® codeplay’

Targeting multiple accelerator architectures
with oneAPI and SYCL

Rafal Bielski — Codeplay Software (ex ATLAS TDAQ)

The 2023 international workshop on the Circular Electron Positron Collider, 3—6 July 2023, Edinburgh

C .
ompany SYNOPSYS' Collaborations

CEVA CEI imagination
RENESAS M N NSI-TEXE

Leaders in enabling high-performance software BROADCOM.
g . T =
solutions for new Al processing systems

Enabling the toughest processors with tools
and middleware based on open standards

Established 2002 in Scotland, acquired by

Sy

Intel in 2022 and now ~90 employees 7 ® codeplay’ ‘ n:ﬁ ? gﬁ;(GE Argonne &
\ . \m ’ ’

Enabling Al & HPC /' AL L L

to be Open, Safe &
. i Markets

_ Accessibleto All 4,
Supported Solutions High Performance Compute (HPC)
& An open, cross-industry, SYCLbased, Automotive ADAS, IoT, Cloud Compute
[unified, multiarchitecture, multi- Smartphones & Tablets
& vendor programming model that Medical & Industrial
982‘, delivers a common developer

experience across accelerator Technologies: Artificial Intelligence

ONeAPL critcctures Vision Processing
Machine Learning

Big Data Compute

#® codeplay”’

Copyright Codeplay Software Ltd 2023

Who we are

* Codeplay is a wholly owned -
subsidiary of Intel Intel@

e Focus on advancing and

+
embracing SYCL and oneAP| ’COdeplay@

#® codeplay”’ Copyright Codeplay Software Ltd 2023

Outline

. Open standards bring freedom and choice
. One SYCL source to target them (accelerators) all
. How SYCL addresses your parallel programming needs

. Performance portability across all GPU vendors

. How to use SYCL, oneAP| and Codeplay NVIDIA/AMD plugins

o U AW N

. Example successful projects using SYCL

#® codeplay”’ Copyright Codeplay Software Ltd. 2023

Open Standards

Locking into proprietary software and hardware stack may trap your project
and impede your ability to:

* Choose the best hardware, regardless of vendor
* Negotiate the best prices for hardware

The remedy for lock-in is to use products that conform to free, open standards

365 nm
Solenoid Electrodes Mirror coils Octupole Solenoid MgF2
\ TR / window | Kr/Ar
| \ Al | Air L THG cell
_ LN : Vacuum \ 1?’121”" No need to create
Liquid helium NWacom 1
Vacuum H
5! | = YOUR PARALLEL RS - : ‘ your proJeCt
[¢ ﬁT:}(% — | 'COMPUTING PROJECT? | [[TTHT e \k:, < . |
‘1 E o o — —— — il e — Microwaves Inad trap'
|
.8 _ :
| | window Antiproton Antihydrogen synthesis Positron Annihilation detector
—"PMT preparation

and trapping

preparation (silicon vertex)

Image: ALPHA-2 central apparatus (antihydrogen trap) from Nature 578, 375-380 (2020)

#® codeplay”’

Copyright Codeplay Software Ltd. 2023

https://doi.org/10.1038%2Fs41586-020-2006-5

Open Standards: oneAPI

oneAPl is a multi-architecture accelerator programming model joining together several open standards,
with SYCL at its centre

* Open: join the community / special interest groups!
e Multi-architecture: target CPU, GPU, FPGA, specialized chips

e Multi-vendor: implementations allow the same code to target hardware from different vendors

Spec Elements

This Spec is made of 10 core elements.
MIDDLEWARE & FRAMEWORKS

o0 oo [o oo
£ = = 3 1. <
L
g DPC++ oneDPL oneDNN oneCCL Level Zero
[
oneAPI Data oneAPI| Data oneAPI Deep Neural oneAPI Collective oneAPI
oneAPI Parallel C++ (SYCL) Parallel C++ Library Network Library Communications Library Level Zero

- .
it i K% N s

OTHER ACCEL. oneDAL oneTBB oneVPL oneMKL Ray Tracing
oneAPI Data oneAPI Threading oneAPI Video oneAPI Math oneAPI
Analytics Library Building Blocks Processing Library Kernel Library Ray Tracing

#® codeplay”’ Copyright Codeplay Software Ltd. 2023

Open Standards: SYCL

* SYCL is a single-source, high-level, standard C++ programming
model, that can

* Open standard provided by the non-profit cross-industry
Khronos Group

* Well-defined concurrency and memory models enable more
optimisation and performance opportunities

Grer. (o3

#® codeplay”’ Copyright Codeplay Software Ltd. 2023

Open Standards: SYCL

* Multiple implementations of SYCL exist with different target specialisations

* The same SYCL code can be compiled with any of them and provide comparable
performance to other SYCLimplementationsand to native APIs

e Focusing today on the DPC++ implementation (open-source fork of llvm)
which is at the heart of the Intel oneAPI toolkits

