Global Fits at CEPC

Jiayin Gu (顾嘉荫)

Fudan University

The 2023 International Workshop on Circular Electron Positron Collider (European Edition) University of Edinburgh, July 4, 2023

Jiayin Gu (顾嘉荫)

Global Fits at CEPC

 \blacktriangleright Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

- What's next?
 - Build an even larger collider ($\sim 100 \,\text{TeV}$)?
 - No guaranteed discovery!

▶ Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

do precision measurements ightarrow discover new physics indirectly!

Higgs and nothing else?

LHC will definitely find new physics!

- What's next?
 - ▶ Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!
 - Higgs factory! (A lepton collider at $\sqrt{s} \sim 240-250 \text{ GeV}$ or above.)
 - More than just a Higgs factory! (Z, W, top, ...)
 - Standard Model Effective Field Theory (model independent approach)
 - Specific models (SUSY, 2HDM ...)

Precision is the key!

"Our future discoveries must be looked for in the sixth place of decimals."

- Albert A. Michelson

The Standard Model Effective Field Theory

- $[\mathcal{L}_{sm}] \leq 4$. Why?
 - Bad things happen when we have non-renormalizable operators!
 - Everything is fine as long as we are happy with finite precision in perturbative calculation.
- ► **d=5:** $\frac{c}{\Lambda}LLHH \sim \frac{cv^2}{\Lambda}\nu\nu$, Majorana neutrino mass.
- Assuming Baryon and Lepton numbers are conserved,

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\boldsymbol{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{\boldsymbol{c}_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

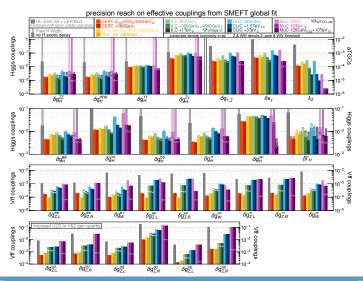
If Λ ≫ ν, E, then SM + dimension-6 operators are sufficient to parameterize the physics around the electroweak scale.

