

CEPC booster and damping ring design

Dou Wang (IHEP)

on behalf of CEPC AP group

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

3-6. July. 2023, University of Edinburgh, The 2023 International Workshop on CEPC (EU Edition)

Design status for CEPC Booster

- Booster design requirements in TDR
- Booster TDR optics (including errors)
- Timing structure & dynamic parameters during ramping
- Summary of Booster TDR parameters

Design status for CEPC positron damping ring

- DR parameters
- DR optics (including errors)
- Particle tracking through the transport lines

• Summary

CEPC injector chain

- 30 GeV linac provides electron and positron beams for booster.
- Top up injection for collider ring ~ 3% current decay
- Booster is in the same tunnel as collider ring, above the collider ring, bypass in IRs (same circumference).
- Budget for transfer efficiency 90%: 95% for booster + 95% for transport lines (inj. to collider).
- Beam current threshold in booster is limited by RF system.
- Feedback systems (Transverse & longitudinal) are need to damp the instability at low energy.

Requirement update after CDR

Collider ring	Higgs (CDR)	Higgs (TDR)
Number of IPs	2	2
Energy (GeV)	120	120
Circumference (km)	100	100
SR loss/turn (GeV)	1.73	1.8
Half crossing angle (mrad)	16.5	
Piwinski angle	3.48	4.88
N_{e} /bunch (10 ¹⁰)	15.0	13.0
Bunch number	242	268
Beam current (mA)	17.4	16.7
SR power /beam (MW)	30	30
Bending radius (km)	10.7	10.2
Momentum compaction (10 ⁻⁶)	11.1	7.1
$\beta_{IP} x/y (m)$	0.36/0.0015	0.3/0.001
Emittance x/y (nm)	1.21/0.0024	0.64/0.0013
Transverse σ_{IP} (um)	20.9/0.06	14.0/0.036
$\xi_x / \xi_y / \text{IP}$	0.018/0.109	0.015/0.11
$V_{RF}(\text{GV})$	2.17	2.20
f_{RF} (MHz) (harmonic)	650 (21682	20)
Nature bunch length σ_z (mm)	2.72	2.3
Bunch length σ_z (mm)	4.4	4.1
Energy spread (%) (SR/BS)	0.1/0.134	0.1/0.17
Energy acceptance requirement (%)	1.35	1.6
Energy acceptance by RF (%)	2.06	2.2
Lifetime due to beamstrahlung (min)	80	40
Lifetime (min)	25	20
<i>F</i> (hour glass)	0.89	0.9
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	2.93	5.0

 Horizontal DA requirement of collider ring due to injection

Booster emittance @120 GeV <1.7nm (3.6nm in CDR)</p>

Booster TDR optics

D. Wang, C. H. Yu, Y. M. Peng...

- TME like structure (cell length=78m) ٠
- Interleave sextupole scheme
- Emittance@120GeV=1.26nm .
- CEPC_booster,80m cell lattice 22/03/21 14.18.39 Windows version 8.51/15 275 β (m) D_x 250. 225. CEPC_booster,80m cell lattice 200. Windows version 8.51/15 19/03/21 15.02.05 250.0 0.26 175. Dispersion sup. β (m) D(m)B_x B_v D_x 150. 0.25 227.5 125. 0.24 100. 205.0 0.23 75. 50. 182.5 0.22 25. 0.21 0.0 20. 40. 60. 80. 160.0 Arc cell 0.20 137.5 CEPC booster,80m cell lattice 0.19 Windows version 8.51/15 22/03/21 14.18.39 350. 115.0 0.18 β (m) Half ring 315. 0.17 92.5 280. 245. 0.16 70.0 210. 0.15 175. 47.5 0.14 140. 105. 25.0 0.13 20. *3*0. 50. 0.0 10. 40. 60. 70. 80. 70. 35. s (m) 0.0 0.0 15. 30. $\delta_{E} p_{0}c = 0.00000$ $\delta_{E} p_{0} c = 0.00000$ Table name = TWISS Table name = TW[*10**(3)]

Overall idea: uniform distribution for the Q ٠

0.300

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.300

0.275

0.250

0.225

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.0

45.

