 and winter2023
 - •Main limitation: statistics at peak

Prompt vs LLP

Generically reach is defined in m(new physics)-coupling plane True e.g for ALP, HNL

Complementary reach of three different signatures:

- Prompt
- Decay in inner detector

Decay in calo/muon detector
 Study of coverage for a given
 model should address all three
 signatures.
 Very different experimental
 requirements

At present only first two exploited

HNL potential

Production of HNL in Z decay through mixing with light neutrinos

If only 1 HNL flavour assumed, model defined in terms of two parameters: m_{N} and U, mixing parameter

Production BR: BR
$$(Z \to \nu N) = \frac{2}{3} |U_N|^2$$
 BR $(Z \to \text{invisible}) \left(1 + \frac{m_N^2}{2m_Z^2}\right) \left(1 - \frac{m_N^2}{m_Z^2}\right)$
$$|U_N|^2 \equiv \sum_{\ell=e,\mu,\tau} |U_{\ell N}|^2$$

Decay width: (m_{HN}<80 GeV) 05/07/23

$$\Gamma_N \simeq c_{\rm dec} \frac{a}{96\pi^3} U^2 M^5 G_F^2 \quad {\rm aa}$$

Giacomo Polesello – CEPC-EU workshop

a~12 M.Drewes arXiv:2210.17110

Expectations

ArXiv:2203.05502

Assume for FCC-ee 5×10^{12} Z produced (to update) Thick green line: approximate CEPC reach

05/07/23

Giacomo Polesello - CEPC-EU workshop

Decay signatures

Analysis matrix: for HNL

- •Decay final state (l=e,µ):
 - j j l ~50% *
 - j j' nu ~20%
 - I I nu ~5% *
 - •11' nu ~9%
 - •lτnu ~9%

(BRs for m_{HN}<80 GeV)

- •Decay lengths
 - Prompt
 - LL decay In ID
 - LL decay in Calo

Signatures with * studied in group

HNL $\rightarrow \mu j j$ (prompt+LL) GP, Nicolò Valle

- •Most favourable decay: 50% cross-section
- •Full reconstruction of HNL possible.
- •Momentum of neutrino recoiling against HNL fixed by recoil formula:

$$p_{\nu}(M_{N_1}) = \frac{M_Z^2 - M_{N_1}^2}{2M_Z}$$

Strong kinematic constraints allow background suppression

Prompt analysis at Z peak:Reducible backgrounds:Z decays, dominated by ZbbIrreducible background:4-body μ ν qq

05/07/23

Giacomo Polesello – CEPC-EU workshop

GP, Nicolò Valle

HNL→ µjj (prompt+LL)

Finally, require muon from HNL to come from interaction point:

 $D_{0,\mu} < 8 \sigma$ With $D_{_{0\mu}}$ impact parameter of muon wrt center of detector in Plane transverse to the beam

More details on selection in the talk by N. Valle referred in first slide

Giacomo Polesello – CEPC-EU workshop

Prompt results

• Baseline: Integrated Lumi = $240 \text{ ab}^{-1} \leftrightarrow 8 \times 10^{12}$ Z boson events

• Looking for U^2 producing 95% CL excess of events

For each HNL mass *M*: $P[n < b | HNL(M, U^2)] = 1 - CL$

b =#background events

GP, Nicolò Valle

LL results

Low mass (\leq 40 GeV/c 2) HNL long-lived for couplings of interest, loss of efficency when requiring muon prompt

Background highly suppressed

Use detailed parameterization of IDEA tracking performance in DELPHES-FCC Kinematic selection not modified, prompt background suppressed by $D_{\mu} > 1 \text{ mm}$