X^{1}		φ^4 and $\varphi^4 D^2$		$\psi^{2}\varphi^{3}$		(LL)(LL)		$(\bar{R}R)(\bar{R}R)$		(LL)(RR)	
Q_G $Q_{\tilde{G}}$ Q_W Q_{W} Q_{W}	$\begin{array}{l} f^{ABC}G^{Ab}_{\mu}G^{Bb}_{\nu}G^{Ca}_{\nu}\\ f^{ABC}\widetilde{G}^{Ab}_{\mu}G^{Bb}_{\nu}G^{Ca}_{\nu}\\ s^{IJK}W^{Ja}_{\mu}W^{Ja}_{\nu}W^{Ja}_{\mu}W^{Ka}_{\mu}\\ s^{IJK}\widetilde{W}^{Ja}_{\mu}W^{Ja}_{\nu}W^{Ka}_{\mu} \end{array}$	$\begin{array}{c} Q_{\mu} \\ Q_{\mu D} \\ Q_{\mu D} \end{array}$	$(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{s}\varphi)^{*}(\varphi^{\dagger}D_{p}\varphi)$	Q _{rr} Q _{uu} Q _{sb}	$(\varphi^{\dagger}\varphi)(\bar{l}_{\rho}e_{\nu}\varphi)$ $(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}d_{\nu}\bar{\varphi})$ $(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}d_{\nu}\varphi)$	$\begin{array}{c} Q_{2} & 0 \\ Q_{2}^{(1)} & 0 \\ Q_{2}^{(2)} & 0 \\ Q_{2}^{(2)} & 0 \\ Q_{2}^{(1)} & 0 \\ Q_{2}^{(1)} & 0 \end{array}$	$ \begin{array}{c} (\bar{l}_{\ell}\gamma_{0}l_{\tau})(\bar{l}_{\ell}\gamma^{\mu}l_{\ell}) \\ (\bar{q}_{\ell}\gamma_{0}q_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \\ (\bar{q}_{\ell}\gamma_{0}\tau^{\mu}q_{\tau})(\bar{q}_{\ell}\gamma^{\mu}\tau^{\mu}q_{\ell}) \\ (\bar{d}_{\ell}\gamma_{0}l_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \\ (\bar{l}_{\ell}\gamma_{0}l_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \end{array} $	Q_{cc} Q_{ca} Q_{ca} Q_{ca}	$(\hat{e}_p \gamma_p e_r)(\hat{e}_s \gamma^a e_t)$ $(\hat{e}_p \gamma_s v_r)(\hat{e}_s \gamma^a v_t)$ $(\hat{d}_p \gamma_p d_r)(\hat{d}_s \gamma^a d_t)$ $(\hat{e}_p \gamma_p e_r)(\hat{d}_s \gamma^a v_t)$		$\begin{array}{c} (\tilde{l}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}e_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}a_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}a_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}e_{t}) \end{array}$
$Q_{\mu\sigma}$ $Q_{\mu\bar{\sigma}}$	$X^2 \varphi^2$ $\varphi^2 \varphi G^{h}_{\mu\nu} G^{h\mu\nu}$ $\varphi^2 \varphi \widetilde{G}^{h}_{\mu\nu} G^{h\mu\nu}$	Q _{el} w Q _{ell}	$\psi^2 X \varphi$ $(\bar{l}_p \sigma^{au} e_r) \tau^I \varphi W^I_{\mu\nu}$ $(\bar{l}_p \sigma^{au} e_r) \varphi B_{\mu\nu}$	$\begin{array}{c} Q^{(1)}_{arphi} \\ Q^{(2)}_{arphi} \end{array}$	$\psi^2 \varphi^2 D$ $\langle \varphi^{i i} \vec{D}_{\mu} \varphi \rangle (\vec{l}_{\mu} \gamma^{\mu} l_{\tau})$ $\langle \varphi^{i i} \vec{D}_{\mu} g \rangle (\vec{l}_{\mu} \tau^{\tau} \gamma^{\mu} l_{\tau})$ \rightarrow	$Q_{iq}^{(0)}$	$(\bar{l}_p \gamma_p \tau^I l_r)(\bar{q}_t \gamma^\mu \tau^I q_t)$	$\begin{array}{c} Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \end{array}$	$\begin{array}{c} (\bar{e}_{y}\gamma_{y}e_{r})(\bar{d}_{t}\gamma^{s}d_{t}) \\ (\bar{e}_{y}\gamma_{y}u_{r})(\bar{d}_{t}\gamma^{s}d_{t}) \\ (\bar{a}_{y}\gamma_{s}T^{t}u_{r})(\bar{d}_{t}\gamma^{s}T^{t}d_{t}) \end{array}$	$ \begin{smallmatrix} 0 \\ Q \\$	$\begin{array}{c} (\bar{q}_i \gamma_1 q_r) (\bar{u}_i \gamma^\mu u_i) \\ (\bar{q}_i \gamma_5 T^A q_r) (\bar{u}_i \gamma^\mu T^A u_i) \\ (\bar{q}_i \gamma_5 q_r) (\bar{d}_i \gamma^\mu d_i) \\ (\bar{q}_i \gamma_5 T^A q_r) (\bar{d}_i \gamma^\mu T^A d_i) \end{array}$
$\begin{array}{c} Q_{qW} \\ Q_{qW} \\ Q_{qW} \\ Q_{pS} \end{array}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\omega$ $\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}\omega$ $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uG} Q_{uW} Q_{uS}	$\begin{array}{l} (\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}u_{\nu})\bar{\varphi}G^{A}_{\mu\nu}\\ (\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\tau^{I}\bar{\varphi}W^{I}_{\mu\nu}\\ (\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\bar{\varphi}B_{\mu\nu} \end{array}$	$\begin{array}{c} Q_{ee} \\ Q_{ee}^{(1)} \\ Q_{ee}^{(2)} \\ Q_{ee}^{(3)} \end{array}$	$(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\bar{e}_{\mu} \gamma^{\mu} e_{\nu})$ $(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\bar{q}_{\nu} \gamma^{\mu} q_{\nu})$ $(\varphi^{\dagger}i \vec{D}_{\mu}^{I} \varphi)(\bar{q}_{\nu} \tau^{I} \gamma^{\mu} q_{\nu})$	Q_{tedq} $Q_{queq}^{(1)}$	(RL) and $(LR)(LR)(\tilde{l}_{p}^{i}c_{r})(\tilde{d}_{r}g_{1}^{i})(g_{1}^{i}u_{r})e_{ju}(g_{1}^{i}d_{l})$	Qere Qere	B-violating $e^{-i\delta\gamma} e_{jk} [(d_k^{\alpha})^T C u_j^k] [(d_k^{\alpha})^T C l_j^k]$ $e^{i\delta\gamma} e_{jk} [(d_k^{\alpha})^T C q_k^{\alpha}] [(u_k^{\alpha})^T C v_j]$		
$\begin{array}{c} Q_{\mu\bar{k}} \\ Q_{\mu\bar{k}0} \\ Q_{\mu\bar{k}0} \end{array}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu}B^{\mu\nu}$ $\varphi^{\dagger}\tau^{J}\varphi W^{J}_{\mu\nu}B^{\mu\nu}$ $\varphi^{\dagger}\tau^{J}\varphi \widetilde{W}^{J}_{\mu\nu}B^{\mu\nu}$	Qaa Qaw Qaw	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}d_{\nu})\varphi G^{A}_{\mu\nu}$ $(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\nu})\tau^{I}\varphi W^{I}_{\mu\nu}$ $(\bar{q}_{\nu}\sigma^{\mu\nu}d_{\nu})\varphi B_{\mu\nu}$	Q_{ga} Q_{gd} Q_{gad}	$(\varphi^{\dagger} i \vec{D}_{\mu} \varphi) (\bar{u}_{\rho} \gamma^{\mu} u_{r})$ $(\varphi^{\dagger} i \vec{D}_{\mu} \varphi) (\bar{d}_{\rho} \gamma^{\mu} d_{r})$ $i (\hat{\varphi}^{\dagger} D_{\mu} \varphi) (\bar{u}_{\rho} \gamma^{\mu} d_{r})$	$Q_{gapl}^{(0)}$ $Q_{logs}^{(0)}$ $Q_{logs}^{(2)}$	$\begin{array}{l} \langle q_{\beta}^{i}T^{i\dagger}u_{r}\rangle e_{ji}(q_{s}^{i}T^{i\dagger}d_{t})\\ (l_{j}^{i}c_{r})\varepsilon_{ji}(\dot{q}_{s}^{i}u_{t})\\ (\dot{l}_{j}^{i}\sigma_{\mu}c_{r})\varepsilon_{ji}(\dot{q}_{s}^{i}u_{t})\end{array}$	$Q_{em}^{(1)}$ $Q_{em}^{(2)}$ Q_{em}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{\beta\beta}\varepsilon_{\alpha\alpha}[(q_{2}^{\alpha})^{T}Cq_{1}^{\beta\beta}][(q_{2}^{\gamma\alpha})^{T}Cl_{1}^{\gamma}]$ $\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{\beta\beta}(\tau^{I}\varepsilon)_{\alpha\alpha}[(q_{2}^{\alpha})^{T}Cq_{1}^{\beta\beta}][(q_{2}^{\gamma\alpha})^{T}Cl_{1}^{\gamma}]$ $\varepsilon^{\alpha\beta\gamma}[(d_{2}^{\alpha})^{T}Cu_{1}^{\beta}][(u_{1}^{\gamma})^{T}Cr_{1}]$		

