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THE INTELLIGENCE PROCESSING UNIT (IPU)
WHAT MAKES IT DIFFERENT?
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Model and Data spread across off-chip and 
small on-chip cache and shared memory

Main Model & Data in tightly coupled 
large locally distributed SRAM

SIMD/SIMT architecture. 
Designed for large blocks 
of dense contiguous data

Massively parallel MIMD architecture.
High performance/efficiency 

for future ML trends

Designed for 
scalar processing

Off-chip 
memory

CPU GPU IPU

Memory

Processor

(~65 TB/s for Bow IPU)(2TB/s for A100 HBM)



INTRODUCING THE BOW IPU 
WORLD’S FIRST 3D WAFER-ON-WAFER PROCESSOR

3D silicon wafer stacked processor

350 TeraFLOPS AI compute

Optimized silicon power delivery

0.9 GigaByte In-Processor-Memory @ 65TB/s

1,472 independent processor cores

8,832 independent parallel programs

10x IPU-Links™ delivering 320GB/s

GRAPHCORE



Advanced silicon wafer stacking 
technology co-developed between 
Graphcore and TSMC

World’s first commercial deployment 
using TSMC SoIC-WoW™ technology 
in Bow IPU

Enabling technology for closely 
coupled power delivery die to 
maximize application performance 

BOW IPU: 3D WAFER-ON-WAFER PROCESSOR

+

GRAPHCORE
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IPUs in Research

UNIVERSITY OF BRISTOL TACKLES 
CHALLENGES IN PARTICLE PHYSICS 
WITH GRAPHCORE’S IPU

https://www.graphcore.ai/resources/research-papers
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AI FOR SIMULATION: HOW
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TRANSFORM TRADITIONAL
HPC

Written By:

Alex Titterton

F or many years High Performance Computing (HPC) techniques have been used to solve the world’s
most complex scientific problems across a wide range of applications, from modelling Higgs boson

decay at the Large Hadron Collider to using Monte-Carlo simulation to predicting whether the weather
will improve. 

However, due to the immense complexity of the calculations involved in many of these applications,
researchers are often waiting a long time for simulation results to arrive. Speeding up these workflows by
simply running the same programs on more powerful hardware can be very expensive, with a large cost
often giving only a modest improvement in performance.

Clearly, a new approach is required to efficiently speed up these workloads, and many researchers are
turning to surrogate machine learning models. 

A surrogate model is a machine learning model intended to imitate part of a traditional HPC workflow,
providing results in an accelerated time frame. Shown in Figure 1, this scheme is intended to replace the
computationally intensive bottlenecks with machine learning-driven techniques, without needing to port
the entire end-to-end workflow. 

Figure 1: High-level schema for HPC speed-up with AI

For example, given a physical system, whose behaviour is to be simulated, a surrogate model can be used
to approximate the results achieved by more computationally expensive Monte-Carlo simulation
techniques, in a small fraction of the time. An AI-based solver can be used to give approximate solutions
to sets of differential equations more quickly than can be obtained using numerical methods. 

In cases where the data generated using traditional HPC methods is highly accurate, and the goal is to
attain similar results more quickly, the machine learning models can be trained directly on simulated data.
In many cases, machine learning-based approaches can even outperform traditional HPC emulation
techniques in terms of accuracy, giving researchers the best of both worlds: more accurate results in a
shorter time. 

Graphcore’s Bow Pod systems, powered by the Intelligence Processing Unit (IPU), have been designed
from the ground up to accelerate machine learning workloads, with plug-and-play connectivity for
efficient datacentre scalability. Furthermore, Bow Pod's disaggregated architecture means the CPUs
reside separately from the IPUs, meaning the CPU:IPU ratio can be varied depending on the workload
requirements. 

This flexible CPU:IPU ratio contributes to make the Bow Pods the ideal platform for accelerating HPC
workloads using AI surrogate models; allowing researchers to accelerate the machine learning-based
aspects of their workloads without hindering parts which may rely on more traditional CPU-workload HPC
techniques. 

In the next sections, we will explore a variety of applications that use AI to speed up parts of their HPC
workload. All examples, unless otherwise stated, were run on second generation Graphcore IPU systems,
prior to the launch of IPU Bow and the current Bow Pod range. 