s (m)

q

0.0

100.

s (m)

(m)

Ω

- Combined magnet (B+S) scheme possible ٠
- Phase advance/cell: 100° (H) / 28° (V) ٠

DA results @ 30GeV

- Booster energy: 30GeV~180GeV
- 30GeV: BSC_{xy}= $(4\sigma_{xy}+5mm)*2$

- Inj. emittance from Linac: ≤10nm
- Energy spread from Linac: $\leq 0.16\%$

Injection energy change to 30GeV

- 30GeV injection is adopted for the cost saving in TDR.
 - The non-oriented steel laminations for the iron dominated dipole magnet can be used at 30GeV.
 - A cost balance between Linac and booster
- Linac parameters at 30GeV
 - bunch length= 0.4mm, energy spread= 0.15%, emittance=6.5nm
- Magnetic design: the quality of the dipole and sextupole fields meet the physical requirements.

DA results with errors and correction

	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (μm)	100	100	-
Longitudinal shift Z (µm)	100	150	-
Tilt about X/Y (mrad)	0.2	0.2	-
Tilt about Z (mrad)	0.1	0.2	-
Nominal field	1e-3	2e-4	3e-4

• Include multipole errors

dipole	quadrupole
$B1/B0 \le 2 \times 10^{-4}$	
$B2/B0 \le 5 \times 10^{-4}$	$B2/B1 \le 3 \times 10^{-4}$
$B3/B0 \le 2 \times 10^{-5}$	$B3/B1 \le 2 \times 10^{-4}$
$B4/B0 \le 8 \times 10^{-5}$	$B4/B1 \le 1 \times 10^{-4}$
$B5/B0 \le 2 \times 10^{-5}$	$B5/B1 \le 1 \times 10^{-4}$
$B6/B0 \le 8 \times 10^{-5}$	$B6/B1 \le 5 \times 10^{-5}$
$B7/B0 \le 2 \times 10^{-5}$	$B7/B1 \le 5 \times 10^{-5}$
$B8/B0 \le 8 \times 10^{-5}$	$\text{B8/B1} \le 5 \times 10^{-5}$
$B9/B0 \le 2 \times 10^{-5}$	$B9/B1 \le 5 \times 10^{-5}$
$B10/B0 \le 8 \times 10^{-5}$	$B10/B1 \le 5 \times 10^{-5}$

	Accuracy (m)	Tilt (mrad)	Gain	Offset w/ BBA(mm)
BPM(10Hz)	1e-7	10	5%	30e-3

- Orbit & Dispersion Correction (100 seeds)
 - Response Matrix (RM)+SVD
- Optics Correction (93 seeds)
 - RM + LOCO

RMS	ТМЕ
Orbit (mm)	0.062/0.071
Beta Beating(%)	0.16/0.1
Δ Dispersion(mm)	1.2/3.3

> DA track in AT w/o SR

* refer to Daheng Ji' talk on this workshop

D. H. Ji

- Tracking by **SAD** (1500 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- On axis injection from Linac to booster
- BSC definition (ε_{inj} =6.5nm):

$$BSC_{x,y} = 2 \times (4 \cdot \sigma_{x,y} + 5mm)$$

• Energy acceptance: $3*\delta_{inj}=0.45\%$

- Tracking by **SAD** (1200 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- Off axis injection from booster to collider
- BSC definition ($\varepsilon_x = 0.18$ nm, $\varepsilon_y = \varepsilon_x * 1\%$): BSC_{x,y} = 2×(4· $\sigma_{x,y}$ +5mm)
- Energy acceptance: $4*\delta=0.15\%$

- Tracking by **SAD** (500 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- Off axis injection from booster to collider
- BSC definition ($\varepsilon_x = 0.56$ nm, $\varepsilon_y = \varepsilon_x *1\%$): BSC_{x,y} = 2×(5· $\sigma_{x,y}$ +3mm)
- Energy acceptance: $4*\delta=0.27\%$

- Tracking by **SAD** (250 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (without taper)
- Include SR damping & fluctuation