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- A full global fit with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, *e.g.* ~ 20-30 parameters for **Higgs and electroweak** measurements.
- Do a global fit and present the results with some fancy bar plots!

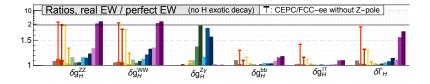
Higgs + EW, Results from the Snowmass 2021 (2022) study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

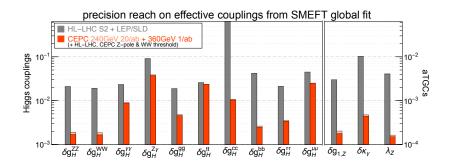


Jiayin Gu (顾嘉荫) Global Fits at CEPC Fudan University

6

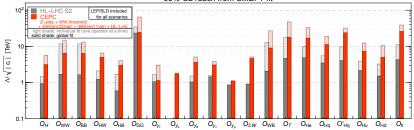


- Without good Z-pole measurements, the *eeZh* contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC/FCC-ee Higgs measurements!
 - A future Z-pole run is important!
- Linear colliders suffer less from the lack of a Z-pole run. (Win Win!)



- 28-parameter fit projected on Higgs couplings and anomalous triple gauge couplings.
- ► $\delta g_H^{ZZ} \approx \delta g_H^{WW}$ from theoretical constraints (gauge invariance & custodial symmetry) and EW measurements.
- Non-negligible improvement from the 360 GeV run.

SMEFT global fit (reach on new physics scale)

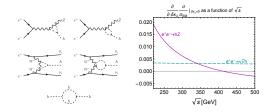


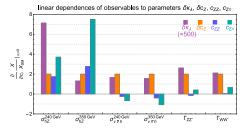
95% CL reach from SMEFT fit

 20-parameter fit (assuming flavor universality in gauge-fermion couplings).

