

CEPC Linac design

CEPC International Workshop 2023, 3-6. July. 2023 Cai MENG

中國科學院為能物昭湖完施 Institute of High Energy Physics Chinese Academy of Sciences

Contributors: J.R Zhang, X. P. Li, D. Wang, J. Gao, J. Y. Li (IHEP)

Acknowledgement: T. Kamitani, K. Furukawa (KEK)

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme

• Experimental study on emittance growth in high bunch charge beam

• Summary

Introduction: CEPC Layout

CEPC as a Higgs (ttbar, H, W, Z) Factory

- Linac, 30GeV, 1.8km
- Full energy Booster, 100km
- Collider, 100 km
- Transport lines
- Linac design
 - Meet requirements
 - High availability
 - Reserve upgrade potential

$$L_{\rm int} = \int_0^T L(t) dt = \langle L \rangle \cdot T_s \cdot \eta$$

CEPC Linac is a high energy electron and positron linear accelerator

Required		<i>tī</i> (180GeV)	Higgs (120GeV)	W (80GeV)	Z (45.5GeV)		
Bunch charge	nC	1.38	1.0	1.0	1.1		
Bunch number per pulse		1	1	1	2		
Repetition rate	Hz	100					
Switch time for electron and positron	S	3.5					

Parameter	Symbol	Unit	Baseline
Energy	E_{e}/E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse	,		1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	$\sigma_{_E}$		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5
Switch time for electron and positron		S	3.0

Introduction: Why is 30-GeV needed?

- The maximum energy of booster is 180GeV and circumference is 100 km
 - Large circumference & Low injection energy \rightarrow Low magnetic field
 - design difficulty in magnet (*field*) and power supply (*stability*)
 - Large extraction energy \rightarrow Large field range
 - design difficulty in magnet (*excitation efficiency*) and power supply (*power*)
- Increasing the energy of the Linac is the easiest way: 30 GeV

Magnat		Low injection energy			Max. Extraction energy	Cast
	wagnet	10GeV	20GeV	30GeV	180GeV	COST
	CT Air-core coil	Yes	Yes	Yes	No	Very high
iron-corn	oriented silicon steel sheet	No	Yes	Yes	Yes	high
magnet	Non-oriented silicon steel sheet	No	No	Yes	Yes	low

effect of residual magnetism

Introduction: How to achieve 30-GeV

Acceleration:

- S-band accelerating structure
- C-band accelerating structure @TAS (1.1GeV→30GeV)
 - **Higher gradient** → Shorter linac tunnel length
 - Small aperture & Strong wakefield

Layout

- The tunnel is 1.8km
 - Linac is about 1.6 km
 - 200 m as reserved space

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme

Brief introduction of the HEPS Linac beam commissioning

• Summary

Basic consideration: Wakefield

Wakefield

- Emittance growth
- Energy spread

Parameter	Unit	S-ba	nd	C-band
Frequency	MHz	2860		5720
Length	m	3.1	2.0	1.8
Cavity mode		2π/3		3π/4
Aperture	mm	19~26	25	12~16
Gradient	MV/m	22/27	22	40~45
Cells (include coupler cells)		86	55	89
Number of Acc. Stru.		93	16	470
Number of Klystron		34		236
Klystron Power	MW	80		50

K. Yokoya and K. Bane, in *Proceedings of the 1999 IEEE Particle Accelerator Conference, New York, NY* (Piscataway, NJ, 1999), p. 1725. Karl Bane, LCC-0116, SLAC-PUB-9663, March 2003

Basic consideration: Bunch length

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme
- Experimental study on emittance growth in high bunch charge beam
- Summary

Electron Linac: Electron source and bunching system

Layout

- Thermionic cathode electron gun
- bunching
 - Two SHBs (158.89MHz/476.67MHz)
 - Buncher(2860MHz)
 - Accelerating structure (2860MHz)
- Solenoid for transverse focusing
- Simulation results
 - Energy: 50MeV
 - Normalized Rms Emittance: 80mm-mrad
 - Transmission
 - 90%
 - required bunch charge: 6.7nC @ 3nC positron beam