ECMWF: Accelerating Weather Forecasting Applications with AI 

In a recent paper by M. Chantry et al, the European Centre for Medium-range Weather Forecasting
(ECMWF) explored the use of deep learning models to emulate the effects of gravity wave drag in
numerical weather forecasting. As part of this work, a range of deep learning models were designed to
emulate the results of more traditional non-ML-based parametrisation schemes. 

Chantry et al focused specifically on parameterising the effects of Non-Orographic Gravity Wave Drag
(NOGWD), which is a zonal acceleration caused by the breaking of upward-propagating gravity waves,
typically leading to turbulence and dissipation within the atmosphere. These types of gravity waves occur
on widely varying scales, meaning that current forecast resolutions can resolve some but not all gravity
waves. The effects of NOGWD on weather systems can occur over seasonal timescales, making effective
parameterisation of this scheme important for medium to long-range weather forecasting.  

Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) models were found to be more
accurate for medium-range weather forecasting compared with the parametrisation schemes they were
designed to emulate. However, training these models on a CPU gave no real speedup compared with
traditional parametrisation methods, motivating the use of dedicated AI hardware. 

Engineers at ATOS provided Graphcore with implementations of the MLP and CNN models in TensorFlow
2. These were ported to the IPU, requiring just a handful of code changes to train efficiently and
successfully. Without any changes to the model definition or its hyperparameters, a single IPU processor
was able to train this MLP model 5x faster than an A100 GPU and some 50x faster than either the MLP
model or the traditional parametrisation scheme performed on a CPU. More information can be found in
our weather forecasting blog post. 

RAISE: U-Net-inspired CNN for Turbulent Combustion Modelling 

Deep learning approaches are being applied more and more within the field of Computational Fluid
Dynamics (CFD). In many cases, problems are characterised by physical models defined by deterministic
equations, meaning a data-driven approach can at best lead to approximate solutions. These problems
can, however, often be broken down into sub-problems, each of which relies on a simpler set of
assumptions rather than complex, well-defined equations. Data-driven machine learning approaches can
be trained on data generated using more costly numerical simulations, and be used to provide an
accurate model of the underlying system. 

One such approach is the use of deep learning models in estimating the Sub-Grid Scale (SGS)
contribution to flame surface density estimation in combustion modelling. In Large-Eddy Simulation (LES)
a cut-off scale is defined such that reactions taking place on a smaller scale than is directly resolved are
grouped into an estimated SGS contribution term, resulting in a trade-off between simulation accuracy
and computational complexity. 

Since the reliability of the LES model depends on accurate modelling of the SGS contribution but
lowering the cut-off threshold would incur a large computational cost, the ability to model the SGS
contribution, quickly and accurately, in flame surface density estimation would be highly valuable. 

The European Center of Excellence in Exascale Computing "Research on AI- and Simulation-Based
Engineering at Exascale" (CoE RAISE) investigated the use of a U-Net-inspired  model for estimating the
SGS contribution to the reaction rate for pre-mixed turbulent flames. 

The model takes as input a 16 x 16 x 16 crop of a larger 64 x 32 x 32 3D volume representing the progress
variable cc, defined for a temperature TT as:

for each point, where the subscripts bb and uu refer to the temperatures of burnt and unburnt gases,
respectively. The model output tensor approximates the flame surface density ∑ at each spatial point.
Once trained, this model was found to outperform classical algebraic models to accurately estimate ∑.

Engineers at ATOS kindly provided Graphcore with an implementation of this U-Net inspired model, and
with just a few code changes the model was ported to train on a single IPU processor. Furthermore, the
model was found to train in around 20 minutes on a V100, and in around 5 minutes using a single IPU. In
both cases the models converged in around 150 epochs, with the model trained on the IPU converging to
a lower MSE loss.  

University of Bristol: GANs for Simulating Jet Production at the Large

Hadron Collider 

Similarly to CFD modelling, efficient generation of simulated data in High-Energy Particle Physics (HEP)
requires overcoming significant technical difficulties. One such challenge is accurate and fast simulation
of particle “jets” in proton-proton collisions. 

In a high-energy proton-proton collision, many subatomic particles are produced. According to the laws
of Quantum Chromodynamics (QCD), certain types of produced particles such as quarks cannot exist
freely and so hadronise, producing and bonding with other particles, resulting in narrow cone-shaped
“jets”. The energies and momenta of these jets can then be measured in particle detectors to study the
properties of the original quarks. 