Triple Higgs coupling at one-loop order

[arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, Vantalon

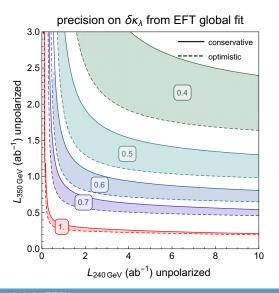




$$\begin{split} & \kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}}, \\ & \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 = \mathbf{C}_{6} - \frac{3}{2}\mathbf{C}_{H}, \\ & \text{with } \mathcal{L} \supset -\frac{\mathbf{C}_{6}\lambda}{v^{2}} (H^{\dagger}H)^{3}. \end{split}$$

- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκ_λ)
- ▶ at 350-365 GeV:
 - WW fusion
 - hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).

Triple Higgs coupling from EFT global fits



Runs at two different energies (240 GeV and 350/365 GeV) are needed to obtain good constraints on the triple Higgs coupling in a global fit!

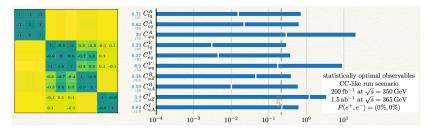
$$\begin{array}{l} O^1_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{uG} \equiv y_t g_s ~~ \bar{q} T^A \sigma^{\mu\nu} u ~ \epsilon \varphi^* G^A_{\mu\nu}, \\ O^3_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \tau^I \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi, ~~ O_{uW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} u ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi u} \equiv \frac{y_1^2}{2} ~~ \bar{u} \gamma^\mu u ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{dW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} d ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi ud} \equiv \frac{y_2^2}{2} ~~ \bar{u} \gamma^\mu d ~~ \varphi^T \epsilon ~ i D_\mu \varphi, ~~ O_{uB} \equiv y_t g_Y ~~ \bar{q} \sigma^{\mu\nu} u ~~ \epsilon \varphi^* B_{\mu\nu}, \\ 0^1_{lq} \equiv \frac{1}{2} ~~ \bar{q} \gamma_\mu q ~~ \bar{l} \gamma^\mu l, \\ O^1_{lq} \equiv \frac{1}{2} ~~ \bar{q} \gamma_\mu u ~~ \bar{l} \gamma^\mu l, \\ O_{lu} \equiv \frac{1}{2} ~~ \bar{u} \gamma_\mu u ~~ \bar{l} \gamma^\mu l, \\ O_{eq} \equiv \frac{1}{2} ~~ \bar{q} \gamma_\mu q ~~ \bar{e} \gamma^\mu e, \end{array}$$

 $O_{eu} \equiv \frac{1}{2} \ \bar{u}\gamma_{\mu}u \ \bar{e}\gamma^{\mu}e,$

- Also need to include top dipole interactions and *eett* contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from

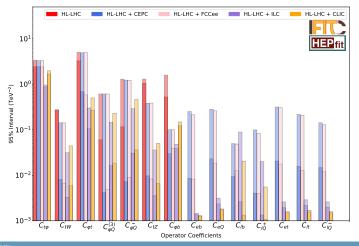
$$e^+e^-
ightarrow Z'
ightarrow tt$$
 .

Is that a big deal?



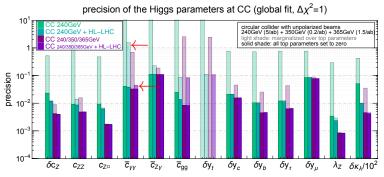
Results from the recent snowmass study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

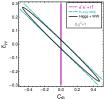


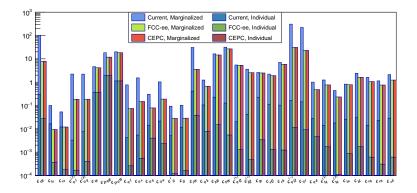
Jiayin Gu (顾嘉荫) Global Fits at CEPC **Fudan University**

Top operators in loops (Higgs processes) [1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang



- $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t) \tilde{\varphi}B_{\mu\nu} + h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- Deviations in $h\gamma\gamma$ coupling \Rightarrow run at $\sim 365 \text{ GeV}$ to confirm?

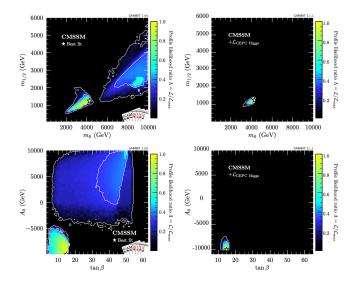




- Top operators (1-loop) + EW operators (tree, including bottom dipole operators)
- Good sensitivities, but too many parameters for a global fit...
- It shows the importance of directly measuring $e^+e^-
 ightarrow tar{t}$.