Signal efficiency kept > 50% at low mass and weak coupling

Work in progress on approach exploiting detailed HNL vertex reconstruction

A. Sfyrla, D. Moulin, P. Kontaxakis HNL→ ejj prompt

Selection: Require 2 jets and an electron

- E_{miss} > 12 GeV, accounts for neutrino fixed energy in 3-body decay
- Leading electron energy > 35 GeV, to remove most of the electron from jets
- $\theta(j_1 j_2) < 2.4 \text{ rad}$, distance electron dijet $\Delta R(e,jj) < 3$
- Official Winter2023 FCCee samples + samples generated with official data cards
- Jets built at the analysis level with the Durham algorithm in #jet = 2 mode

$$Z = \sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2]}\right)} = 2$$

With 10% syst. uncertainty

A. Sfyrla, D. Moulin, P. Kontaxakis HNL→ ejj: Dirac vs. Majorana

Define final state variables for which difference Dirac-Majorana can be observed [1]
Ex: Electron energy, HNL (dijet) energy, Electron-HNL angle:
Studied both at the generation → MG5 and reconstruction level → DELPHES
Good discrimination coming from electron/positron distributions separately

$HNL \rightarrow \mu\mu\nu LL$

Lorenzo Bellagamba

05/07/23

Giacomo Polesello - CEPC-EU workshop

Published in Front. Phys. 10:967881 (2022)

HNL→ eev LL

Initial study developed a selection to reduce backgrounds

- 2 electrons with a veto on additional photons, jets, muons.
- p^{Miss} > 10 GeV to reduce the Z \rightarrow ee background with instrumental missing momentum.
- Electron $|d_0| > 0.5 \text{ mm}$

Also studied variables Sensitive to Dirac/Majorana

nature of HNLs

Being reevaluated on the basis of winter2023 production (S. Williams) 05/07/23

ALP

Simplified model with many possible signatures, e.g.

- γa, a→γγ
- γa, a→ II
- ha, h→bb, a→ γγ

Different decays of a, depending which couplings non-zero

Both long-lived and prompt signatures, would be useful to define benchmarks beyond 3γ

arXiv:2203.05502

ALP: 3γ final state

1///_a [TeV⁻¹

3 photon state considered in preliminary detailed studies,

- Prompt
- Long-lived

Experimental implications:

- Mass reconstruction for very collimated photons
- Timing of photons for LLP

Key role of preshower?

Giacomo Polesello - CEPC-EU worksh

ALP Prompt analysis

Thesis L. Pezzotti

Further suppress background with angular selection on two photons form ALP decay 05/07/23 Giacomo Polesello – CE

Pole/threshold	E_{CM} (GeV)	Integrated luminosity (ab^{-1})
Z	91.6	150
W	160	10
Н	240	5.0
t	365	1.5

Magdalena Vande Voorde, Giulia Ripellino Exotic Higgs decays

•Extend SM with additional scalar. •Probe $h \rightarrow ss \rightarrow bbbb$ in events with 2 displaced vertices, tagged by Z

 $e^+e^- \rightarrow Z \rightarrow Zh, Z \rightarrow l^+l^-, h \rightarrow ss, s \rightarrow b^+b^-$

Look at events with at least one scalar within acceptance region 4 mm < r< 2000mm
Aim to develop event selection and perform early sensitivity study.

FCCAnalyses: FCC-ee Simulation (Delphes)

05/07/23

Magdalena Vande Voorde, Giulia Ripellino Vertexing

Studied two options of DV reconstruction implemented in FCCAnalysis framework with additional constraints inspired by ATLAS DV analysis

 SV finder of LCFI+ algorithm (https://arxiv.org/abs/1506.08371)
 Add vertex merging to recover some DVs from scalars, work in progress to understand goodness-of-fit results

Magdalena Vande Voorde, Giulia Ripellino

Results

$m_s, \sin \theta$	Before selection	Pre-selection	$70 < m_{ll} < 110~{ m GeV}$	$n_DVs \geq 2$
20 GeV, 1e-5	44.3 ± 0.0295	29.8 ± 0.363	28.9 ± 0.358	3.55 ± 0.125
20 GeV, 1e-6	44.3 ± 0.0295	30.4 ± 0.367	29.7 ± 0.363	22.4 ± 0.315
20 GeV, 1e-7	44.3 ± 0.0295	36.3 ± 0.401	35.6 ± 0.397	0.531 ± 0.0485
60 GeV, 1e-5	13.1 ± 0.00474	8.38 ± 0.105	8.12 ± 0.103	$0 \ (\leq 0.103)$
60 GeV, 1e-6	13.1 ± 0.00474	8.34 ± 0.104	8.09 ± 0.103	6.43 ± 0.0917
60 GeV, 1e-7	13.1 ± 0.00474	9.69 ± 0.113	9.45 ± 0.111	4.10 ± 0.0732