SICLAOZEHCL al:?ld ?IPIR-IYI , as :Pe"t‘."du“;y ‘ SYCL SYCL enables Khronos to influence SYCL, OpenCL and SPIR-V, as open industry J @CL i SYCL enables Khronos to influence
g Is an aArt S.f enanlt.el exil ;eln ?grat l°: anl . ‘ " w ISO C++ to (eventually) support standards, enable flexible integration and I1SO C++ to (eventually) support
eployment of multiple acceleration technologies \Esurce toge) heterogeneous compute deployment of multiple acceleration technologies | Source Code heterogeneous compute

(Qcodeplay” L ccomputeCpp i UNIVERSITAT

- ¥ HEIDELBERG
i DPC++ , ‘
oneAPI Uses LLVM/Clang hipSYCL 4
Part of oneAP! P bl i trisycL Inteon neoSYCL SYCL/DPC++
SYCL Open source MotorSYCL Poligeist SX-AURORA Huawei
o, 20 test bed sYCL TSUBASA Ascend Al
— [averu 2
“ == OoorViP.
OpenCL nvipia. W OpenMP 2
"CUoA NVIDIA GPUs LOpenivik” . nvioia " {
NVIDIA 7" % AnyCPUZ@
GPUs RO OpenCL Any CPU H ’, f L4
&2 GPr. W3 v Y
S AMD GPUs Intel CPUs \ Opence. GPIR N\ et :ls;‘:::e::g
OpenCL Intel GPUs XILINX FPGAs Any CPU X
SPIR. | ol GPUS Intel FPGAs el Eocd ST Vorsa
AMD GPUs (open-source OpenCL " "
Intel CPUs o 5 RO Level Zero iy P and ot Multiple Backends in Development
Intel GPUs Arm Mali Cm HLS SYCL on even more low-level frameworks.
Intel FPGAs IMG PowerVR AMD GPUS Intel GPUs m For more information: http://sycl.tech

Renesas R-Car

#® codeplay”’ Copyright Codeplay Software Ltd. 2023

Single C++ source for all architectures

#1include <sycl/sycl.hpp>
#include <vector=>

int main() {
constexpr static size t N{10000};
std::vector<float> a(N, 1.0f);
std::vector<float> b(N, 2.0f);
std::vector<float> c(N, 0.0f);

sycl::queue q{}; Device management with queues

{
sycl::buffer buf_a{a}; .
sich .buffer buf b{b}: Memory management with buffers
sycl::buffer buf c{c};
q.submit([&] (sycl::handler& h){ :
sycl::accessor acc_a{buf a, h, sycl::read write}; Submit a work
sycl::accessor acc_b{buf b, h, sycl::read only}; unitto a queue
sycl::accessor acc_c{buf c, h, sycl::write only, sycl::no_init};
h.parallel for<class my kernel=(N, [=](sycl::id<1l> id){
acc_alid] += acc b[id];
acc_c[id] = 2.0f * acc_alid];
})i
}).wait();
}
for (float x : c) {std::cout << x << " ";}

std::cout << std::endl;

return 0;

#® codeplay”’

e Standard C++
e SYCL 2020 based on ISO C++17

e Unlike in other parallel
programming APIs, there are:
* No pragmas or macros

* No special attributes
* No language extensions

A 68 =
grisaie STp

Specialised
processors

© 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

CPU
Compute | Compute
Control Control
Compute | Compute
Control Control

While SYCL will make writing and deploying code on heterogeneous
systems easy for you, it cannot change your algorithms

e CPU and SIMD processors require different programming paradigms

* Algorithms which are optimal for one type of processor may perform badly

on another
e Truly high-performance software requires the developer to think about e FPGA
the hardware architecture & - o
* Memoryaccess —e.g. efficient data structures, explicit use of local cache i :
* Concurrency—e.g. avoiding thread divergence within a SIMD work group g ;
e SYCL provides convenient interface to leverage the hardware capabilities éi

* Easyto dynamically dispatch different algorithms/tuning to different hardware
with SYCL device management

. Adaptive Logic
%= Module (ALM)

“=‘ Programmable
: Routing Switch

See the online article Compare Benefits of CPUs, GPUs, and FPGAs for Different oneAPl Compute Workloads

#® codeplay”’ © 2023 Codeplay Software Ltd.

https://www.intel.com/content/www/us/en/developer/articles/technical/comparing-cpus-gpus-and-fpgas-for-oneapi.html

Designing software for heterogeneous systems

‘ ‘ Bocci A, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)
Heterogeneous Reconstruction of Tracks and Primary Vertices

With the CMS Pixel Tracker
Front. Big Data 3:601728

The development of a heterogeneous reconstruction faces several

fundamental challenges:

* the adoption of a different programming paradigm;

* the experimental reconstruction framework and its scheduling must
accommodate for heterogeneous processing;

* the heterogeneous algorithms should achieve the same or better
physics performance and processing throughput as their CPU siblings;

* it must be possible to run and validate on conventional machines,
without any dedicated resources.