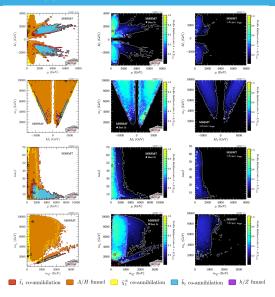
SUSY fits at future Higgs factories

[2203.04828] Athron, Balazs, Fowlie, Lv, Su, Wu, Yang, Zhang



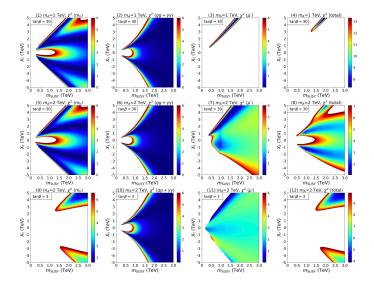
SUSY fits at future Higgs factories

[2203.04828] Athron, Balazs, Fowlie, Lv, Su, Wu, Yang, Zhang



SUSY fits at future Higgs factories

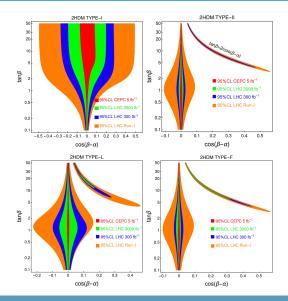
[2010.09782] Li, Song, Su, Su, Yang



Jiayin Gu (顾嘉荫) Global Fits at CEPC **Fudan University**

2HDM fits at future Higgs factories

[1709.06103] JG, Li, Liu, Su, Su



We have no idea what is the new physics beyond the Standard Model.

- One important direction to move forward is to do precision measurements of the Standard Model processes.
 - A future lepton collider is an ideal machine for that.
- SMEFT is a good model-independent framework.
- Specific model studies (such as SUSY and 2HDM) are also important.

Conclusion

Waiting for the CEPC to be built...

backup slides

Jiayin Gu (顾嘉荫)

Global Fits at CEPC

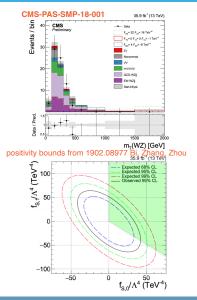
Fudan University

Probing dimension-8 operators?

- The dimension-8 contribution has a large energy enhancement (~ E⁴/Λ⁴)!
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - Λ ≤ √s, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - Precision measurements at several different √s?

(A very high energy lepton collider?)

Or find some special process where dim-8 gives the leading new physics contribution?

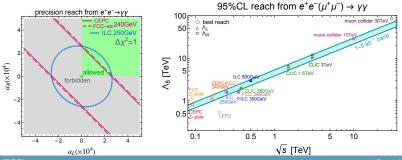


The diphoton channel [arXiv:2011.03055] Phys.Rev.Lett. 129, 011805, JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \rightarrow \gamma\gamma$ (or $\mu^+\mu^- \rightarrow \gamma\gamma$), SM, non-resonant.
- ► Leading order contribution: dimension-8 contact interaction. $(f^+f^- \rightarrow \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(f^+f^-\gamma^+\gamma^-)_{\rm SM+d8} = 2e^2 \frac{\langle 24\rangle^2}{\langle 13\rangle\langle 23\rangle} + \frac{a}{v^4} [13][23]\langle 24\rangle^2 \,.$$

Can probe dim-8 operators (and their positivity bounds) at a Higgs factory (~ 240 GeV)!



Machine learning is not physics!

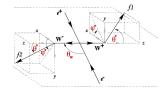
past

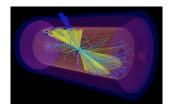
now

- ▶ Current work with Shengdu Chai (柴声都), Lingfeng Li (李凌风) on $e^+e^- \rightarrow WW$.
- ▶ Current work with Yifan Fei (费昳帆), Tong Shen (沈同) and Kerun Yu (余柯润) on *e*⁺*e*⁻ → *tt*.

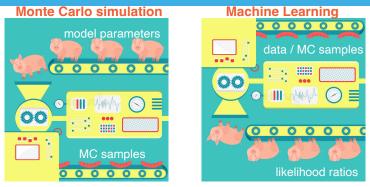
Why Machine learning?