- On axis injection from booster to collider
- BSC definition ($\varepsilon_x = 1.26$ nm, $\varepsilon_y = \varepsilon_x *1\%$): $BSC_x = 2 \times (6 \cdot \sigma_x + 3mm)$ $BSC_y = 2 \times (39 \cdot \sigma_y + 3mm)$
- Energy acceptance: $5*\delta=0.5\%$

- Tracking by **SAD** (150 turns)
- include errors (w. multipole errors)
- Include SR sawtooth orbit (with taper)
- Include SR damping & fluctuation

- Keep possibility for on axis injection to collider
- BSC definition ($\varepsilon_x = 2.84$ nm, $\varepsilon_y = \varepsilon_x *1\%$): - $BSC_x = 2 \times (6 \cdot \sigma_x + 3mm) BSC_y = 2 \times (50 \cdot \sigma_y + 3mm)$ (On-axis)
 - -- $BSC_{x,y} = 2 \times (5 \cdot \sigma_{x,y} + 3mm)$ (Off-axis)
- Energy acceptance: $4*\delta=0.59\%$

Booster ramping scheme

Dou Wang, Xiaohao Cui

On-axis injection at Higgs energy (30MW)

- Swap-out injection ٠
- Current threshold in booster: 1mA •

- Current decay for collider: 3% (top up mode) •
- 4 damping times to merge the bunches in booster

2

t (s)

3

4

5

16.2 16.1

0

1

On-axis injection at Higgs energy (50MW upgrade)

- Swap-out injection
- Current threshold in booster: 1.4 mA

- Current decay for collider: 3% (top up mode)
- Small upgrade for the RF power source

Beam beam instability for on-axis injection

Yuan Zhang

Injection scheme at Z pole

Top-up injection

- Current drop: 3.0% (804mA in collider)
- Booster current = **9.5mA**
- Train num. @ booster = train num.@collider / 3
- Injection speed of Linac: double bunch@100Hz

➢ Full injection

- Train num. @ booster = train num.@collider / 2
- Bootstrapping from 220mA (beam-beam stability)
- Injection speed of Linac: double bunch@100Hz

Beam parameter evolution

The 2023 International Workshop on CEPC (EU Edition)

Eddy current effect

• Dedicated ramping curve to control the maximum K2.

- Analytical estimation for eddy effect*
- K2 reaches max at 45GeV.

• Al beam pipe (round shape)

Dou Wang, Yuemei Peng, Daheng Ji

- inner diameter: 56mm, thickness: 2mm
- Dynamic chromaticity is not corrected.

- Sextupole field is attached to dipole

- 30 GeV injection weaken the eddy effect
- Independent sext. (~100) chromaticity adjustment

*Yuan Chen et al., Analytical expression development for eddy field and the beam dynamics effect on the CEPC booster, IJMPA, Vol. 36, No. 22 (2021) 2142010

RF ramping curve

- Different RF ramping curve for each energy mode (constant vs)
 - vs for *tt*: 0.14

٠

- vs for Higgs: 0.094
- vs for W & Z: 0.088
- Max RF voltage @*tt* determined by longitudinal quantum lifetime & DA.
 - $\eta_{\rm RF}$: ~ 12 × δ
 - VRF (180GeV)=9.8GV

Longitudinal acceptance

• ± 3 times of sigma for the longitudinal beam size and the energy spread

Booster instability

Y. D. Liu, J. Y. Zhai, D. Yin, Y. F. Sui, J. H. Yue

≻ 30GeV: Multi-bunch coupled instability

- Growth time ~ 18ms (transverse) (Z mode) ~ 250ms (longitudinal)
- Damping time of feedback
 - ~ 10ms (transverse) ~ 200ms (longitudinal)

➢ 120GeV: Single-bunch TMCI instability due to swap-out injection

- Threshold of bunch current: 70uA (56mm aluminum chamber)
- Maximum bunch current: 62uA