#® codeplay”’

© 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Sta rt yOU I fUtU e TDAQ/ feco nStrUCtIO N SOftwa re p FOJeCt tOd ay Wlt h BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)

) Heterogeneous Reconstruction of Tracks and Primary Vertices
SYCL and get for free: ‘ ‘ With the CMS Pixel Tracker

Front. Big Data 3:601728

The development of a heterogeneous reconstruction faces several

fundamental challenges:

* the adoption of a different programming paradigm;

* the experimental reconstruction framework and its scheduling must
accommodate for heterogeneous processing;

* the heterogeneous algorithms should achieve the same or better
physics performance and processing throughput as their CPU siblings;

* it must be possible to run and validate on conventional machines,
without any dedicated resources.

#® codeplay”’ © 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Sta rt yOU I fUtU e TDAQ/ feco nStrUCtIO N SOftwa re p FOJeCt tOd ay Wlt h BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)

) Heterogeneous Reconstruction of Tracks and Primary Vertices
SYCL and get for free: ‘ ‘ With the CMS Pixel Tracker

Front. Big Data 3:601728

. o e o . .
Full ﬂeXIblllty l choosmg hardware vendors in the future The development of a heterogeneous reconstruction faces several

fundamental challenges:

* the adoption of a different programming paradigm;

* the experimental reconstruction framework and its scheduling must
accommodate for heterogeneous processing;

* the heterogeneous algorithms should achieve the same or better
physics performance and processing throughput as their CPU siblings;

* it must be possible to run and validate on conventional machines,
without any dedicated resources.

#® codeplay”’ © 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Sta I’t yOU I fUtU e TDAQ/ feco nStrUCtIO N SOftwa re p FOJeCt tOd ay Wlt h BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)

) Heterogeneous Reconstruction of Tracks and Primary Vertices
SYCL and get for free: ‘ With the CMS Pixel Tracker
Front. Big Data 3:601728

. o e o . .
Full ﬂeXIblllty l choosmg hardware vendors in the future The development of a heterogeneous reconstruction faces several

. . fundamental challenges:
[}
Easy to get started and provides good transferable skills for your the adoption of a different programming paradigm:

developers — writing standard C++ software « the experimental reconstruction framework and its scheduling must

accommodate for heterogeneous processing;
* the heterogeneous algorithms should achieve the same or better
physics performance and processing throughput as their CPU siblings;
* it must be possible to run and validate on conventional machines,
without any dedicated resources.

#® codeplay”’ © 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Sta I’t yOUF fUtU e TDAQ/ FECOnStrUCtIOH SOftwa re prOJeCt tOday Wlth / BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020) \

H R I Track Pri Verti
SYCL and get for free: eterogeneous Reconstruction of Tracks and Primary Vertices

With the CMS Pixel Tracker
Front. Big Data 3:601728

. o e o . .
Full ﬂeXIblllty l choosmg hardware vendors in the future The development of a heterogeneous reconstruction faces several

fundamental challenges:

* Easytogetstartedand provides good transferable skills for your the adoption of a different programming paradigm:

developers — writing standard C++ software « the experimental reconstruction framework and its scheduling must
_ _ accommodate for heterogeneous processing;
e (Can code between the CPU and GPU implementations « the heterogeneous algorithms should achieve the same or better

physics performance and processing throughput as their CPU siblings;
* it must be possible to run and validate on conventional machines,
without any dedicated resources.

sycl::event event = q.submit([&](sycl::handler& h){
auto cpuOptimisedKernel(Params p) { Params params{
return [p]l(sycl::id<1> id) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU
p.c[id] = std::any of(myArray.begin(),myArray.end(),[](auto elem){return myCondition(elem);});
// any_of early exit causes thread divergence on GPU, but works faster on CPU 1.
} b if (q.get device().is gpu() || validation) {
h.parallel for(N, gpuOptimisedKernel(params));
} else if (qg.get device().is cpu()) {

sycl::accessor{buf_a, h, sycl::read write},
sycl::accessor{buf b, h, sycl::read only},
sycl::accessor{buf ¢, h, sycl::write only, sycl::no init}

auto gpuOptimisedKernel(Params p) {

return [p](sycl::id<l> id) { - h.parallel for(N, cpuOptimisedKernel(params));
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU r
p.clid] = false; 1)
for (auto elem : myArray) {p.cl[id] |= myCondition(elem);} // some asynchronous code here, followed by a wait on the event
// redundant loop over full range works out faster on GPU than any of on CPU event.wait_and_throw();
}; // sync point may be in another scope, just copy the event and wait there
} myScheduler.pushEvent(event) ;

#® codeplay”’ © 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Sta I’t yOUF fUtU e TDAQ/ FECOnStrUCtIOH SOftwa re prOJeCt tOday Wlth / BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020) \

) Heterogeneous Reconstruction of Tracks and Primary Vertices
SYCL and get for free: With the CMS Pixel Tracker
Front. Big Data 3:601728

. o e o . .
Full ﬂeXIblllty l choosmg hardware vendors in the future The development of a heterogeneous reconstruction faces several

fundamental challenges:

* Easytogetstartedand provides good transferable skills for your the adoption of a different programming paradigm:

developers — writing standard C++ software « the experimental reconstruction framework and its scheduling must
accommodate for heterogeneous processing;
e (Can code between the CPU and GPU implementations « the heterogeneous algorithms should achieve the same or better
physics performance and processing throughput as their CPU siblings;
* Portable high performance with flexibility to tune further for » itmust be possible to run and validate on conventional machines,

Specific devices without any dedicated resources.

sycl::event event = q.submit([&](sycl::handler& h){
Params params{
sycl::accessor{buf_a, h, sycl::read write},
sycl::accessor{buf b, h, sycl::read only},
sycl::accessor{buf ¢, h, sycl::write only, sycl::no init}

auto cpuOptimisedKernel(Params p) { I

return [p](sycl::id<l> id) { if (q.get device().is gpu() || validation) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU — S - 0
p.c[id] = std::any _of(myArray.begin(),myArray.end(),[](auto elem){return myCondition(elem);}); L hpalaLLeL fOI"(N,I gpL]OPtlmlsedKer_ nel (params)) !
// any of early exit causes thread divergence on GPU, but works faster on CPU } else if 1gq.get device().is CpU()_J {
2 b h.parallel for(N, cpuOptimisedKernel(params));
auto gpuOptimisedKernel(Params p) { })'
return [pl(sycl::id<1> id) { . R
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU // some asynchlonous code here, followed by a wait on the event
p.clid] = false; event.wait _and throw();
for (auto elem : myArray) {p.c[id] |= myCondition(elem);}

// redundant loop over full range works out faster on GPU than any of on CPU // sync point may be in another scope, just copy the event and wait there
}; myScheduler.pushEvent(event) ;

#® codeplay”’ © 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Start your future TDAQ/ reconstruction software project today with
SYCL and get for free:

* Fullflexibility in choosing hardware vendors in the future

* Easytogetstartedand provides good transferable skills for your
developers — writing standard C++ software

e Can code between the CPU and GPU implementations

* Portable high performance with flexibility to tune further for
specific devices

* Flexibilityin validation — possible to run GPU kernels on CPU

auto cpuOptimisedKernel(Params p) {
return [pl(sycl::id<l> id) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU
p.c[id] = std::any _of(myArray.begin(),myArray.end(),[](auto elem){return myCondition(elem);});
// any of early exit causes thread divergence on GPU, but works faster on CPU
I
}

auto gpuOptimisedKernel(Params p) {
return [pl(sycl::id<1> id) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU
p.c[id] = false;
for (auto elem : myArray) {p.c[id] |= myCondition(elem);}
// redundant loop over full range works out faster on GPU than any of on CPU
I
}

#® codeplay”’

BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)
/‘ ‘ Heterogeneous Reconstruction of Tracks and Primary Vertices \
With the CMS Pixel Tracker
Front. Big Data 3:601728

The development of a heterogeneous reconstruction faces several
fundamental challenges:
* the adoption of a different programming paradigm;
* the experimental reconstruction framework and its scheduling must

accommodate for heterogeneous processing;
* the heterogeneous algorithms should achieve the same or better

physics performance and processing throughput as their CPU siblings;

* it must be possible to run and validate on conventional machines,
without any dedicated resources.

sycl::event event = q.submit([&](sycl::handler& h){
Params params{
sycl::accessor{buf_a, h, sycl::read write},
sycl::accessor{buf b, h, sycl::read only},
sycl::accessor{buf ¢, h, sycl::write only, sycl::no init}

if (q.get device().is gpu() || validation) {
h.parallel for(N, gpuOptimisedKernel(params));
} else if (qg.get device().is cpu()) {
h.parallel for(N, cpuOptimisedKernel(params));

i

// some asynchronous code here, followed by a wait on the event
event.wait and throw();

// sync point may be in another scope, just copy the event and wait there
myScheduler.pushEvent(event) ;

© 2023 Codeplay Software Ltd.

Designing software for heterogeneous systems

Start your future TDAQ/ reconstruction software project today with
SYCL and get for free:

* Fullflexibility in choosing hardware vendors in the future

* Easytogetstartedand provides good transferable skills for your

developers — writing standard C++ software
e Can code between the CPU and GPU implementations

* Portable high performance with flexibility to tune further for
specific devices

* Flexibilityin validation — possible to run GPU kernels on CPU

e Convenient scheduling interface

auto cpuOptimisedKernel(Params p) {
return [pl(sycl::id<l> id) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU

p.c[id] = std::any _of(myArray.begin(),myArray.end(),[](auto elem){return myCondition(elem);});
// any of early exit causes thread divergence on GPU, but works faster on CPU
I
}

auto gpuOptimisedKernel(Params p) {
return [pl(sycl::id<1> id) {
auto myArray = getArray(id, p.a, p.b); // same function called on CPU and GPU
p.c[id] = false;
for (auto elem : myArray) {p.c[id] |= myCondition(elem);}
// redundant loop over full range works out faster on GPU than any of on CPU
I
}

#® codeplay”’

BocciA, Innocente V, Kortelainen M, Pantaleo F and Rovere M (2020)
/‘ ‘ Heterogeneous Reconstruction of Tracks and Primary Vertices \
With the CMS Pixel Tracker
Front. Big Data 3:601728