- In many cases, the new physics contributions are sensitive to the differential distributions.
 - $e^+e^- \rightarrow WW \rightarrow 4f \Rightarrow 5$ angles
 - $e^+e^- \rightarrow t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow 6f$ \Rightarrow 9 angles
 - How to extract information from the differential distribution?
 - ► If we have the full knowledge of $\frac{d\sigma}{d\Omega} \Rightarrow$ matrix-element method, optimal observables...
- The ideal $\frac{d\sigma}{d\Omega}$ we can calculate is not the $\frac{d\sigma}{d\Omega}$ that we actually measure!
 - detector acceptance, measurement uncertainties, ISR/beamstrahlung ...
 - In practice we only have MC samples, not analytic expressions, for do/do.





The "inverse problem"



- ► Forward: From model parameters we can calculate the ideal $\frac{d\sigma}{d\Omega}$, simulate complicated effects and produce MC samples.
- Inverse: From data / MC samples, how do we know the model parameters?
- With Neural Network we can (in principle) reconstruct $\frac{d\sigma}{d\Omega}$ (or likelihood ratios) from MC samples.

A rough sketch

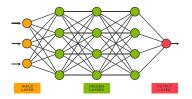
- We have a theory (SMEFT) that gives a differential cross section dΩ/dΩ which is a function of the parameters of interest c (Wilson coefficients).
 - For simplicity, let's ignore the total rate and focus on $\frac{1}{\sigma} \frac{d\sigma}{d\Omega} \equiv \mathbf{p}(\mathbf{x}|\mathbf{c}), i.e.$ it's a probability density function of the observables \mathbf{x} .
 - ► Define the likelihood function $\mathcal{L}(\mathbf{c}|\mathbf{x}) \equiv p(\mathbf{x}|\mathbf{c})$. For a sample of *N* events, maximizing the joint likelihood $\prod_{i=1}^{N} \mathcal{L}(\mathbf{c}|\mathbf{x}_i)$ (or the log likelihood) gives the best estimator for **c**. (matrix-element method)
- Suppose we have two equal-size samples $\{\mathbf{x}_{i,\mathbf{c}_{0}}\} \sim p(\mathbf{x}|\mathbf{c}_{0})$ and $\{\mathbf{x}_{i,\mathbf{c}_{1}}\} \sim p(\mathbf{x}|\mathbf{c}_{1})$, one could define the cross-entropy loss function(al)

$$L(\hat{s}) = -\sum_{i=1}^{N} \log \hat{s}(\mathbf{x}_{i,c_1}) - \sum_{i=1}^{N} \log (1 - \hat{s}(\mathbf{x}_{i,c_0})) ,$$

which is minimized by the optimal decision function

$$s(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1) = rac{p(\mathbf{x}|\mathbf{c}_1)}{p(\mathbf{x}|\mathbf{c}_0) + p(\mathbf{x}|\mathbf{c}_1)}$$
 .

A rough sketch



From neural network we can construct a function ŝ(x). By minimizing L(ŝ) with respect to ŝ(x) we can obtain an estimator for the likelihood ratio

$$\hat{r}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1) = rac{1-\hat{s}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1)}{\hat{s}(\mathbf{x}|\mathbf{c}_0,\mathbf{c}_1)} = rac{\hat{p}(\mathbf{x}|\mathbf{c}_0)}{\hat{p}(\mathbf{x}|\mathbf{c}_1)},$$

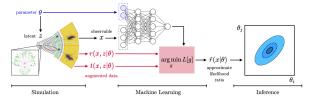
which is the same as the true likelihood ratio in the ideal limit (large sample, perfect training).

- There are many other ways to construct a loss function(al)....
- ► With additional assumptions on how $\frac{d\sigma}{d\Omega}$ depends on **c** (*i.e.*, a quadratic relation), we only need to train a finite number of times to know how the likelihood ratio depend on **c**.

Particle physics structure

• One could make use of latent variable "*z*" (the parton level analytic result for $\frac{d\sigma}{d\Omega}$) to increase the performance of ML.

[1805.00013, 1805.00020] Brehmer, Cranmer, Louppe, Pavez



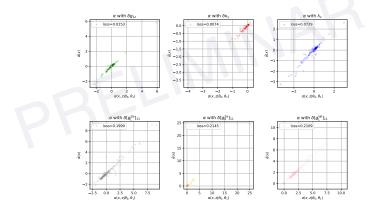
• Assuming linear dependences $\frac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} c_i$, there is a method

called SALLY (Score approximates likelihood locally).

- ► In this case, for each parameter we only need to train once to obtain $\alpha_i \equiv \frac{S_{1,i}}{S_0}$. (It is basically the ML version of Optimal Observables.)
- We can calculate the "ideal" $\alpha(z)$ which will help us train the actual $\alpha(x)$.