Optics parameter comparison

D. H. Ji, W. Kang

Lattice	FODO 0 (CDR)	TME (TDR-combine magnets)
Emittance X (nm) @120GeV	3.57	1.26
Momentum compaction (×10 ⁻⁵)	2.44	1.12
Tunes	[263.201/261.219]	[321.271/117.193]
Quad amount	2110	3458
Quad Strength (K1L rms)	0.0383	0.0259
Sext amount	512	100
Sexts Strength (K2L rms)	0.179	0.0492
H Corrector	1053	1218
V Corrector	1054	1220
BPM	2108	2400
Power consumption of magnets@120GeV (MW) (max/average)	15/6	12.1/4.8

> TME is less sensitive to error effects

> TME has lower magnets' power consumption

• Weaker quad/sex strength

Vacuum requirement in booster

D. Wang, Y. S. Ma

	30GeV	45.5GeV	80GeV	120GeV	180GeV
P (ntorr)	30	30	30	30	40

- Vacuum lifetime at five energy > 3 hours (include 50MW upgrade)
- 30 GeV is the most demanding energy from the view of vacuum lifetime.

Booster TDR parameters

Extraction

Maximum bunch charge

Maximum single bunch current

Beam energy

Bunch number

- Injection energy: $10\text{GeV} \rightarrow 20\text{GeV} \rightarrow 30\text{GeV}$
- Max energy: $120 \text{GeV} \rightarrow 180 \text{GeV}$
- Lower emittance new lattice (TME)

Injection		tt	Н	W		Ζ	Threshold of single bunch current
Beam energy	GeV		(30			Threshold of beam current (limited by RF system)
Bunch number		35	268	1297	3978	5967	Beam current
Threshold of single bunch current	μΑ	8.68	6.3		5.8		Growth time (coupled hunch instability)
Threshold of beam current (limited by coupled bunch instability)	mA	97	106	100	93	96	Bunches per pulse of Linac
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9	Time for ramping up
Single bunch current	μA	3.4	2.3	2.4	2.65	2.69	Injection duration for top-up (Both beams)
Beam current	mA	0.12	0.62	3.1	10.5	16.0	Injection interval for top-up
Growth time (coupled bunch instability)	ms	2530	530	100	29.1	18.7	Current decay during injection interval
Energy spread	%			0.025			
Synchrotron radiation loss/turn	MeV		6.5			Energy spread	
Momentum compaction factor	10-5	1.12			Synchrotron radiation loss/turn		
Emittance	nm	0.076			Momentum compaction factor		
Natural chromaticity	H/V			-372/-269			Emittance
RF voltage	MV	761.0	346.0	0 300.0			Natural chromaticity
Betatron tune v_x/v_y			32	1.23/117.18	8		Betatron tune v_r/v_r
Longitudinal tune		0.14	0.0943		0.0879		RF voltage
RF energy acceptance	%	5.7	3.8	3.6			Longitudinal tune
Damping time	s	3.1			RF energy acceptance		
Bunch length of linac beam	mm	0.4			Damping time		
Energy spread of linac beam	%	0.15			Natural hunch length		
Emittance of linac beam	nm			6.5			
							Full injection from empty ring

*Diameter of beam pipe is 56mm for re-injection with high single bunch current @120GeV.

H

120

70

1

- 1

4.3

38

0.099

1.69

1.26

2.17

0.0943

1.59

47.6

1.85

0.16

0.14

On axis

injection

261+7

20.3

61.2

0.98

1215

31.8

3%

1.12

-372/-269

321.27/117.19

Off axis

injection

268

0.7

2.1

0.56

2359

23.1

tt

Off axis

injection

180

35

0.99

3.0

91.5

0.3

0.11

16611

1

7.1

29.2

65

0.15

8.45

2.83

9.7

0.14

1.78

14.2

1.8

0.1

GeV

nC

μA

μA mA

mΑ

ms

S

S

%

GeV

10-5

nm

H/V

GV

%

ms

mm

h

W

Off axis

injection

80

1297

0.73

2.2

22.16

4

2.85

297.8

1

2.4

38.1

155

0.066

0.33

0.56

0.87

0.0879

2.6

160.8

1.3

0.27

Ζ

Off axis injection

45.5

9.57

16

2

1.0

153.5

0.037

0.034

0.19

0.46

0.0879

3.4

879

0.75

1.8

0.8

5967

0.81

2.42

14.4

31.6

3978

0.8

2.4

9.5

49.5

132.4

- Design status for CEPC Booster
 - Booster design requirements in TDR
 - Booster TDR optics (including errors)
 - Timing structure & dynamic parameters during ramping
 - Summary of Booster TDR parameters

Design status for CEPC positron damping ring

- DR parameters
- DR optics (including errors)
- Particle tracking through the transport lines

• Summary

Damping ring design requirement

Dou Wang, Cai Meng

• lower emittance collider \rightarrow lower emittance booster \rightarrow lower emittance linac

	CDR	TDR	remark
Energy (GeV)	1.1	1.1	
Inj. Emittance (mm·mrad)	2500	2500	
Ext. emittance (mm·mrad)	530	<200	1) Linac lower emittance: 10nm@30GeV, 2)use C band acc. structure as early as possible
Storage time (ms)	20	20	
Damping time (ms)	15	<13	1) Smaller ext. emittance with same storage time
Circumference (m)	75	~150	1) Smaller nature emittance for DR

Damping ring layout (CDR)

• Linac repetition: 100Hz

•

Only for positron beam

- Storage time: 20 ms
- Emittance (norm.): $2500 \rightarrow 530$ mm.mrad

DR parameters in TDR

• Damping with reversed bending magnet		
• 4 (max. 8)-bunch storage, storage time:20 (40) ms		
• Emittance: 2500→ 166/75 (97/3) mm.mrad		
• Flexibility for extr. emittance		
20m C=147m 20m		

	DR V3.0
Energy (Gev)	1.1
Circumference (m)	147
Number of trains	2 (4)
Number of bunches/trian	2
Total current (mA)	12.4 (24.8)
Bending radius (m)	2.87
Dipole strength $B_0(T)$	1.28
U ₀ (kev/turn)	94.6
Damping time x/y/z (ms)	11.4/11.4/5.7
Phase/cell (degree)	60/60
Momentum compaction	0.013
Storage time (ms)	20 (40)
δ ₀ (%)	0.056
ε_0 (mm.mrad)	94.4
injection σ_z (mm)	4.4
Extract σ_{z} (mm)	4.4
ε_{inj} (mm.mrad)	2500
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)	166(97)/75(3)
$\delta_{\rm inj}/\delta_{\rm ext}$ (%)	0.18 /0.056
Energy acceptance by RF(%)	1.8
f _{RF} (MHz)	650
V _{RF} (MV)	2.5
Longitudinal tune	0.0387

DR time structure

Xiaohao Cui, Cai Meng, Gang

The 2023 International Workshop on CEPC (EU Edition)

DR optics

- Phase/cell: 60°/60°
- Interleave sextupole scheme
- 2 sex. families

- Cell length: 3m
- B=1.28T
- $\theta_r/\theta_0 = 0.355$

 $\delta_{E} p_{oc} = 0.0000$ Table name = TWISS

DR DA results

- Large trans. acceptance \rightarrow inj. efficiency
 - DA > 5 inj. beam size (ϵ_{inj} =2500mm.mrad)
 - Energy acceptance =1.8% (RF)

Phase/cell: 60°/60°

Error study for DR

Parameters	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (µm)	100	100	100
Longitudinal shift Z (µm)	100	150	100
Tilt about X/Y (mrad)	0.2	0.2	0.2
Tilt about Z (mrad)	0.1	0.2	0.1
Nominal field	1×10-3	2×10-4	3×10-4

Parameters	BPM (10 Hz)
Accuracy (m)	1×10 ⁻⁷
Tilt (mrad)	10
Gain	5%
Offset after beam based alignment (BBA) (mm)	30×10 ⁻³

Dipole	Quadrupole	Sextupoles	
$B_1 \leq 2$			
$B_2 \leq 3$	$B_2 \leq 3$		
$B_3 \le 0.2$	$B_3 \leq 2$	$B_3 \le 10$	
$B_4 \leq 0.8$	$B_4 \leq 1$	$B_4 \leq 3$	
$B_5 \le 0.2$	$B_5 \leq 1$	$B_{5} \le 10$	
$B_{6} \le 0.8$	$B_{6} \le 0.5$	$B_6 \le 3$	
$B_7 \leq 0.2$	$B_7 \leq 0.5$	$B_7 \le 10$	
$B_8 \leq 0.8$	$B_8 \le 0.5$	$B_8 \leq 3$	
$B_9 \leq 0.2$	$B_9 \leq 0.5$	$B_9 \le 10$	
$B_{10} \le 0.8$	$B_{10} \le 0.5$	$B_{10} \le 3$	