The simulation of jet production at the Large Hadron Collider (LHC) at CERN represents a large technical
hurdle, due to the need to accurately simulate enormous amounts of particle collisions. To overcome this
challenge, researchers have begun investigating the use of Generative Adversarial Networks (GANs) to
generate realistic simulated data more quickly than can be achieved using traditional Monte-Carlo
methods. 

Typically, a GAN consists of two networks, a generator and a discriminator. The generator turns random
noise into a data sample, and the discriminator attempts to distinguish between real and generated data
samples, with each network being trained based on the outputs of the other. GANs have long been able to
generate photo-realistic images and are being used increasingly in particle physics applications, both for
generating simulated collision data and to accurately model the physical characteristics of a particle
detector. 

Researchers at the University of Bristol, working on the LHCb experiment at the LHC, compared GAN
training and inference performance on Graphcore IPUs and existing GPU-based solutions. In this case a
CNN-based DiJetGAN model was trained to simulate the production of particle jets at the LHC. 

It was found that a single GC2 (1  generation) IPU processor was able to deliver a performance gain of up
to 5.4x over a P100 GPU, consuming only half the power. With the latest, flexible Bow Pod architecture
allowing for efficient training of large numbers of such models, the possibilities for accelerating
simulation workflows in HEP on the IPU are enormous. 

In addition to the DiJetGAN model, the University of Bristol team implemented a recurrent neural network
(RNN) for particle identification as well as a Kalman Filter algorithm on the IPU. More details can be found
in their original paper, as well as in our blog. 

AI for Quantum Chemistry, Drug Discovery and Protein Folding 

These and other deep learning experiments in HEP have demonstrated the potential for AI to accurately
model quantum interactions on a subatomic scale, but what about on an atomic or even molecular scale?
Graphcore engineers have been working with researchers around the world looking to use AI to
revolutionise fields such as quantum chemistry and simulating biological macromolecules. 

DeePMD-Kit: Molecular dynamics simulation 

We have seen how deep learning has the potential to revolutionise many aspects of simulation and
modelling in sub-atomic physics, but there is also huge demand for fast and accurate simulation of
microscopic objects on an atomic and molecular scale. 

Molecular dynamics simulation is the simulation of movement in molecular and atomic systems, and
typically involves calculating the energies of atoms in a molecule, the forces acting upon each atom, or
both. Naturally, such computation quickly becomes extremely complex as the number of atoms
considered increases. 

Whilst the physical laws governing chemistry and a large portion of quantum physics are well-established,
the respective equations are often too complicated to be solved exactly. Approximate numerical
simulations often take a large amount of time, and so new approaches are required to accelerate these
simulation tasks. Most recently, machine learning-based approaches have seen wider use in the
development of tools for simulating complex atomic systems. 

DP Technology, a leading Chinese organisation in molecular dynamics simulation for drug discovery,
recently announced IPU support for their award-winning simulation platform DeePMD-Kit. This work,
enabling more accurate simulation of molecular dynamics, orders of magnitude faster than with
traditional numerical approaches, opens new possibilities in this field, which is currently undergoing an
AI-driven transformation. 

More information on this project can be found in our technical deep dive blog, as well as the DeePMD-Kit
open source repository. 

SchNet: Simulating Atoms in Water Molecules 

Several deep neural network-based approaches have recently been developed for molecular dynamics
simulation in quantum chemistry. 

SchNet is a CNN-based model developed for modelling quantum interactions between atoms in a
molecule. Unlike pixels in images, the atoms in a molecule are not confined to a regular grid-like
structure. Furthermore, their precise location forms crucial information necessary for calculating inter-
molecular energies and forces. This model therefore makes use of continuous-filter convolutional layers
so as not to require atoms’ locations to be discretised. 

Using continuous-filter convolutions allows for the model to consider an arbitrary number of
neighbouring atoms at arbitrary positions. The model consists of an embedding layer followed by three
interaction blocks containing these continuous-filter convolutional layers, with interactions between
atoms being computed by atom-wise dense layers, as shown in the image below. 

Figure 2: SchNet architecture, taken from ArXiv:1706.08566

Graphcore engineers successfully trained the SchNet model on IPUs on the QM9 molecules dataset, a
dataset widely used to benchmark a model’s ability to predict various properties of atoms in equilibrium.  

