

Beam Polarization For Future e+e- Colliders

Jacqueline Keintzel On behalf of The FCC-ee EPOL working group

Special thanks to: Alain Blondel, Rogelio Tomas, Guy Wilkinson and Frank Zimmermann

jacqueline.keintzel@cern.ch

CEPC Workshop Edinburg, Scotland, UK July 04, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Future Circular Collider

- Integrated FCC project inspired by LEP LHC programm
- Seamless continuation after HL-LHC
- ~91 km cicumference

Focus on FCC-ee in this talk

Circular Electron Positron Collider

- Basic design
 - As a Higgs(120 GeV), Z (45.6GeV) & W(80GeV) Factory
 - Upgradable to High Lumi Z & ttbar(175 GeV)
 - Compatible with SppC
- Progress
 - CDR released in 2018
 - TDR to be delivered in 2023
 - Beam polarization as a chapter in Appendix
 - Transverse polarization for resonant depolarization at Z & W
 - Longitudinally polarized colliding beams at Z-pole (and beyond)

[1] Slides of Beam Polarization Studies presented on CEPC Accelerator TDR Review Meeting 14/06/2023, Hong Kong https://indico.ihep.ac.cn/event/19262/contributions/135019/attach ments/69261/83123/CEPC polarization study v5 uploaded.pptx

TDR, High luminosity (30MW)

	Higgs	W	Z	ttbar				
Number of IPs	2							
Circumference [km]	100.0							
SR power per beam [MW]	30	30 80 1297 84.1 0.21/1 0.87/1.7	30 45.5 11951 803.5 0.13/0.9 0.27/1.4	30 180 35 3.3 1.04/2.7 1.4/4.7				
Energy [GeV]	120							
Bunch number	249							
Beam current [mA]	16.7							
Beta functions at IP (βx/βy) [m/mm]	0.33/1							
Emittance (ɛx/ɛy) [nm/pm]	0.64/1.3							
Beam size at IP (σx/σy) [um/nm]	15/36	13/42	6/35	39/113				
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9				
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20				
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6				
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1				
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)				
RF frequency [MHz]	650							
Beam lifetime [min]	20	55	80	18				
Luminosity per IP[10 ³⁴ /cm ² /s]	5.0	16	115	0.5				

Talk: Z. Duan -> Tuesday 16:10

FCC-ee Overview

Particle Physics:

- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
 - 45.6 GeV: Z-pole
 - 80 GeV: W-pair-threshold
 - 120 GeV: ZH-production
 - 182.5 GeV: top-pair-threshold
- High number of statistics

Accelerator Physics:

- 4-fold super-symmetric layout
 - Up to 4 Interaction Points (IPs)
 - 2 points with RF-cavities
 - 1 collimation section
 - 1 section for injection and dump
- Nanometer beam size at IPs
- Strong synchrotron radiation

Precision particle physics experiments Center-of-mass energy determination

Center-of-mass Energy Uncertainty

Error between measured and true E_{cm}

- Large effect on mass measurement
- Stems from systematic errors

Fluctuation between measurements

- Large effect on width and assymmetry measurements
- Stems from variability of measurement conditions

Courtesy: A. Blondel

Expected Precision

	Errors at Z pole	stats	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s_{\rm syst-ptp}}$	calib. stats	$\sigma_{\sqrt{s}}$
	Observable		$100{\rm keV}$	$40 \mathrm{keV}$	$200 \mathrm{keV}/\sqrt{N^i}$	$85 \pm 0.05 \mathrm{MeV}$
z	$m_{\rm Z} \ (\rm keV)$	4	100	28	1	—
	$\Gamma_{\rm Z} \ ({\rm keV})$	4	2.5	22	1	10
	$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	_	2.4	0.1	_
	$\frac{\Delta \alpha_{\rm QED}({\rm m}_{\rm Z}^2)}{\alpha_{\rm QED}({\rm m}_{\rm Z}^2)} \times 10^5$	3	0.1	0.9	_	0.1
WW {	Errors at W pair	stats	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s}_{\rm syst-ptp}$	calib. stats.	$\sigma_{\sqrt{s}}$
	Observable		$300\mathrm{keV}$	$100 \mathrm{keV}$	$300 \mathrm{keV}/\sqrt{N^i}$	$85\pm 0.05{\rm MeV}$
	$m_W (keV)$	250	140	50	3	_