Electron Linac: Acceleration section

Electron Linac: Beam dynamics results

Electron Linac: Beam dynamics results

- One risk is that the accelerating gradient of Cband structure is high in the baseline scheme
 - If the accelerating gradient is 40 MV/m, it still work
 - 215+21(redundancy) C-band klystron, 9% backups
 - If no backups, the accelerating gradient is 36 MV/m, which is safe operating gradient
 - The reserved space can provide an additional 4.5GeV of energy as a further backup
 - Maybe baseline value will be redefined as 40MV/m

Parameter	Acc. Grad.	Backups	Reserved Linac tunnel for acceleration
	MV/m	%	GeV
Baseline design	45	19	5.6
Alternative Case-1	40	9	5.0
Alternative Case-2	36	0	4.5

Parameter	lloit	Valua	Simulated		
	Unit	value	Electron		
Beam energy	GeV	30	30.56	30.06	
Repetition rate	Hz	100			
Bunch charge	nC	1.5	1.5	3.0	
Energy spread	10-3	1.5	0.76	1.34	
Emittance(x/y)	nm	6.5	1.38/1.36	1.46/1.75	
Bunch length (RMS)	mm	/	0.4	0.4	

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme
- Experimental study on emittance growth in high bunch charge beam
- Summary

Positron Linac: FAS for positron production

Acceleration: 50MeV→4GeV @10nC

- 18+3(redundancy) S-band klystron
- 1 klystron \rightarrow 4 accelerating structures

 $-\varepsilon_{\rm v}$

- Gradient: 22MV/m
- Simulation results
 - Energy: 4GeV

100

– Energy spread: 0.63%

Positron Linac: PSPAS

- Positron source
 - Target (Conventional)
 - tungsten@15 mm
 - Beam size: 0.5 mm
 - Online beam size monitor
- AMD (Adiabatic Matching Device)
 - Length: 100mm
 - Aperture: 8mm→26mm
 - − Magnetic field: $(5.5T \rightarrow 0T) + 0.5T$

Capture & Pre-accelerating structure

- 1 klystron \rightarrow 2 accelerating structures
 - Larger aperture S-band accelerating structure with aperture is 25 mm, gradient is 22 MV/m and length is 2 m
- Solenoid
- Chicane
 - Wasted electron separation

Positron source: SAS

• Acceleration: $200 \text{MeV} \rightarrow 1.1 \text{GeV}$

- 8+1(redundancy) S-band klystron
- − 1 klystron \rightarrow 2 accelerating structures
 - 10 Larger aperture S-band accelerating structure@22M[™]/m
 - 8 normal S-band accelerating structure@27MV/m
 - HEPS: 26MV/m with beam (limit by power source)

Transverse focusing

- Triplet quadrupoles are outside
 each accelerating structure
- Simulation results
 - Energy: 1.1GeV
 - Energy spread: 0.4%
 - Bunch charge: ~4.5nC
 - Normalized rms Emittance: 2500mm-mrad

Simulation results (including Wakefield & CSR)

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme
- Experimental study on emittance growth in high bunch charge beam
- Summary

Error study: Misalignment errors

		Transverse	Longitudinal	Potation orror
Elements	Number	misalignment	misalignment	Rotation error
		mm	mm	mrad
Electron Gun	1	0.1	0.2	0.2
Positron source	1	0.1	0.2	0.2
Large-aperture S-band Acc. Stru.	16	0.1	0.1	0.2
S-band Acc. Stru.	91	0.1	0.1	0.2
SHB1	1	0.1	0.15	0.2
SHB2	1	0.1	0.15	0.2
BUN	1	0.15	0.15	0.2
C-band Acc. Stru.	470	0.1	0.1	0.2
C-band defecting cavity	1	0.1	0.1	0.2
Solenoid	37	0.15	0.2	0.2
Quadrupole	364	0.1	0.2	0.2
Dipole	15	0.15	0.2	0.2
Corrector	275	0.15	0.2	0.2
BPM (10μm)	150	0.1	0.2	0.2
PR	30	0.15	0.2	0.2