The development of a heterogeneous reconstruction faces several
fundamental challenges:
* the adoption of a different programming paradigm;
* the experimental reconstruction framework and its scheduling must

accommodate for heterogeneous processing;
* the heterogeneous algorithms should achieve the same or better

physics performance and processing throughput as their CPU siblings;

* it must be possible to run and validate on conventional machines,

\without any dedicated resources.

sycl::event event = q.submit([&](sycl::handler& h){
Params params{
sycl::accessor{buf_a, h, sycl::read write},
sycl::accessor{buf b, h, sycl::read only},
sycl::accessor{buf ¢, h, sycl::write only, sycl::no init}

if (q.get device().is gpu() || validation) {
h.parallel for(N, gpuOptimisedKernel(params));
} else if (qg.get device().is cpu()) {
h.parallel for(N, cpuOptimisedKernel(params));

i

// some asynchronous code here, followed by a wait on the event
event.wait and throw();

// sync point may be in another scope, just copy the event and wait there
myScheduler.pushEvent(event) ;

© 2023 Codeplay Software Ltd.

Codeplay'sflagship product:

Plugins to the Intel oneAPI toolkit adding support for NVIDIA
and AMD GPUs

Simply download from developer.codeplay.com, install and
you're ready to compile SYCL for NVIDIA/AMD GPUs

e Currently only for Ubuntu 22.04 and compatible Linux
systems

e Open source — build from source for other platforms

Prerequisites:
* Intel oneAPI base toolkit
 GPU vendor drivers and libraries (CUDA/ROCm)

#® codeplay”’

arget any GPU with oneAPl and SYCL

C++ / SYCL™ Source Code

bk
YYY

hhk
TYY

oneAP| Base Toolkit

1L 1L

oneAPI for oneAPI for

AMD GPUS (bets) Intel® GPUs

e

oneAPI for
NVIDIA® GPUs

© 2023 Codeplay Software Ltd.

https://developer.codeplay.com/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html

SYCL performance matches native CUDA/HIP

On NVIDIA GPU - SYCL Provides Comparable Performance to CUDA On AMD GPU - SYCL Provides Comparable Performance to HIP

Relative Performance: AMD SYCL vs. AMD HIP on AMD Instinct MI250 Accelerator
(HIP=1.00)
(Higher is Better)

Relative Performance: Nvidia SYCL vs. Nvidia CUDA on Nvidia-A100
(CUDA =1.00)
(Higher is Better)

X 280
60 149
40 §
2.00 =

098 0.99 1.00 - 0.99 101 099

1.00 091 H.90 091 - 0.90 150
085 082
080 0.73) 10 1
- 02 0.98 098 0.95 0.95 1.05 0.98 X G 03
_— 1.00 0.88 0 0.85 a5
040
0.50
0.20 019
oo0 000 u
S &£ @ @ & K3 £ & K o) 3 3 O o+ & @ e & & K; A & o 2 & o
& S & 3 & Sl ol ¢ W S g > g & > P o & & o o <& o W G N
& & R 2 & 3 £ & & 2 [¢ K & & & > & ¥ £ N R < L o)
2 < ¥ 2 3 ¢ o > o & N & o & & 2 ¥ 1 o
» N & > > 3 \x ; - K o Q > N > & £ i~ 3~ 0 ¥ F Q
\5‘ \“_\ N & % o & o __.j C F \\Q & s < < ~ & Q of of
<8

o
o B & .) o A Quicksilver: lower SYCL perf. - not yet fully optimized

m NvidiaSYCL ® Nvidia CUDA CudaSift: higher SYCL perf. - efficient parallel computations EAMDSYCL mAMDHIP A CudaSift: higher SYCL perf - efficient parallel computation:

A DL-Mnist: lower SYCL perf. - not yet fully optimized

Testing Date: ¥ it based on testing by Intel as of Apnl 15, 2023 and may not reflect all publicly available updates. Testing Date: Performan: ilts are based ontesting by Intel as of Aprl 15, 2023

Configuration Details and Worldoad Setup: X Platin Y 24 t Thread On, Tui 6 R4-3200, ucodk X PUE N AIOOF v ftware: SYCL or Confi ion Details and

See our blog post for more details on these benchmark results

#® codeplay”’ © 2023 Codeplay Software Ltd.

https://codeplay.com/portal/blogs/2023/04/06/sycl-performance-for-nvidia-and-amd-gpus-matches-native-system-language

Compile your SYCL code for multiple targets

Basic compilation:
clang++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda -03 sycl-app.cpp -0 sycl-app