All but 2 considered signals could be excluded at 95% CL in background-free search

05/07/23

Conclusions

Rich menu of BSM final states available for discovery at FCC-ee

Focus on models involving low-mass particles with feeble couplings to SM

Benchmark in these models are being identified

Present work mostly focused on detailed analyses of reach for long lived exotic particles

 \rightarrow important detector challenges to exploit the signatures

Previous LL publication

Searches for long-lived particles at the future FCC-ee

C. B. Verhaaren¹, J. Alimena^{2*}, M. Bauer³, P. Azzi⁴, R. Ruiz⁵, M. Neubert^{6,7}, O. Mikulenko⁸, M. Ovchynnikov⁸, M. Drewes⁹, J. Klaric⁹, A. Blondel¹⁰, C. Rizzi¹⁰, A. Sfyrla¹⁰, T. Sharma¹⁰, S. Kulkarni¹¹, A. Thamm¹², A. Blondel¹³, R. Gonzalez Suarez¹⁴ and L. Rygaard¹⁴

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States, ²Experimental Physics Department, CERN, Geneva, Switzerland, ³Department of Physics, Durham University, Durham, United Kingdom, ⁴INFN, Section of Padova, Padova, Italy, ⁵Institute of Nuclear Physics, Polish Academy of Sciences, Kracow, Poland, ⁶Johannes Gutenberg University, Mainz, Germany, ⁷Cornell University, Ithaca, NY, United States, ⁸Leiden University, Leiden, Netherlands, ⁹Université Catholique de Louvain, Louvain-la-Neuve, Belgium, ¹⁰University of Geneva, Geneva, Switzerland, ¹¹University of Graz, Graz, Austria, ¹²The University of Melbourne, Parkville, VIC, Australia, ¹³LPNHE, Université Paris-Sorbonne, Paris, France, ¹⁴Uppsala University, Uppsala, Sweden

Published in Front. Phys. 10:967881 (2022)

Long Lived searches

$HNL \rightarrow eev$

Lifetime and reconstructed length

ALP: the model

$$\mathcal{L}_{\text{eff}} \ni e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \,.$$

We are interested in the associate production of a and $\boldsymbol{\gamma}$

•Assume a only couples to hypercharge and not to SU2 •Assume BR($a \rightarrow \gamma \gamma$)=100%

Experimental reach can be represented in 2-d $M_a-C_{\gamma\gamma}$ plane Implemented in two UFOs: Brivio et al.:arXiv: 1701.05379

Bauer et al:arXv:1808.10323

 $C_{\gamma Z} = -s_w^2 C_{\gamma \gamma}$

Checked that the two UFOs give the same results, use Bauer et al. for generation Giacomo Polesello – CEPC-EU workshop 33

Existing limits

Existing constraints from JHEP 12 (2017) 044

Comparison with existing limits and projected reach

Giacomo Polesello - CEPC-EU workshop

Example: exploiting the full granularity of IDEA DR Calo

With Silicon PMs it is possible to read one by one all of the fibers in the calorimeter \rightarrow possibility to separate very close photons and to precisely measure invariant mass

Ideal field of application for ML image recognition, work ongoing in Pavia (master thesis A. Villa)

Giacomo Polesello – CEPC-EU workshop

Not very popular anymore, but holes in LHC offer opportunity for FCC-ee.

Two obvious examples:

- Compressed slepton
- Higgsino ゝ

Need to verify what kind of challenges for detector design these signatures provide. pMSSM scans can show uncovered points in gaugino parameter space Need explicit benchmarks.