Error study: Orbit correction

Orbit correction

Error study: Energy jitter

Error study: simulation results

According to simulation, the Linac with errors can meet the requirements @ 1.5nC

Parameter				Simulated					
		Unit	value	Elect	tron	Ро	sitron		
Beam energy		GeV	30	30.5	30.0	30.5	30.0		
Bunch charge		nC	1.5	1.5	3.0	1.5	3.0		
Enorgy sproad	W/O error	- ×10 ⁻³	× 10-3	× 10-3	1 5	0.68	1.37	1.29	2.16
Energy spread	W/ error		1.5	0.64±0.14	1.45±0.13	1.30±0.01	2.16±0.01		
Energy jitter		×10 ⁻³	1.0	0.22	0.24	0.21	0.22		
Emittance(H/V)	W/O error		6.5	1.38 1.36	1.44 1.63	3.37 1.68	3.90 1.71		
	W/ error	11111		1.41±0.07 1.40±0.06	1.91±0.30 2.21±0.62	3.39±0.08 1.69±0.03	5.01±1.63 2.18±0.56		

Introduction of the CEPC Linac

Physics design of the CEPC Linac

- Basic consideration
- Electron Linac
- Positron Linac
- Error study
- Double-bunch acceleration scheme
- Experimental study on emittance growth in high bunch charge beam
- Summary

Z scheme: Double-bunch acceleration scheme

- In order to meet the injection requirement of high luminosity Z scheme, one should increase the injection speed of the Linac to the booster.
 - Double-bunch acceleration scheme
 - To filling the required bucket pattern, the SHB RF frequency should be checked
 - Pulse compressor
 - RF frequency of the Linac, booster and ring is 2860MHz,1300MHz and 650MHz
 - Greatest common divisor (GCD) is 130MHz
 - Linac RF frequency
 - Divide the common frequency to 14.44MHz, then multiply to the corresponding RF frequency
 - Frequency multiplication to 2860MHz, 5720MHz by common frequency

Parameter Unit		Design value	
Repetition frequency	Hz	100	
Common frequency	MHz	130	
Linac common frequency	MHz	14.44	
Bunch frequency	MHz	14.44	
SHB1 RF frequency	MHz	158.89	
SHB2 RF frequency	MHz	476.67	
	MHz	2860	
LINAC KF frequency	MHz	5720	
Damping ring RF frequency	MHz	650	
Booster RF frequency	MHz	1300	
Ring RF frequency	MHz	650	
Bunch spacing @Collider	ns	23.08	
Bunch spacing @Linac	ns	69.23	
Injection scheme		bunch-by-bunch	
Harmonic number		45*(2k) + [10, 20, 40]	
		45*(2k+1) + [5, 25]	
Bunch number per trai	า	6n	

Z scheme: Double-bunch acceleration scheme

Energy multiplication factor can meet the requirements

- S-band:
 - RF pulse is about 4.0µs
 - Filling time is about 0.83 μs
- C-band: 95% Acc. Eff.
 - RF pulse maybe is about 2.5µs
 - Filling time is about 0.27 μs

- Introduction of the CEPC Linac
- Physics design of the CEPC Linac
 - Basic consideration
 - Electron Linac
 - Positron Linac
 - Error study
 - Double-bunch acceleration scheme