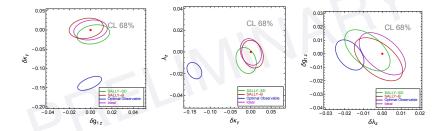
$$L[\hat{\alpha}(\mathbf{x})] = \sum_{\mathbf{x}_i, \mathbf{z}_i \sim \mathrm{SM}} |\alpha(\mathbf{z}_i) - \hat{\alpha}(\mathbf{x}_i)|^2.$$

Machine Learning in $e^+e^- ightarrow WW$ (preliminary results, Shengdu Chai, JG, Lingfeng Li)



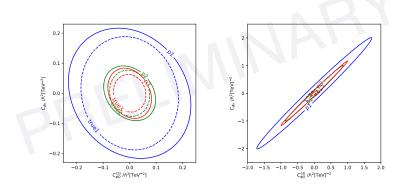
 Semileptonic channel, MadGraph/Pythia/Delphes (CEPC detector card), with ZZ backgrounds.

Fudan University



• 3-aTGC fit, scaled to 10^4 events.

- OO+classifier: hybrid method that uses a classifier to discriminate background.
- Naively applying truth-level optimal observables could lead to a large bias!
- It's easier for machine learning to take care of systematics!



• $e^+e^-
ightarrow t ar{t}$, 3 different channels (no background yet)

• Left: $\sqrt{s} = 1$ TeV, Right: $\sqrt{s} = 360$ GeV

Machine learning

When will Machine take over?

Before or after a future lepton collider is built?

$e^+e^- ightarrow WW$ with Optimal Observables

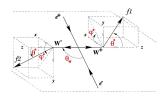
- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?

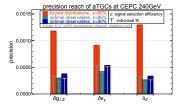
(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i , \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

The optimal observables are given by O_i = S_{1,i}/S₀, and are functions of the 5 angles.



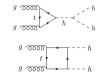


[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

Fudan University

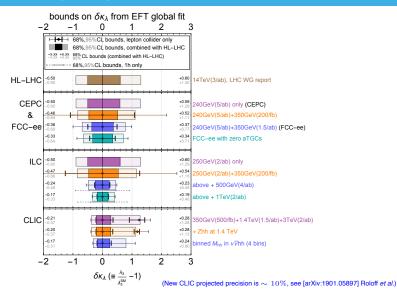
We know very little about the Higgs potential!

- To know more about the Higgs potential, we need to measure the Higgs self-couplings (hhh and hhhh couplings).
- The $(H^{\dagger}H)^3$ operator can modify the Higgs self-couplings.
- Probing the *hhh* coupling at Hadron colliders.
 - ▶ $gg \rightarrow hh$
 - ▶ $\lesssim 50\%$ at HL-LHC.
 - $\lesssim 5\%$ at a 100 TeV collider.

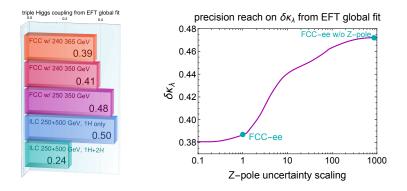


Jiayin Gu (顾嘉荫) Global Fits at CEPC

Triple Higgs coupling from global fits [arXiv:1711.03978]



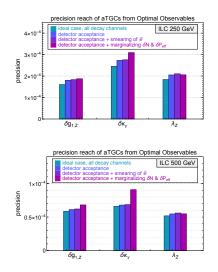
Fudan University



- 240, 365 GeV are better than 250, 350 GeV.
- ▶ Impacts of Z-pole measurements are not negligible. (eeZ(h) contact interaction enters $e^+e^- \rightarrow hZ$.)

Updates on the WW analysis with Optimal Observables

- How well can we do it in practice?
 - detector acceptance, measurement uncertainties, ...
- What we have done (current work for the snowmass study)
 - detector acceptance
 (|cos θ| < 0.9 for jets, < 0.95 for leptons)
 - some smearing (production polar angle only, $\Delta = 0.1$)
 - ILC: marginalizing over total rate (δN) and effective beam polarization (δP_{eff})
- Constructing full EFT likelihood and feed it to the global fit. (For illustration, only showing the 3-aTGC fit results here.)
- Further verifications (by experimentalists) are needed.