The source file
Compile for Compile for
: oL . AMD NVIDIA
Multi-target compilation for specific archs:

clang++ -fsycl -fsycl-targets=amdgcn-amd-amdhsa,nvptx64-nvidia-cuda,spir6ed4 \

Compile for
Nvidia

Use the SYCL
compiler

Compile for

Intel

-Xsycl-target-backend=amdgcn-amd-amdhsa --offload-arch=gfx1010 \

-Xsycl-target-backend=nvptx64-nvidia-cuda --offload-arch=sm_86 \
Set AMD

hitect
-03 -0 sycl-app sycl-app.cpp Set NVIDIA architecture
architecture

#® codeplay”’ Copyright Codeplay Software Ltd 2023

Run your multi-target SYCL application

Executing the same binary on different target hardware

Filterdevices

'5?/?';'2\/2:’3 This can also be
ONEAPI_DEVICE_SELECTOR=cuda:gpu ./sycl-app do.ne through
device selectors
ONEAPI_DEVICE_SELECTOR=hip:gpu ./sycl-app 0‘. in code

Filterdevices

to only use
AMD GPU

Select Intel GPU with the Level Zero or OpenCL backend:

ONEAPI_DEVICE_SELECTOR=1€VE 1_zer'o . gpu . /sycl—app See the documentation
ONEAPI_DEVICE_SELECTOR=opencl:gpu ./sycl-app of the environment
variables

Run on any x86_64 CPU with the OpenCL backend:
ONEAPI_DEVICE_SELECTOR=opencl:cpu ./sycl-app

#® codeplay”’ Copyright Codeplay Software Ltd 2023

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://intel.github.io/llvm-docs/EnvironmentVariables.html​

Debugging

* Use standard tooling for debugging

* Vendor-specific gdb extensions facilitate
debugging device code: cuda-gdb for
NVIDIA GPU and gdb-oneapi for Intel GPU

* rocgdb for AMD GPU currently not
supported, discussion ongoingon
upstreaming AMD support for device debug
information to llvm

* Debuggers can be integrated with your
favourite IDE just like the regular gdb or
11db

#® codeplay”’

[Switching focus to CUDA kernel 1, grid 4, block (5,0,0), thread (32,0,0), device @, sm 10, warp 0, lane @]

Thread 1 "main" hit Breakpoint 1, main::{lambda(sycl::_V1::handler&)#5}::operator()(sycl::_V1::handler&) const
::{lambda(sycl:: V1::nd_1item<1>)#1}::operator()(sycl:: Vi::nd_item<1>) const (this=ex7fffa3fffb68, item=...) a
t main.cpp:115
115 float v = sycl::log(l+sycl::exp(-1*A_y_label[i]*xp));
(cuda-gdb) info cuda kernels
Kernel Parent Dev Grid Status SMs Mask GridDim BlockDim Invocation

(¢} 4 Active 0x0000000000000000555555555555 (24,1,1) (256,1,1) typeinfo name for main::{lam

::_V1::handler&)#5}: :operator()(sycl::_Vi::handler&) const::compute()

for(int j = A_row_ptr[i]; j < A_row_ptr[i+1]; ++3){
xp += A value[j] * x[A_col_index[j]];
1

// compute objective
float v = sycl::log(1+sycl::exp(-1*A_y_label[i]*xp));
auto atomic_obj_ref = atomic_ref<float,
memory_order: :relaxed, memory_scope::device,
access: :address_space: :global_space> (total_obj_val[@]);
atomic_obj_ref.fetch_add(v);

(cuda-gdb) print xp

$2 = 0.0494509786

(cuda-gdb) next

118 access: :address_space: :global_space> (total_obj_val[@]);

(cuda-gdb) print v

$3 = 0.668727338

(cuda-gdb) continue

Continuing.

[Switching focus to CUDA kernel 1, grid 4, block (0,0,0), thread (8,0,0), device @, sm 0, warp 3, lane 0]

Thread 1 "main" hit Breakpoint 1, main::{lambda(sycl:: V1::handler&)#5}::operator()(sycl:: V1::handler&) const
::{lambda(sycl::_V1::nd_item<1>)#1}::operator()(sycl::_V1::nd_item<1>) const (this=0x7fffa3fffb68, item=...) a
t main.cpp:115

115 float v = sycl::log(l+sycl::exp(-1*A_y_label[i]*xp));

(cuda-gdb) print xp

$4 = 0.0241964087

(cuda-gdb) []

Copyright Codeplay Software Ltd 2023

Profiling

Use NVIDIA NSight Systems and NSight
Compute to profile SYCL code

NVIDIA Nsight Compute (on ed-dlgpu-168c)

Use AMD ROCProfiler to profile SYCL code

File Connection Debug Profile Tools Window Help
=) Connect Baselines Metric Details T
& gd-sycl-dbg.ncu-rep x
Page: Details ~ Result: 0- 136 - compute ~ ¥ - AddBaseline - ApplyRules @ Occupancy Calculator Copy as Image ~
Result Time Cycles Regs GPU SM Frequency CC Process ® 0 06
Current 136 - compute (24, 1, 1)x(256, 1,1) 1.65second 1,259,406,848 52 0-NVIDIA A100-PCIE-40GB 764.98 cycle/usecond 8.0 [3013141] main
~ Occupancy H O B

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware's
ability to process warps that is actively in use. Higher occupancy does not always result in higher performance, however, low occupancy always reduces the ability o hide latencies, resulting in
overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution typically indicates highly imbalanced workloads.