DeepDriveMD: Accelerating Protein Folding using AI 

In addition to applications in quantum chemistry, deep learning has shown huge potential when it comes
to protein-folding; the procedure by which a protein’s amino acid sequence is “folded” into its 3D atomic
structure. Gaining better understanding of how a protein folds into its native 3D structure has been of
much interest in computational biology for many decades, and the ability to accurately and efficiently
model this behaviour would enable faster and more advanced medical drug discovery. 

DeepDriveMD is a deep learning-driven molecular dynamics workflow for protein folding which combines
machine learning techniques with atomistic molecular dynamics simulations. This hybrid HPC/AI
approach consists of HPC-based numerical simulation and an AI surrogate model, presented in Figure 3.

Figure 3: Computational motif detailing the 4 key steps of the DeepDriveMD toolchain, taken from
ArXiv:1909.07817.

First, an initial pool of data is generated from a large number of MD simulations (1). Next, this data is fed as
input into a machine learning model (2), followed by running inference on the model to identify new
starting points for MD simulation (3). Finally, in (4) new MD simulations are generated. These can either
simply be added to the pool of simulation data, or they can replace existing simulations; for example,
simulations which have become stuck at some metastable state. 

The machine learning model originally implemented as part of DeepDriveMD is a Convolutional
Variational Autoencoder (CVAE), noting that the motif above is not restricted to a specific deep learning
architecture. With this model trained, the authors were able to fold Fs-peptide folded states in 6µs
compared to around 14µs without using an ML-driven approach, resulting in more than 2x speedup. 

Cray Labs’ CVAE implementation of DeepDriveMD, part of Cray’s SmartSim repository, was trained on IPU-
M2000 and throughput was around 3x faster than on an A100 GPU. Combined with the speedup achieved
by using DeepDriveMD over a non-ML-based implementation, the combination of this hybrid AI/HPC
approach and Graphcore IPU-PODs offers huge potential in accelerating protein folding workloads. 

Viscous Burgers Equation: Physics-Informed Neural Networks for solving PDEs

As we have seen with the recent use of neural networks in Computational Fluid Dynamics, AI-based
solvers are becoming increasingly popular for computing good approximations to complex equations in
an accelerated time frame. Another recent machine learning focus, which has been gaining popularity
more recently, is Physics-Informed Neural Networks (PINNs). 

In a typical supervised learning scenario, a neural network contains a loss function, which represents
some measurement of how far away the network’s predictions are from the ground truth. Simple loss
functions such as Root-Mean-Square Error (RMSE) simply use the difference between the predicted
values and ground truth, without taking into account any prior knowledge of the physical system. In cases
such as image classification such knowledge may not exist for arbitrary images, however in many areas of
scientific research the underlying physics is often well-defined, for example by a set of differential
equations. PINNs include these known equations as part of the loss function, making them better able to
learn the behaviour of a particular system. 

Researchers at Texas A&M University High Performance Research Computing (HPRC) have been
investigating the use of PINNs to solve the infamous viscous Burgers’ Partial Differential Equation (PDE).
This PDE occurs in various mathematical fields such as fluid mechanics and traffic flow and can be used
to model wave evolution in incompressible fluids. The Burgers’ PDE has been studied by many
researchers for over a century and is often used to test the accuracy of numerical PDE-solving programs. 

An accurate, numerical approximation was used as a reference against which the PINN solution was
measured. The PDE was constructed with sinusoidal initial condition and homogeneous Dirichlet
boundary conditions as follows: 

In the case where the fluid’s viscosity, vv, is smaller than ~0.1~0.1π a discontinuous shock-wave forms at x=0x=0. 

The PINN solution of the viscous Burgers’ PDE was calculated using TensorDiffEq, an open-source
TensorFlow 2.X-based package developed by researchers at Texas A&M University. This solution was
found to be in excellent agreement with classic numerical solutions, with both solutions becoming
unstable for very low viscosity, whilst taking less time to complete. 

The viscous Burgers’ PDE implementation and the TensorDiffEq framework was run on IPUs, allowing for
efficient acceleration of a multitude of PINNs. 

Agilor: Using AI for Accurate Climate Modelling 

We have seen several use cases where AI models are accelerating HPC workflows. And while the IPU has
been designed to accelerate machine intelligence workloads, many aspects of the IPU architecture make
it highly capable of performing very well for classical HPC workloads. 

We have already seen the excellent results achieved by researchers at ECMWF using MLP and CNN
models for weather forecasting applications, but there are also opportunities for the IPU to accelerate
more traditional algorithmic approaches when it comes to climate modelling.  