Large expected luminosity → huge statistics → small statistical error: 4 / 100 keV per Z / W - boson

Aim to achieve same order of magnitude for systematic errors → Scope of the EPOL working group

EPOL: Energy calibration, polarization and monochromatization

arXiv:1909.12245

Courtesy: E. Gianfelice, G. Hoffstaetter

Polarization Build-Up

More likely (by factor ~ 25)

Less likely

- Statistically every 10^{10th} emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is anti-parallel to the guiding magnetic field
- In a flat synchrotron only vertical bending \rightarrow vertical spin orientation
- Known as Solokov-Ternov-Effekt
- Maximum theoretical polarization of 92.4 %
- In real accelerator max. polarization depends on various factors

Polarization time:

$$au_p^{-1} = rac{5\sqrt{3}}{8} rac{r_e \hbar \ \gamma^5}{m_0 C} \oint rac{ds}{|
ho|^3}$$

Spin Tune

- Spin precesses through the lattice
- Spin tune v: Number of spin precessions per turn
- In an error-free flat machine without solenoids:
- 45.6 GeV e⁺/e⁻ → 103.5 spin tune
- Purely vertical spin orientation

a ... gyro-magnetic anomaly y_{Rel} ... Lorentz-factor

$$v = a * \gamma_{Rel}$$

Principle: Spin tune measurement Beam energy determination

Courtesy: V. Caudan

Contributions to the Beam Energy

~4 keV at 45.6 GeV beam energy measurement –> ambitious goal of ~ **10**-7 statistical and systematic errors

Selected impacts on the beam energy

- Synchrotron radiation losses
- Earth Tides, energy followed by RF-cavities
- Chromaticity uncertainty ~ 10^{-6} : $\Delta E/E \sim 10^{-8}$
- Energy dependent path length: $\Delta E/E \sim 10^{-7}$
- Betatron oscillations: $\Delta E/E \sim 10^{-7}$
- Orbit corrections: $\Delta E/E \sim 10^{-7}$

What other large sources must be considered?

Courtesy: A. Bogomyagkov

Beam energy change due to Earth tides at LEP

Courtesy: J. Wenninger

• ...

Resonances

CEPC WORKSHOP 04 JULY 2023

Wigglers

- At 45.6 GeV energy: Polarization time of 248 h
- Solution: wiggler magnets
 - Reduce polarization time to 12 h
 - Increase energy spread by factor ~ 3.5

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)

• Use wigglers until ~5-10 % vertical polarization reached

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off
- Inject ~10000 colliding bunches (~2 x 10¹¹ ppb)

- Inject a few (100-200) non-colliding pilot bunches (~10¹⁰ ppb)
- Use wigglers until ~5-10 % vertical polarization reached
- Switch wigglers off
- Inject ~10000 colliding bunches (~2 x 10¹¹ ppb)
- Measure beam energy with pilots while collisions take place

What is the minimum required polarization?

Resonant Depolarization

Natural width $\sim 200 \text{ keV}$ at Z

Suggestion: Alternating scanning directions

Simulations achieved better than 10 keV

- Independent depolarizers per beam
- TEM wave propagating towards a pilot bunch
- Varying exciting frequency

Excitation frequency = spin tune = depolarization

Depolarizer Detuning, $\Delta \nu$ Courtesy: I. Koop Natural width ~ 1.4 MeV at W

Experience from LEP

- Resonant depolarization also used at LEP
- Strong depolarizers have lead to polarization flips
- Possibly re-use of the same pilot bunches

E [MeV]

 ν

- At LEP resonant depolarization not feasible for W
- Several shorter depolarization steps at discrete frequencies

How often could the polarization be flipped?

CEPC WORKSHOP 04 JULY 2023

Polarimeter

- ~ 520 nm circular **polarized laser** interacts with beam
- Back-scattered photons sufficient for resonance measurement
- Additional measurement of scattered electrons for 3D spin vector
- At least 1 polarimeter per beam

Spin tune Beam energy measurement

What can be gained from more polarimeters?

Scattered electrons to be measured by Si pixel detector

Courtesy: N. Muchnoi

Colliding Bunches Polarization

Take away message:

- Residual longitudinal polarization could spoil measurements and must be < 10⁻⁵
- Depolarizers must also act on colliding bunches \rightarrow Consider closed-orbit bumps to avoid impact at IP
- To be measured also with polarimeters

What are the best designs for depolarizer and polarimeter systems for pilot and colliding bunches?

Longitudinal Polarization

- Collisions with highly polarized beams for physics
- Injection of highly polarized beams required
- Spin rotators to transform to longitudinal plane

- Polarization ring could be combined with damping ring
- Present damping ring design in CEPC:

Courtesy: Z. Duan

From Beam Energy to E_{CM}

- 40 MeV synchrotron radiation losses per turn
- Additional beamstrahlung (BS) (synchrotron radiation due to field of colliding bunch) \lessapprox 0.62 MeV/beam/IP
- 1 RF section assumed in PH to compensate losses
- $\Delta E_{_{CM}} \sim$ -8 keV (PA, PD) and ~0.7 keV (PG, PJ)
- Boosts ~ +/- 10 MeV (PA, PD) and ~ +/- 30 MeV (PG, PJ)
- Pilot and colliding bunches have different local energy
- Accurate models essential

What are the systematics between pilot and colliding bunch energies?

Dispersion and Collision Offset

- D... Dispersion
- σ_{μ} ... transverse beam size
- $u_0 \dots$ collision offset

 $|\Delta\sqrt{s}| = 96 |u_0| \text{ [keV/nm]}$

for $\Delta D^* = 1 \ \mu m$, $\sigma_E / E = 0.13\%$

For $\Delta D^* = 10 \ \mu m$, the CM error is ~1 MeV/nm, i.e., the uncertainty on / average separation must be below $u_0 < 0.1$ nm to limit the systematic errors < 100 keV.

- Only relevant for colliding bunches
- Measurement and control of dispersion at collision point essential
 - $\Delta D < 1 \mu m$ relaxes requirements on collision offsets
- Collision offsets determined with e.g. luminosity scans
 - Presently collision offsets must be demonstrated to be controlled to $\sim 0.1\sigma_v$

J. Wenninger: Beam-beam and OSVD

Summary

• Electro-weak and Higgs-factory highest priority for future collider -> FCC-ee (CERN), CEPC (China)

• High precision particle physics experiments require excellent determination of E_{cm} and collision boosts

• Presently aimed to achieve 4 / 100 keV systematic uncertainty for the Z- / W- mass for FCC-ee

Regular FCC-ee EPOL meetings: indico.cern.ch/category/8678/ Typically every second Thursday 16:30-18:30

Any help is welcome!

Mailing list: fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Self-subscription from: https://e-groups.cern.ch/e-groups/EgroupsSearch.do

Thank you!

Jacqueline Keintzel On behalf of The FCC-ee EPOL working group

Special thanks to: Alain Blondel, Rogelio Tomas, Guy Wilkinson and Frank Zimmermann

jacqueline.keintzel@cern.ch

CEPC Workshop Edinburg, Scotland, UK July 04, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

ESPP Update 2020

In 2020 the European strategy upgrade of particle physics (ESPP) expressed the long-term plan for particle colliders:

Europe, together with its international partners, should investigate the technical and financial feasibility of a **future hadron collider** at CERN with a center-of-mass energy of at least **100 TeV** and with an **electron-positron** Higgs and electroweak factory as a possible **first stage**.