Theoretical Occupancy [%]

Theoretical Active Warps per SM [warp]
Achieved Occupancy

Achieved Active Warps Per SM [warp]

50 Block Limit Registers [block]
32 Block Limit Shared Mem [block] i
12.24 Block Limit Warps [block] 8 -
7.83 Block Limit SM [block]

This kernel's theoretical occupancy (50.0%) is limited by the number of required registers. The difference between calculated theoretical (50.0%) and measured
A Occupancy Limiters achieved occupancy (12.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur 0
between warps within a block as well as across blocks of the same kernel. See the for more details on optimizing occupancy.

Impact of Varying Register Count Per Thread

©
-

T v
& 72 L
g
5 2
8 48
=3
e Support
s
=
6 = = g ra—— a
® 2 f 8 B B 8 & 8 8 & & N
Registers Per Thread R
Impact of Varying Block Size
64- -
mple queries
=
2 48
§
g -
3 3
8 °° e |
=
s 16
=

o
1}

43

9

Block Size

#® codeplay”’

Copyright Codeplay Software Ltd 2023

Support for our plugins

Enterprise Support

(currently NVIDIA only)

Our highest level of support,
for large teams.

Direct access to Codeplay’s engineers and
expertise via scheduled calls.

A custom support plan tailored
to your requirements.

Priority Support
(currently NVIDIA only)

Suited to small teams and individuals.
Access to a ticketed support desk.

Accelerated response time for questions
and requests.

https://codeplay.com/company/contact/

See also:

* Instructions, performance guides and blog posts at developer.codeplay.com
* My recent live demo at the oneAPI DevSummit workshop

#® codeplay”’

Vi

Forum Support
(NVIDIA and AMD)

A public forum moderated by Codeplay
engineers.

Available for free.

Engage with the oneAPI community and
our engineers.

https://support.codeplay.com

Copyright Codeplay Software Ltd 2023

https://codeplay.com/company/contact/
https://support.codeplay.com/
https://developer.codeplay.com
https://www.oneapi.io/event-sessions/target-nvidia-and-amd-with-oneapi-and-sycl-hpc-2023/

oneAP| Construction Kit

The oneAPI Construction Kit enables the CPU to offload compute-intensive kernels to custom accelerators

Find more details at:

e https://developer.codeplay.com/products/oneapi/construction-kit/home/

e https://github.com/codeplaysoftware/oneapi-construction-kit

Runs App

Data Transfers

oneAPI Runs Kernels Accelerator

Construction Kit
HEHon TTITIIT
g EEEEEEEN
EEEREEEEN

Controls

oneAPI Ecosystem

#® codeplay”’ Copyright Codeplay Software Ltd 2023

https://developer.codeplay.com/products/oneapi/construction-kit/home/
https://github.com/codeplaysoftware/oneapi-construction-kit

SYCL Enables Supercomputers

Codeplay works in partnership 3
Argonn
with US National Laboratories to _ gooeoo

enable SYCL on exascale /—\ A
rrerrer |

supercomputers . |
.| BERKELEY LAB

OAK RIDGE

National Laboratory

onne;

NATIONAL LABORATORY
% QA Ring

‘ This work supports the productivity - ey IO INTTER

of scientific application developers | 2 < 2 2 4 EFki o=-=: B ——

and users through performance w SR N R i

portability of applications between

Aurora and Perlmutter.

o

NVIDIA GPUs

#® codeplay”’

SYCL enables a broad range
of software frameworks
and applications

T kokkosRAJV
.. Celerity
al'::tj"aka @ EabalStroam

B

GROMACS =

o
fast, MMexie & free

© 2023 Codeplay Software Ltd.

Example successftul SYCL projects

The adaptive mesh refinement framework AMReX adapted SYCL and demonstrated performance
matching native CUDA/HIP implementations

Nobre N, Grant A, Chockalingam K, Guo X (2023) farscape-project/amrex-sycl (v1.0.1). Zenodo.
https://doi.org/10.5281/zen0d0.8020802, https://github.com/farscape-project/amrex-sycl

The AMReX Development Team (2023) AMReX-Codes/amrex: AMReX 23.06 (23.06). Zenodo.
https://doi.org/10.5281/zen0d0.7995865

- | |CUDA: CUDA Toolkit 11.4.1 (nvee 11.4.100)
:“"t"cl";‘ Quﬁmzfs\g %%5?22?3] | |[ETHIP: ROCm 4.5.2 (hipcc 4.4.21432)
ntel Xeon W-2133 [1 | ISYCL: DPC++ 2023.02.06 (clang 16.0.0)
[CISYCL: hipSYCL 0.9.4 (clang 15.0.7)
Nvidia A100 [80GB] ' ; -
| Simulation parameters
AMD EPYC 7763 [64C/128T] | 128 x 128 x 128 cells
. 227 (~134M) electrons
AMD Instinct MI210 [64GB] ‘ 100 time steps (100A1)
AMD EPYC 7742 [64C/128T] |

AMD Instinct MI250 [128GB]]
AMD EPYC 7763 [64C/128T]