• Orbit correction only

Daheng Ji, Dou Wang

150

•
$$BSC_{x,y}=5\sigma_{inj_x,y}+5mm$$

 Energy acceptance: 8.3δ_{inj}=1.5%

* refer to Daheng Ji' talk on this workshop

Transport lines between DR and Linac

ESBS: Electron source FAS: First acceleratin EBTL: Electron bypass ESBS FA t t 50MeV 1.1GeV 102.4m 243 345.9m	e & bunching system ng section s transport line EBTL S 4GeV 200MeV 335.5m 80.9m	PSPAS: Positron source & pre-accelerating section SAS: Second accelerating section TAS: Third accelerating section DR: Damping ring TAS TAS TAS TAS TAS TAS TAS TAS TAS TAS		X. H. Cui, D. Wang
Linac→DR	EC	DR→Linac	BC	
E ₀ (Gev)	1.1	E ₀ (Gev)	1.1	
δ ₀ (%)	0.5	δ ₀ (%)	0.056	
σ_{z0} (mm)	1.5	σ _{z0} (mm)	4.4	
f _{RF} (MHz)	2860	f _{RF} (MHz)	2860	
V _{RF} (MV)	16.5	V _{RF} (MV)	20.6	
Length of acc. Structure (m)	1.0	Length of acc. Structure (m)	0.76	
$\phi_{\rm pc}$ (degree)	87	ϕ_{RF} (degree)	89.7	
$R_{rc}(m)$	-0.83	R ₅₆ (m)	-0.89	
E. (Gev)	1 1	E _f (Gev)	1.1	
δ (%)	0.18	δ _f (%)	0.55	
$\sigma_{\rm f}$ (mm)	0.10	σ _{zf} (mm)	0.5	
$O_{zf}(mm)$	4.4			

Optimization of the EC design

- We optimized the RF voltage of EC based on the particle tracking with realistic distributions of particles from the target.
- The injected energy spread at the entrance of DR is 0.185% (RMS).
- RF acceptance of DR is enlarged by a higher RF voltage (1.8%).

Particle tracking from Linac to DR (before ECS)

- Track by SAD (real distribution)
- Inj emittance: ~2500mm.mrad

- σ_0 :~1.5mm (RMS)
- δ_0 :~0.4% (RMS)

Cai Meng

Particle tracking from Linac to DR (after ECS)

- Track by SAD (real distribution)
- Transporting efficiency: ~95%

- $\sigma_f :\sim 4 \text{ mm} (\text{RMS})$
- $\delta_{\rm f}$:~0.18% (RMS)

Particle tracking from DR to Linac

- Track by SAD (Guass distribution)
- Ext. emittance: 166 (H) /75 (V) mm.mrad
- $\sigma_f \approx 0.5 \text{ mm} (\text{RMS})$
- δ_f :~0.55% (RMS)

Dou Wang, Xiaohao Cui

Alternative design for the DR with polarization

Summary

- Booster energy range is modified in TDR. $(10 \text{GeV}/120 \text{GeV} \rightarrow 30 \text{GeV}/180 \text{GeV})$
- Update booster design with smaller emittance in TDR— support for CEPC high lum. scheme
 - TME structure with combined magnets (B+S)
 - Booster parameters update consistent with CEPC TDR parameters at 4 energy
 - Booster design meets all energy mode requirements of collider (inc. error effects/SR/eddy current).

Damping ring update is also the requirement of higher luminosity goal for TDR.

- Circumference: ~150m, energy: 1.1GeV
- Reversed bending, extracted emittance=97~166 mm·mrad (adjustable)
- Damping time: $15ms (CDR) \rightarrow 11ms (TDR)$
- DR design meets the requirements of Linac (inc. error effects).

Thanks for your attention!