Graphcore engineers have been working with Chinese digital transformation specialists Agilor, modelling
evapotranspiration; the rate at which water moves from surfaces such as plants and soil into the
atmosphere. The aim in this case was not to run the entire end-to-end toolchain on the IPU, but to identify
key elements which could be efficiently accelerated. 

Measuring evapotranspiration can be incredibly useful for enabling precise irrigation in agriculture and is
also being actively investigated for use in forest fire prevention and natural disaster management. There
is, however, a limit to how spatially fine-grained such measurements can be in the real world, often
resulting in measurements being quite coarse when plotted on a map. In order to give a finer-grained
approximation of a location’s reference evapotranspiration value (ET0), an interpolation technique called
Kriging is used. This method is closely related to regression analysis and is highly computationally
intensive. 

As shown in the figure above, the main calculation pipeline including the Kriging algorithm was run on
IPU, keeping the data pre-processing and post-interpolation application steps on the CPU. 

PyKrige, a Python implementation of the Kriging algorithm, was implemented in TensorFlow in order to
perform the underlying matrix inversion and multiplication on the IPU. This enabled the interpolation of
the entire dataset to be performed in just 21 seconds, compared with 2000 seconds using PyKrige on
CPU. 

More information on Agilor’s work on the IPU can be found in our technical blog, and the project source
code can be found in our Portfolio Examples repository. 

Accelerating HPC Workloads using AI and Graphcore’s IPU 

While we have covered a wide range of exciting applications in the sphere of AI for Simulation, whereby
traditional HPC workloads can be enhanced by AI techniques running on the IPU, this is just the tip of the
iceberg. With large-scale scientific experiments such as CERN’s LHC looking to collect and analyse orders
of magnitude more data in the coming years, the need to accelerate classical processes is greater than
ever. 

More and more researchers working in fields such as drug discovery, weather forecasting, climate
modelling and computational fluid dynamics are looking towards ML-based approaches to enhance their
toolchains, both in terms of accuracy and time-to-result. Furthermore, new approaches such as PINNs are
revolutionising how neural networks can learn to emulate physical systems governed by well-defined yet
complex equations. 

With the ongoing development of these and other novel AI-based approaches, the need for specialised
hardware capable of accelerating these workloads efficiently is growing. Graphcore’s IPU, designed from
the ground up for machine intelligence, is the ideal platform on which to build, explore and grow the next
generation of machine learning-driven solvers, emulators and simulations. 
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Physics-Informed Neural Networks 
(PINNs)
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Platform Time to Train / seconds (20k Epochs) Speedup vs GPU

2 Bow IPUs 41 11x

A100 GPU 530 -

RESULTS ORIGINALLY SHOWN AT SC22, 
SOLVING A 2D WAVE EQUATION USING A 
PHYSICS-INFORMED NEURAL NETWORK 
IMPLEMENTED IN TENSORFLOW 2.

2XIPU FOUND TO BE 11X FASTER THAN 
1XA100 GPU, AT SIMILAR MONETARY & 
ENERGY COST.

WORK DONE IN COLLABORATION WITH 
STFC HARTREE AND 
THE UK ATOMIC ENERGY AUTHORITY
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ResNet50 POPLARTM compute graph 



IPU for GNNs
The next frontier in AI/ML 
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GNNs broadly follow a recursive 
neighbourhood aggregation (or 

message passing) scheme, where each 
node aggregates feature embeddings 
of its neighbours to compute its new 

feature embeddings[1]

WHAT IS A GNN ?
GRAPH NEURAL NETWORK

GNNS ARE USED TO SOLVE GRAPH PREDICTION TASKS 

[1] summary derived from  ‘How Powerful are Graph Neural Networks?’ MIT/Stanford - https://arxiv.org/pdf/1810.00826.pdf

Layer 0 Layer 1 Layer 2

Visualisation of how a node accumulates information 
from neighbouring nodes through the layers of the GNN

https://arxiv.org/pdf/1810.00826.pdf


HEALTHCARE

DISEASE PREDICTION
RNA–disease association
Disease–gene association
COVID-19 spread prediction

DRUG DISCOVERY
Protein structuring
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Protein / drug interaction
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MEDICAL IMAGING
Image segmentation
Abnormal detection
Brain connectivity research
Surgical image analysis

PATIENT RISK PREDICTION
Mining EHRs (health records)

INTERNET
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Social influence prediction

RECOMMENDER SYSTEMS
User and item representations

FAKE NEWS DETECTION
Rumor detection + link classification

IDENTITY RESOLUTION
Real-time personalization & advertising 

SCIENTIFIC RESEARCH

PARTICLE PHYSICS
Particle physics simulation

CHEMICAL PHYSICS
QSOR (structure-odor) modeling

TRANSPORT
TRAFFIC FORECASTING
Traffic speed/time prediction

GOVERNMENT

CRIME PREVENTION
Predicting crime associations

FRAUD DETECTION
Anti-money laundering & tax fraud

CONTACT TRACING
Disease contact tracing

FINANCE

FRAUD DETECTION
Credit card, insurance, loan fraud

TRADE MARKET PREDICTION
Trader connection surveillance

RISK & COMPLIANCE
Risk analytics + compliance reporting

DATA MIGRATION
Data mapping and consolidation

INTEREST RATE RISK
Leveraging credit scores, 
employment, income, and other socio-
economic factors

TELECOMMS

WIRELESS COMMUNICATION 
Power control
Resource allocation
Channel control
Link scheduling

GAMING

FRAUD DETECTION
Collusion detection in gaming

RECOMMENDER SYSTEMS
Online game recommendations

GNN USE CASES & APPLICATIONS

MANUFACTURING
BILL OF MATERIALS
360 degree BOM analysis

TRACEABILITY
Product recall tracing e.g. cars

MASTER DATA MGMT
RDF graph data modelling
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SchNet GNN 
Modelling Quantum Interactions in Molecules 

Graphcore engineers successfully 
trained the SchNet1 model on IPUs on 
the 500k water clusters dataset2, to 
predict the potential energy per 
cluster.

Preliminary results show a time-to-train 
of 98 minutes on 2xIPU-M2000, 
compared with >60 hours on 4xV100 
GPUs in PNNL’s original paper2.

2 Jenna A. Bilbrey, Joseph P. Heindel, Malachi Schram, Pradipta Bandyopadhyay, Sotiris S. 
Xantheas, and Sutanay Choudhury. "A look inside the black box: Using graph-theoretical 
descriptors to interpret a Continuous-Filter Convolutional Neural Network (CF-CNN) trained on 
the global and local minimum energy structures of neutral water clusters" J. Chem. Phys. 153, 
024302 (2020).

1 JK. T. Schütt1, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. "SchNet – A 
deep learning architecture for molecules and materials" J. Chem. Phys. 148, 241722 (2018).



IPU FOR FOUNDATION MODELS
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• Models are getting much bigger to deliver ever 
higher demands on improved accuracy & 
performance
• This growth is exponential for dense models

• Multimodal models broaden the learning 
capability by incorporating different modalities 
(e.g. linguistic, visual, aural)
• => larger model demands

• Larger dense models mean more compute, more 
power, more cost

• Counter to this are economic and societal 
drivers to reduce energy consumption & cost

FOUNDATION MODEL TRENDS

Exponential trend of SOTA NLP models:
Source: Microsoft/NVIDIA https://arxiv.org/abs/2201.11990

https://arxiv.org/abs/2201.11990
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Dense/
Non-Selective

Mixture of 
Experts

Dense Models Sparsification

IMPROVING MODEL EFFICIENCY

• Selectivity / Conditional Models
• Models need to become selective (or 

conditional), such as Mixture of Experts 
(MoE) based models 

• Different parts of models are only used 
when needed

• This can help reduce compute growth to 
linear instead of exponential

• Sparsification of models
• Only incur cost of compute when required

Ø Lower memory requirement
Ø Fewer multiplications
Ø Lower power
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Only a small proportion of 
connections are key to model 

behaviour

So we can prune and re-train 
to create a “sparse” model

This is beneficial on a 
processor like the IPU that can 

do the sparse computation 
efficiently

WHAT IS SPARSITY?