0 5 10 15 20 25 30

AMD Instinct MI100 [32GB] I
AMD EPYC 7742 [64C/128T]

0 50 100 150 200 250
Wall-clock execution time (minima of five executions) [s]
4 shorter is better

300

* Results in this chart are published in this GitHub project developed by N Nobre, a working repository adding Nvidia and AMD targets for AMReX using SYCL https://github.com/farscape-project/amrex-
sycl

#® codeplay”’

Copyright Codeplay Software Ltd 2023

https://doi.org/10.5281/zenodo.8020802
https://github.com/farscape-project/amrex-sycl
https://doi.org/10.5281/zenodo.7995865
https://github.com/farscape-project/amrex-sycl
https://github.com/farscape-project/amrex-sycl

events/s

250K

200K

150K

100K

50K

0

Example successftul SYCL projects

PANDA experiment at FAIR, GSl evaluated SYCL for their tracking software - A M nihiiationat

DArmstadt

Found excellent performance on GPU and CPU, planning FPGA optimisation in the future

Sobol B, Korcyl G (2023) Particle track reconstruction on heterogeneous platforms with SYCL,
presentation at IWOCL 2023

‘ ‘ We believe SYCL is a promising option for the use case
* Forprototyping, evaluating performance over platforms AND production use
* Can providesatisfying and competitive performance with portability

250K

200K
150K
m hipSYCL CPU hipSYCL threads = cores
mDPC++ = CPU hipSYCL 16 threads
Native GPU DPC++
100K
50K
0

V100 A100 MI250 EPYC 7742 EPYC 7763 Xeon Platinum 8268 V100 A100 MI250

events/s

* Charts taken from this presentation: https://www.iwocl.org/wp-content/uploads/iwocl-2023-Bartosz-Sobol-1533.pdf

#® codeplay”’ Copyright Codeplay Software Ltd 2023

https://www.iwocl.org/wp-content/uploads/iwocl-2023-Bartosz-Sobol-1533.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2023-Bartosz-Sobol-1533.pdf

Example successftul SYCL projects
W0BZerBatteries

* Project to build novel High-Performance Hybrid Batteries for Electric Vehicles
* Collaboration led by Williams Advanced Engineering.

* Codeplay’s role: Accelerating Battery Models run by Battery Management System via SYCL.

Project consortium:

WILLIAMS

ADVANCED
ENGINEERING

Imperial College

* Quad Core Arm Cortex A53

processor LondOn
* Dual Core Arm Cortex R5 ®
real-time processors (COdeplay
e Arm Mali GPU 400

* FPGA

e ! Silver
Power Systems
Experimental Battery Test rig at Imperial Embedded MPSoC platform running the BMS on the Battery v

https://www.imperial.ac.uk/news/186707/building-better-batteries-your-future-electric/

#® codeplay”’

© 2023 Codeplay Software Ltd.

https://www.imperial.ac.uk/news/186707/building-better-batteries-your-future-electric/

summary

* SYCL brings you performance portability across different architectures
and vendors

* Use standard C++ to write parallel computing projects

* Intel oneAPI toolkit with Codeplay plugins bring NVIDIA/AMD GPU
performance for SYCL matching the native APls (CUDA/HIP)

* Find guides and support in Codeplay's developer website

e Contact us about your SYCL projects

#® codeplay”’ © 2023 Codeplay Software Ltd.

https://developer.codeplay.com/

® codeplay’

Enable Al & HPC to be Open, Safe and Accessible to All

Notices & Disclaimers
Performance varies by use, configuration and other factors.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

N\

@codeplaysoft info@codeplay.com codeplay.com

	Slide 1
	Slide 2
	Slide 3: Who we are
	Slide 4: Outline
	Slide 5: Open Standards
	Slide 6: Open Standards: oneAPI
	Slide 7: Open Standards: SYCL
	Slide 8: Open Standards: SYCL
	Slide 9: Single C++ source for all architectures
	Slide 10: Designing software for heterogeneous systems
	Slide 11: Designing software for heterogeneous systems
	Slide 12: Designing software for heterogeneous systems
	Slide 13: Designing software for heterogeneous systems
	Slide 14: Designing software for heterogeneous systems
	Slide 15: Designing software for heterogeneous systems
	Slide 16: Designing software for heterogeneous systems
	Slide 17: Designing software for heterogeneous systems
	Slide 18: Designing software for heterogeneous systems
	Slide 19: Target any GPU with oneAPI and SYCL
	Slide 20: SYCL performance matches native CUDA/HIP
	Slide 21: Compile your SYCL code for multiple targets
	Slide 22: Run your multi-target SYCL application
	Slide 23: Debugging
	Slide 24: Profiling
	Slide 25: Support for our plugins
	Slide 26: oneAPI Construction Kit
	Slide 27: SYCL Enables Supercomputers
	Slide 28: Example successful SYCL projects
	Slide 30: Example successful SYCL projects
	Slide 31: Example successful SYCL projects
	Slide 32: Summary
	Slide 33: Notices & Disclaimers Performance varies by use, configuration and other factors. Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration