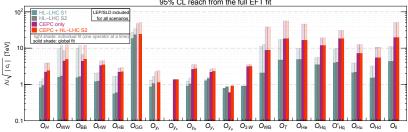


39

$\mathcal{O}_{\mathcal{H}} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^2)^2$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW} = g^2 \mathcal{H} ^2 W^a_{\mu\nu} W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu u} B^{\mu u}$	$\mathcal{O}_{V_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{I}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H)^2$	$\mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma_{\ell}^{\mu} \ell_L) (\bar{\ell}_L \gamma_{\mu} \ell_L)$	$\mathcal{O}_{He}=\textit{iH}^{\dagger}\overrightarrow{D_{\mu}}H\overline{e}_{R}\gamma^{\mu}e_{R}$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{q}_{L}\sigma^{a}\gamma^{\mu}q_{L}$	$\mathcal{O}_{Hd} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

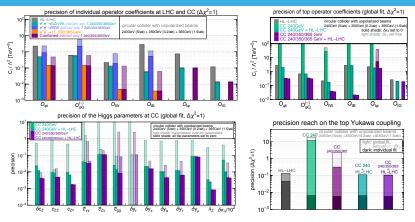
Reach on the scale of new physics



95% CL reach from the full EFT fit

- Reach on the scale of new physics Λ .
- Note: reach depends on the couplings c_i!

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang



- Higgs precision measurements have sensitivity to the top operators in the loops.
 - But it is challenging to discriminate many parameters in a global fit!
- HL-LHC helps, but a 360 or 365 GeV run is better.
- Indirect bounds on the top Yukawa coupling.

Jiayin Gu (顾嘉荫) Global Fits at CEPC **Fudan University**

You can't really separate Higgs from the EW gauge bosons!

 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{H\ell}' = iH^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{He} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{e}_{R} \gamma^{\mu} e_{R} \end{array}$

(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate **aTGCs** $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - also generates *HVV* anomalous couplings such as hZ_μ∂_νZ^{μν}.

Jiayin Gu (顾嘉荫) Global Fits at CEPC

You also have to measure the Higgs!

- Some operators can only be probed with the Higgs particle.
- $|H|^2 W_{\mu\nu} W^{\mu\nu} \text{ and } |H|^2 B_{\mu\nu} B^{\mu\nu}$
 - $H \rightarrow v/\sqrt{2}$, corrections to gauge couplings?
 - Can be absorbed by field redefinition! This applies to any operators in the form |*H*|²𝔅_{SM}.

$$c_{\rm SM} \mathcal{O}_{\rm SM}$$
 vs. $c_{\rm SM} \mathcal{O}_{\rm SM} + \frac{c}{\Lambda^2} |H|^2 \mathcal{O}_{\rm SM}$
= $(c_{\rm SM} + \frac{c}{2} \frac{v^2}{\Lambda^2}) \mathcal{O}_{\rm SM}$ + terms with h
= $c'_{\rm SM} \mathcal{O}_{\rm SM}$ + terms with h

- probed by measurements of the $h\gamma\gamma$ and $hZ\gamma$ couplings, or the *hWW* and *hZZ* anomalous couplings.
- or Higgs in the loop (different story...)
- Yukawa couplings, Higgs self couplings, ...

EFT is good for lepton colliders.

 A systematic parameterization of Higgs (and other) couplings.

Lepton colliders are also good for EFT!

- High precision $\Rightarrow E \ll \Lambda$ Ideal for EFT studies!
- LHC is built for discovery, but

EFT is good for lepton colliders.

- A systematic parameterization of Higgs (and other) couplings.
- Lepton colliders are also good for EFT!
 - ► High precision ⇒ E ≪ Λ Ideal for EFT studies!
 - LHC is built for discovery, but

Energy vs. Precision

Poor measurements at the high energy tails lead to problems in the interpretation of EFT...

But you are ignoring the dim-8 effects which are at the same order!

Fudan University

Jiayin Gu (顾嘉荫) Global Fits at CEPC

A lesson from history

- In 1875, a young Max Planck was told by his advisor Philipp von Jolly not to study physics, since there was nothing left to be discovered.
 - Planck did not listen.

- In 1887, Michelson and Morley tried to find ether, the postulated medium for the propagation of light that was widely believed to exist.
 - They didn't find it.

Max Planck

After

Refore

"Our future discoveries must be looked for in the sixth place of decimals." — Albert A. Michelson

Jiayin Gu (顾嘉荫) Global Fits at C<u>EPC</u>

A lesson from Christopher Columbus (哥伦布发现美洲大陆)

- You need to have a theory.
 - The earth is round, India is in the east...
- Your theory can be wrong!
 - Columbus did not find India, but found America instead...
- You need to ask money from the government!
 - Columbus convinced the monarchs of Spain to sponsor him.

Will we discover the new world?

Jiayin Gu (顾嘉荫) Global Fits at CEPC **Fudan University**