Outputs

Inputs

Outputs

Inputs



THE ‘GOOD’ COMPUTER



ROADMAP TO ULTRA-INTELLIGENCE AI

Human brain has around 100 billion neurons

With 100Tn+ synapses, equivalent to parameters in an AI model

Current largest AI models are around 1Tn parameters

Graphcore is developing an Ultra-Intelligence Machine 
that will surpass the parametric capacity of the brain



Over 10 Exa-Flops of AI floating point 
compute from 8,192 roadmap IPUs

3D Wafer-on-Wafer logic stack

Up to 4 PB of memory with 
bandwidth of over 10 PB/s

Enabling AI models to be developed
with 500 Tn parameters

Fully supported by Poplar® SDK

THE 'GOOD' COMPUTER



25

POPLARTM COMPUTE GRAPH VISUALISATION 
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Very AI Large-Models:
- Muti-trillion parameter model training and inference
- Next-generation, large, conditional and sparse models

AI in Science and Industry 
- Healthcare: Genomics | Proteomics | Analysis
- AI-HPC: Simulation | Modeling
- Autonomous systems
- Materials Science | Manufacturing
- Environment: Weather prediction | Smart city

AI in Business 
- Language understanding | Process automation | Bots
- Advanced big-data graph analytics and graph databases
- Next generation Recommenders

APPLICATIONS



IPUS IN THE CLOUD
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Free IPU 
Access:



IPUS IN THE CLOUD
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Free IPU 
Access:
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RESEARCH PRIORITIES:

• Optimisation of Stochastic Learning
• New Efficient Models for Deep Learning & Graph Networks
• Sparse Training
• New Directions for Parallel Training
• Local Parallelism
• Multi-Model Training
• Conditional Sparse Computation

Test IPU hardware in 
the cloud at no-cost

Support letters for 
grants & funding

Access to Poplar® & 
PopART® software

Support from 
Graphcore Researchers

GRAPHCORE ACADEMIC PROGRAMME Apply at: 
graphcore.ai/academic



ANNOUNCEMENT BLOG
19th May

INTERNSHIP PROGRAMME
Closed

HANDS-ON WORKSHOP
Date TBC

Apply at: 
graphcore.ai/academics
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MACHINE INTELLIGENCE ACADEMY
A new age of IPU-accelerated discovery in computing

A collaboration initiative designed 
by Graphcore to enable researchers
to develop novel AI techniques and 
accelerate their research using IPUs

WHAT IS IT? WHO IS IT FOR? WHY JOIN?

Professors, researchers and 
students working in advanced AI, 

machine learning and related fields

Members benefit from free IPU 
cloud credits, support letters, 

training workshops, engineering 
support, spotlight promotion and 

exclusive swag

Access to free IPU 
hardware in the cloud

Support letters for 
grant and funding 

proposals

Bespoke training 
workshops and 

educational materials

Support from 
Graphcore Engineers 

and SMEs

Project showcase and 
developer spotlight 

promotion
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ACCELERATED COMPUTING ACADEMY
A new age of IPU-accelerated discovery in computing

A new computing academy 
designed by Graphcore to enable 

new applications that require highly 
parallel, high-performance compute

WHAT IS IT? WHO IS IT FOR? WHY JOIN?

C++ computer scientists in 
academia looking to solve new 

problems through computationally 
intensive research that transcend AI 

and machine learning

Members benefit from free IPU 
cloud credits, support letters, 

training workshops, internships, 
engineering support, spotlight 
promotion and exclusive swag

Access to free IPU 
hardware in the cloud

Support letters for 
grant and funding 

proposals

Bespoke training 
workshops and 

educational materials

Support from 
Graphcore Engineers 

and SMEs

Project showcase and 
developer spotlight 

promotion
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THANK YOU
Dr Alex Titterton
alexandert@graphcore.ai

Free 6-hour
IPU Access:

Academic
programme:



GNN REQUIREMENTS IPU ADVANTAGE

Low arithmetic intensity due to large 
memory bandwidth requirements

Ultra-fast, large In-Processor Memory 
removes memory bandwidth contraints

WHY IPUS FOR GNNS

Truly parallel implementation enabled by 
IPUs unique MIMD architecture 

GNNs often utilise multiple small graphs (or 
sub-graphs/clusters) & present unique 

gather/scatter requirements. These require 
memory intensive operations in parallel

Dynamic graphs changing over time require 
small batch sizes

Optimised small batch size performance

Standard ML Framework support including 
GNN focussed PyTorch Geometric 

Graphs data structure is highly sparse, 
hardware capable of handling sparsity 

efficiently will have an advantage 

Developers want to use high-level standard 
ML frameworks optimised for GNN 

Fast gather/scatter operation combined 
with distributed nature of IPU make 

sparsity its natural domain