• Experimental study on emittance growth in high bunch charge beam

Summary

HEPS Linac beam commissioning

HEPS Linac beam commissioning

Klystron gallery and Linac tunnel

HEPS Linac beam commissioning

High bunch charge Linac

Emittance optimization: Wakefield effect

Reasonable Lattice

- Measured Twiss parameters@AS1
- Matched Lattice with strong focusing
- Reasonable orbit
 - Maintain transmission efficiency
 - Target: Beam size @PR4
 - Adjustment amounts: corrector
 - Method: as small as possible beam size

Emittance optimization: Wakefield effect

Reasonable orbit

- Maintain transmission efficiency
- Target: orbit
- Adjustment amounts: corrector
- Method: Wakefield-free steering correction (WFS)
- The effectiveness of the method has been preliminarily verified

	α_x	β_x	$\varepsilon_x(nm)$	α_y	β_y	$\varepsilon_y(nm)$
initial	-0.237	4.27	67.52	-0.567	6.393	80.46
$\omega = 0.5$	0.021	4.645	44.93	-0.304	6.189	53.64
$\omega = 1$	-0.18	5.188	56.06	-0.527	9.857	76.03
(1.0, 0.5)	0.13	6.093	38.51	-0.117	3.894	32.94
(2.0, 0.5)	0.156	6.121	35.15	0.076	4.725	36.90

Orbit and response matrix @ 2.6nC and 1nC

$$\begin{pmatrix} x \\ \omega_w \,\Delta x \end{pmatrix} = \begin{pmatrix} R \\ \omega_w [R - R_w] \end{pmatrix} \boldsymbol{\theta}$$

— ini

121
 WFS(0.5,0.5)

WFS(1,1)
 WFS(1,0.5)

WFS(2,0.5)

Stability: Excellent performance

Stability: orbit iitter		Х	Y
		μι	m
	BPM3	53	50
	BPM4	39	79
- Average has a whit litter is 15 was @ 0 Exc (1 hours)	BPM5	45	34
Average beam orbit jitter is 45 µm @ 2.5hC (4 hours)	BPM6	27	54
	BPM7	26	38
	وروارية والمترافية والمترور والمترور والمرار	t nation of the later late	المدر الل
	a sufficiently and a little for		
	al an		
	الماملية المراجع المالية والمراجع	All lives and states	1
	ala a filia da su con dina a a di fila.	a a an ann an	. J.d.
		Nerthink (Red and Alaphi	
	ر. مارسیان د از منطقا بر معال	heldender die seit televisie	ي ا
	and the first start started	La loca esta loca esta dela	
	initerentia initatore	al na se la na se la fa fa fa	. ((a.).
	Milita kura karandika ara di	historial and the termination	الداه
	had an a start of the second		APPEN .
	5:30 16:	00 16:30	

2023-06-09

35

Measurement results can meet the design requirements.

		Designed		Measured	
Parameter	Unit	Mode1	Mode2	Mode1	Mode2
Pulse charge	nC	≥2.5	≥7.0	2.84 ± 0.02	7.29 ± 0.02
Energy	MeV	≥500	≥500	501.4	501.2
Energy spread	%	≤0.5	≤0.5	0.31	0.45
Energy stability	%	±0.25	±0.25	σ =0.014 Peak-peak= \pm 0.04	σ =0.014 Peak-peak= \pm 0.05
Geometric emittance	nm∙rad	≤41	≤70	37.2(H) 36.9(V)	56.4(H) 58.5(V)

- The Linac energy is designed to 30 GeV to ease the booster magnet design difficulties (low field at injection energy and large magnetic field range) and save the total cost.
- The C-band accelerating structure is used from 1.1 GeV to 30 GeV.
- The lattice design and dynamic simulation have been finished, the design can meet the requirements.
- For high luminosity Z scheme, double-bunch-per-pulse is need and the baseline scheme can meet the requirements.
- The successful beam commissioning of the HEPS Linac gives us experience.

中國科學院為能物品和完備 Institute of High Energy Physics Chinese Academy of Sciences

Thank you for your attention!