- Input from ATLAS/CMS pMSSM studies
- Input from theory, see e.g. the paper from one of our theory conveners:

https://arxiv.org/abs/2207.05103

SUSY

SUSY: g-2

From a talk by R.Barbieri

g-2 discrepancy can be explained with light sleptons FCC should be able to cover uncovered area relevant for this explanation

Possible benchmark: Simplified model: direct slepton production with m(slep)=150 GeV m(chi01)=100-140 GeV

HNL signatures

Rich set of final states and signatures, work in the group performed for both prompt and LLP signatures, in particular

- eenu: LLP in ID

μμν: LLP in ID

- ejj and µjj prompt (LL in ID)
- Dirac vs. Majorana

Analysis matrixDecay final state:

- j j l
- j j nu
- | | nu
- j nu nu

Decay length

- Prompt
- LL decay In ID

05/07/23 • LL decay in Calo

Linear scale

Prompt decays dominate for m_{HNL} >70 GeV

Decay signatures

Analysis matrix: for HNL

- •Decay final state (l=e,µ):
 - •jjl ~50%
 - •jjnu ~20%
 - •llnu ~5%
 - I l' nu ~9%
 - •lτnu ~9%

(BRs for m_{HN}<80 GeV)

- Decay lengths
 - Prompt
 - LL decay In ID
 - LL decay in Calo

Previous experimatal FCC/CEPC studies

FCC: Master thesis by Sissel Bay Nielsen(Copenhagen 2017)

- Two CEPC papers
 - arXiv:1903.02570:2jet+lep

 $m_{_{HNL}}$:10-90 GeV

arXiv:2201.05831 Monojet+lep

^{05/07/23} m_{HNL}: 3-15 GeV

Giacomo Polesello – CEPC-EU workshop

Results (FCC)

Sissel Bay Nielsen's Master thesis

DELPHES for CLIC detector, $\mu j j$ channel Study performed for 3.3 fb⁻¹ (10⁸Z) Difficult to extrapolate to 5x10¹² Z because of MC statistics

Results (CEPC)

Results both for ejj and μ jj final state. All Z decays and 4-fermion backgrounds considered Main background for monojet analysis $Z \rightarrow \tau \tau$ Coverage extended down to 3 GeV

IDEA concept

- Muon chambers
 - µRwell in the return yoke
- Dual-readout calorimetry 2 m / 7 λ_{int}
 - Preshower µRwell
- Thin superconducting solenoid
 - 2 T, 30 cm, ~ 0.7 X₀ , 0.16 λ_{int} @ 90°
- Transparency for tracking
 - Si pixel vertex detector
 - Drift Chamber
 - Si wrappers (strips)
- ✤ Beam Pipe: R ~ 1.5 cm

Slide by R.Ferrari

+		(1/	'р _т)
---	--	-----	-------------------

- high precision measurement at the end of tracker
- $\sigma_{r\Phi}$
 - finely segmented vertex detector
- Challenging requirements for detector materials

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H ightarrow b ar{b}/c ar{c}/gg$	$BR(H \to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$\begin{array}{c} BR(H \to q\bar{q}, \\ WW^*, ZZ^*) \end{array}$	ECAL HCAL	$\sigma_E^{\rm jet}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	$\mathrm{BR}(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$

Slide by R.Ferrari

DELPHES setup for Spring 2021:

•Detailed parametrisation of IDEA tracker, including covariance matrices

- •Calo resolution: EM 11%/sqrt(E), HAD: 30%/sqrt(E), 1% constant term
- •Particle flow approach to jet reconstruction

05/07/23

Dirac versus Majorana

Blondel et al arXiv:2105.06576

No same-sign lepton signature as for $W \rightarrow I HNL$, rely on final state kinematics

• Dirac neutrinos $(e^+e^- \rightarrow Z \rightarrow \nu \bar{N}; e^+e^- \rightarrow Z \rightarrow \bar{\nu}N)$

$$\frac{1}{\sigma_{N,\bar{N}}} \frac{d\sigma_{N,\bar{N}}}{d\cos\theta} \propto \left(g_R^2 (1 \mp \cos\theta)^2 + g_L^2 (1 \pm \cos\theta)^2 + \frac{M_N^2}{m_Z^2} (g_L^2 + g_R^2) \sin^2\theta \right)$$

• Majorana neutrinos ($e^+e^- \rightarrow Z \rightarrow \nu N$)

$$\frac{1}{\sigma_N} \frac{d\sigma_N}{d\cos\theta} \propto \left(1 + \cos^2\theta + \frac{M_N^2}{m_Z^2}\sin^2\theta\right)$$

Relevant both for prompt and LLP, LLP has additional handle in lifetime

05/07/23

Giacomo Polesello – CEPC-EU workshop