Lepton Future Circular Collider, FCC-ee Hadron Future Circular Collider, FCC-hh Integrated FCC Project

Experiments

- G. Wilkinson: Di-muon events "The gift that keeps on giving"
- Reliable and frequent logging of parameters essential
- Possibility to measure Z-bosons from higher E_{cm} events

Important message

All these results come from 'proof-of-principle' studies. They need to be repeated and consolidated with stateof-the-art ISR generators, proper simulation, realistic treatment of detector resolutions *etc.*, and extended to other fermion types and (in top regime) WW events. Many important & interesting studies to be performed !

One million di-muon events per 8h shift ~ 5 keV statistical precession achievable

10⁶ dimuon events at Z-pole: $e+e- \rightarrow \mu+\mu-(\gamma)$ (y)... Initial-State-Photon (ISR)

Colliding Bunches Polarization

Consider forward-backward asymmetry of $b\overline{b}$ at Z pole: $A_{FB}^b = \frac{3}{4}\mathcal{A}_e\mathcal{A}_b$

where in the SM $A_e \approx 0.15$, $A_b \approx 0.95 \Longrightarrow A_{FB}^b \approx 0.11$

Now, if there is longitudinal polarisation, asymmetry becomes: $(A_{FB}^b)' = \frac{3}{4} \mathcal{A}_e' \mathcal{A}_b$

where
$$\mathcal{A}'_{e} = -\left(\frac{\mathcal{A}_{e} - P}{1 - \mathcal{A}_{e}P}\right)$$
 with $P = \frac{(P_{z})_{e^{-}} - (P_{z})_{e^{+}}}{1 - (P_{z})_{e^{-}}(P_{z})_{e^{+}}}$

and $(P_z)_{e^{\pm}}$ the longitudinal polarisation of the e^{\pm} .

So, if $(P_z)_{e^-} = (P_z)_{e^+}$ (no reason to be so) = 10⁻⁵ (ballpark guess)

$$P = 2 \times 10^{-5} \implies \frac{(A_{FB}^b)^{/} - A_{FB}^b}{A_{FB}^b} = 1.3 \times 10^{-4}$$

G. Wilkinson: Requirements for polarization measurements

Take away message:

- **Redidual longitudinal** polarization could spoil measurements and must be < 10-5
- To be measured also with polarimeters
- Depolarizers must also act on colliding bunches

What are the best designs for depolarizer and polarimeter systems for pilot and colliding bunches?

04 JULY 2023

Monochromatization

- 62.5 GeV beam energy corresponds to the peak of Higgs-production with narrow width of 4.2 MeV
- For minimization of collision energy spread -> monochromatization techniques required

$e^{-\underbrace{E_{0} + \Delta E}}_{E_{0} - \Delta E} \xrightarrow{E_{0} + \Delta E}} e^{+} \begin{array}{c} \text{Same sign dispersion at the interaction point leads to change of } E_{CM} \end{array}$

Introducing dispersion

Introducing chromaticity

Non-zero local vertical chromaticity to reduce collision energy spread presently explored

Courtesy: A. Faus-Golfe, H. Jiang and P. Raimondi

What is the most suitable monochromatization technique?

CERN

Feasibility Study and Schedule

• From 2021-2025 with mid-term review end of 2023 and final Feasibility Study Report end of 2025

Goal: Demonstration of the geological, technical, environmental, financial and administrative feasibility of the FCC-ee, including its optimisation

Optimized Placement

- Optimized considering constraints on geology and surface
- 90.7 km circumference with 8 surface points
- Compatible layout between FCC-ee and FCC-hh

Courtesy: J. Gutleber

