

The FELIX Readout System CEPC EU workshop 2023 - 04/07/2023

Carlo A. Gottardo (CERN) On behalf of the ATLAS TDAQ Collaboration

The FELIX readout system https://atlas-project-felix.web.cern.ch

- A generic detector readout concept, proposed by the ATLAS Collaboration, that connects front-end serial links to a commodity network
- Collaboration of different institutes -Open-source firmware and software
- Applications in HEP and Nuclear Physics experiments -ATLAS^[1], ATLAS Phase-II^[2], protoDUNE^[3], NA62^[4], sPHENIX at RHIC^[5], CBM at FAIR^[6], HIKE^[7], LUXE^[8]...

FELIX conception FELIX for the ATLAS experiment

The ATLAS TDAQ architecture

- ATLAS is a general-purpose particle detector at the Large Hadron Collider (LHC)
- LHC collides protons/ions at a 40 MHz rate

FELIX readout system | CEPC EU workshop 2023 | C. A. Gottardo

• A first level (L1) trigger, implemented in hardware, selects events at maximum rate of 100 kHz • A "high-level" trigger, implemented in software, selects events at maximum rate of 1-3 kHz

ATLAS Readout in 2015-18

Readout Driver (ROD)

- VME boards, of about a dozen flavours developed and maintained by detectors
- Connected via point-to-point optical link to ROBinNP cards

Readout System (ROS)

• commodity computers hosting the ROBinNPs transfers data to the High-Level Trigger farm over the network

ATLAS Readout in 2022-25 New readout chain for upgraded detector and trigger components

FELIX: Front-End Link EXchange

• custom PCIe card hosted on commercial computer • the interaction with FE includes readout, configuration, trigger & clock distribution, monitoring, BUSY • about 100 cards, 60 host PCs

SW ROD: Software Readout Driver

- software running on commercial computer
- builds and aggregates events, detector-specific data processing
- about 30 servers

ATLAS Readout in 2022-25

Benefits of the FELIX + SW ROD architecture

- 1. Less custom components
- 2. Less hardware and firmware development effort
- 3. Data transport decoupled from data processing
- 4. Industry-standard data networks introduced earlier in the readout chain
- 5. Aggregation of many links into a single higher speed network link

The FLX-712 card

- FPGA: Xilinx Kintex UltraScale XCKU115
- 8 MiniPODs to support up to 48 bidirectional 9.6 Gbps optical links
- 16-lane PCIe Gen3
- interfacing to Timing Trigger and Control (TTC) systems, BUSY output
- About 300 cards produced between 2020 and 2022

Why did ATLAS develop a custom card?

LHC Clock distribution

- During data taking the 40.079 MHz clock signal is provided by the LHC
 - The LHC clock is in synch with bunch crossing
 - All front-end and DAQ components need to be synchronised with the LHC clock
- FELIX needs an interface to the custom ATLAS TTC system to distribute clock and L1 trigger signals to front-ends

Front-end radiation hardness

- FELIX needs to support protocols used by radiation-hard front-ends
 - <u>GBT</u> [1], <u>lpGBT</u> [2] ASICs and data protocols developed at CERN
 - TCP/IP over Ethernet not an option so far

Availability and cost of commercial solution

• The constraints above strongly limit the selection of commercial products

FELIX in ATLAS data-taking

Firmware

- Decodes incoming data, encodes outgoing data
- Transfers data to and from a buffer in the host computer
- Distributes clock and trigger

Software

• Transfers data over the network using RDMA technology

Operational experience

• See <u>J. Hoya talk</u> at CHEP2023

CERN-PHOTO-201806-147-3

FELIX in protoDU

404 ProtoDUNE single p f desi hologies sions: 10m x 10m x 10m 750 ton of LAr e beam from SPS beam on target ts published in <u>arXiv:2007.06722</u>

DAQ system [1, 2]

- Continuous readout of TPC at 2 MHz via FELIX
- 15 360 channels, 55 GB/s throughput
- FELIX firmware enriched with feature to support protoDUNE workload.
- Unlike ATLAS, FELIX host used to store data until requested by a trigger.

[1] <u>https://doi.org/10.1051/epjconf/201921401013</u> [2] R. Sipos talk at IX Workshop on Streaming Readout

FELIX in NA62

- NA62 is a Kaon physics experiment located in the north area of the CERN SPS
- Kaon decay products detected using a wide range of detectors along a 270m-long beamline.

NA62 DAQ architecture [1]

- L0 trigger in hardware, max event rate 1 MHz
- L1 trigger in DAQ farm reduces event rate to 100 kHz
- "Legacy" readout uses TEL62 board [2]
 - digitises TDC information (TDC as TEL62 mezzanine)
 - buffers data
 - produced trigger primitives

[1] M. Boretto talk at IX Workshop on Streaming Readout [2] https://doi.org/10.1109/RTC.2014.7097525

FELIX in NA62

NA62 novel readout chain [1]

- New radiation-tolerant TDC boards with 10 Gbps transceivers
- FELIX used to
 - buffer data: hits are indexed and trigger matching extracts relevant hits
 - distribute clock
 - manage synchronous communication for control and configuration

optical fibers

[1] M. Boretto talk at IX Workshop on Streaming Readout

FELIX in SPHENIX

- Located at RHIC, sPHENIX is dedicated to the study of QCD and QGP at different energies scales using p+p or Au+Au collisions
- Three sub-detectors read with FELIX [1] in both triggered and streaming mode
 - Pixel Vertex Detector built with ALPIDE MAPS (~20 Gb/s)
 - Intermediate Silicon Strip Tracker (~7 Gb/s)
 - Compact Time Projection Chamber (~100 Gbps)
- Detector commissioning ongoing, data-taking starting soon

[1] M. Purschke, The sPHENIX DAQ System, IEEE-RT 2020

BaBar Magnet

sPHENIX readout

Ongoing and future development

ATLAS Readout in <a>2029

Architecture

- Similar architecture as in current data taking period
 - SW ROD renamed Data Handler

Workload & requirements

- Readout of all ATLAS sub-detectors
- 4.6 TB/s total data throughput (×20)
- 1 MHz data rate (×10)
- Support for additional protocols and 25 Gbps data links

• New FELIX hardware, firmware and software under development.

FLX-182 prototype board

- AMD Versal Prime VM1802 System-on-Chip
- •x4 Firefly transceivers to support up to x24 duplex 25 Gbps data links
- •x1 Firefly transceiver to support TTC interface / 100 Gbps Ethernet / 4 more 25 Gbps data links
- 16-lane PCIe Gen4

• Current baseline candidate for ATLAS upgrade. Small sample production ongoing.

Further developments

Firmware

- Firmware to support future ATLAS workload available for FLX-182
- support for various data protocols & enconding including Intelaken for 25 Gbps links

Software

- Developments ongoing to scale up current architecture
- Retaining RDMA technology to fully use the 400 Gbps network bandwidth

Hardware

- Ongoing design of FLX card with
- AMD VP1552 SoC with support for PCIe Gen5
- up to 48 duplex data links at 25 Gbps
- TTC interface or 400 GbE

Summary

- FELIX is a versatile data acquisition platform - particularly useful for experiments exposed to radiation
- The first FELIX implementation used in production - successful data taking with protoDUNE-SP - stable readout in ongoing ATLAS data taking - sPHENIX data taking starting soon
- An evolution of FELIX for the High-Luminosity LHC Phase of ATLAS is under development

