

Candlemaker Pou

Greyfriars Kirk

The 2023 International Workshop on the Circular **Electron Positron Collider, European Edition Jniversity of Edinburgh 3-6 July 2023**

CMOS sensor R&D for next-generation vertex detector

sance

30

Old College:

conference

dinner

Magnus Mager (CERN) on behalf of the ALICE collaboration 03.07.2023

Infirma

Drummond Street

43

S College

Festiva

Pedestrian

underpass

Chambers Street

National Museum

of Scotland

Overview

[300 mm wafer with wafer-scale MAPS in 65 nm technology]

► Intro

- monolithic Active Pixel Sensors (MAPS)
- ALPIDE / ALICE ITS2

▶ 180 nm \rightarrow 65 nm technology

- qualification of the technology
- development of wafer-scale sensors

Future ALICE applications

- ITS3
- ALICE 3

Summary

Monolithic Active Pixel Sensors (MAPS) in a nutshell

- Single silicon chip contains both the detection volume and the readout electronics - as opposed to hybrid pixel sensors, which use two chips that need to be interconnected
- Advantages:
 - small pixel pitches: $O(10-30 \mu m)$

 - commercial process

ITS2: ALPIDE

524 288 pixels

·01

24k in continuous oper 4k in continuous oper 54k in continuous oper 55k in continuous oper

Saugerage

3cm

diced and teste Parameter Req. Spatial resolution (µm) ≈ 5 Integration time (µs) < 30 Fake-hit rate (/pixel/event) < 10-6 **Detection efficiency** > 99% **Power density (mW/cm²)** < 100 TID (krad) > 270 (IB) NIEL (1 MeV n_{eq} / cm²) > 1.7x10¹²

- Study of QGP in heavy-ion collisions at LHC
 - i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (≤1 GeV/c) particle reconstruction

ALICE ITS2 + MFT LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

Inner Tracking System

7 layers: all MAPS 10 m², 24k chips, 12.5 Giga-Pixels

Inner-most layer:

radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: $29 \times 27 \ \mu m^2$ rate capability: 100 kHz (Pb-Pb)

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

PIXEL PERFECT

A CERN for climate change dical technologies

Magnus Mager (CERN) | CMOS sensor R&D for next-generation vertex detector | CEPC, Edinburgh | 03.07.2023 | 6

See.

Pb-Pb536 LHC22s period 18th November 2022 16:52:47.893

ALICE ITS2: 7 layers ► 10 m² MAPS ► 12.5 GPixel installed in Mar-May'21 (LHC LS2)

ation vertex detector | CEPC, Edinburgh | 03.07.2023 | 7

ITS2 offspring example: sPHENIX

ITS2 R&D: process modification full depletion as "side development"

- Addition of a low-dose n-implant
 - developed together with foundry
- Opens up new applications
 - higher radiation hardness
 - faster charge collection

A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance

W. Snoeys^{a,*}, G. Aglieri Rinella^a, H. Hillemanns^a, T. Kugathasan^a, M. Mager^a, L. Musa^a, P. Riedler^a, F. Reidt^a, J. Van Hoorne^a, A. Fenigstein^b, T. Leitner^b

^a CERN, CH-1211 Geneva 23, Switzerland

owerJazz Semiconductor, Migdal Haemek, 23105, Israel

Current R&D: 180 nm \rightarrow 65 nm CMOS qualifying the TPSCo 65 nm CMOS imaging technology

Concentrated effort ALICE ITS3 together with CERN EP R&D

Key benefits

- smaller features/transistors: higher integration density
- smaller pitches
- lower power consumption
- larger wafers (200 \rightarrow 300 mm)

MLR1:

- comprehensive *first* submission: **55** prototype chips
- goal: qualify the technology (achieved)

ER1:

- goal: first test of stitching aka wafer-scale chips -
- chips are back and testing has starded

ITS3: pixel prototype chips (selection) **APTS CE65**

W W S matrix: 6x6 pixels

- readout: direct analog readout of central 4x4
- ▶ **pitch:** 10, 15, 20, 25 µm
- total: 34 dies

- analog
- **pitch:** 15, 25 µm
- total: 4 dies

matrix: 64x32, 48x32 pixels

readout: rolling shutter

- matrix: 32x32 pixels
- ΤοΤ
- pitch: 15 µm
- total: 3 dies

Comprehensive set of (small) prototypes and variants to explore the technology for particle detection

APTS – Fe-55 lab tests comparison of pitches

Process modification was introduced:	0.06
 full depletion of sensors 	0.05
 electric field pointing to collection electrodes 	y (per 1m√ 700
	0.03
Pixels of pitches of 10-25 µm show similar results	Relative freq 0.0 20
 indicates that the charge collection is very efficient 	0.01
	0.00

Allows to choose optimal pitch for the final sensor

This is a remarkable result — showing that we have very efficient charge collection

Detection efficiency Digital pixel test chip ("DPTS")

First comprehensive paper on 65 nm — summarises 1 year of measurements

Detection efficiency Digital pixel test chip ("DPTS")

First comprehensive paper on 65 nm — summarises 1 year of measurements

ITS3: Wafer-scale sensors Engineering Run 1 (ER1)

- First MAPS for HEP using stitching
 - one order of magnitude larger than previous chips
- "MOSS": 14 x 259 mm, 6.72 MPixel $(22.5 \times 22.5 \text{ and } 18 \times 18 \ \mu \text{m}^2)$
 - conservative design, different pitches
- "**MOST**": 2.5 x 259 mm, 0.9 MPixel $(18 \times 18 \ \mu m^2)$
 - more dense design
- Plenty of small chips (like MLR1)

Wafer-scale sensors benefits and challenges

- Previous chip sizes are O(1-3 by 1-3 cm²)
 - dictated by mask size
 - masks are exposed once for each chip
- Chips diced out and qualified/selected
- Interconnection on circuit boards ("modules")

esing

60

edic

- Wafer-scale "chips"/sensors: stitching of exposures
 - same mask exposed in a precisely aligned fashion
 - design is made periodic (metal lines stitch together)
 - (edges and corners need attention)
- Monolithic entity: more sensitive to manufacturing defects (yield)
- All interconnection is done on the wafer: denser, but also less conductive

10.00

what we "design"

Magnus Mager (CERN) CMOS sensor R&D for next-generation vertex detector CEPC, Edinburgh 03.07.2023 16

CERN

top part

Magnus Mager (CERN) CMOS sensor R&D for next-generation vertex detector CEPC, Edinburgh 03.07.2023 17

CERN

repeated part (1)

repeated part (2)

repeated part (3)

final circuit is a concatenation of different parts of the masks

wafer (ø=300 mm)

Magnus Mager (CERN) | CMOS sensor R&D for next-generation vertex detector | CEPC, Edinburgh | 03.07.2023 | 21

CERN

Thinning/Dicing/Picking

- Two pad wafers were thinned and diced (50 μm)
- Chips were picked using dedicated tooling
- Works! processed wafers underway

ER1 **bonding (MOSS)**

successfully exercised with pad chips

0000

0000000

0

330

ER1

wafer probe testing (MOSS)

- Dedicated needle card for MOSS ready
- Tests are starting on fully processed wafers
 - chip is alive! (powering, slow control, digital pulsing)
- Stay tuned for much more!

Future applications in ALICE

ALICE 3: based on a 60 m² silicon tracker

ALICE ITS3 LHC LS3 upgrade (installation 2027/28)

- Replacing the barrels by real half-cylinders (of bent, thin silicon)
- Rely on wafer-scale sensors (1 sensor per half-layer) in 65 nm technology
- Minimised material budget and distance to interaction point

\rightarrow large improvement of vertexing precision and physics yield ("ideal detector")

ALICE ITS3 Performance improvement

[ALICE-PUBLIC-2018-013]

improvement of factor 2 over all momenta

- Improvement of pointing resolution by:
 - drastic reduction of material budget (0.3 \rightarrow 0.05% X₀/layer)
 - being **closer** to the interaction point $(24 \rightarrow 18 \text{ mm})$
 - thinner and smaller **beam pipe** (700 \rightarrow 500 µm; 18 \rightarrow 16 mm)
- Directly boosts the ALICE core physics program that is largely based on:
 - low momenta
 - secondary vertex reconstruction
- E.g. Λ_c S/B improves by factor 10, significance by factor 4

Future applications in ALICE

ITS3: wafer-scale, bent MAPS

ALICE 3: based on a 60 m² silicon tracker

ALICE 3 LHC LS4 2033/34

- ALICE 3 is centred around a 60 m² MAPS tracker
 - innermost layers will be based on wafer-scale Silicon sensors "iris tracker", similar to ITS3 (but in vacuum)
 - outer tracker will be based on modules like ITS2 (but order of magnitude larger)
- This is the next big and concrete step for this technology

ALICE 3 pointing resolution

- ALICE 3 is centred around a 60 m² MAPS tracker
 - innermost layers will be based on wafer-scale Silicon sensors "iris tracker", similar to ITS3 (but in vacuum)
 - outer tracker will be based on modules like ITS2 (but order of magnitude larger)
- This is the next big and concrete step for this technology

ALI-SIMUL-491785

ALICE 3 outer tracker

- ► 60 m² silicon pixel detector
 - large coverage: ±4η
 - high-spatial resolution: $\approx 10 \ \mu m$
 - very low material budget: X/X_0 (total) $\leq 10\%$
 - low power: $\approx 20 \text{ mW/cm}^2$
- module (O(10 x 10 cm²)) concept based on industry-standard processes for assembly and testing

ALICE 3 vertex detector

- Based on wafer-scale, ultra-thin, curved MAPS
 - radial distance from interaction point: 5 mm (inside beampipe, retractable configuration)
 - unprecedented spatial resolution: $\approx 2.5 \ \mu m$
- ... and material budget: $\approx 0.1\% X_0/layer$
- at radiation levels of: $\thickapprox 10^{16}$ 1MeV n_{eq}/cm^2 + 300 Mrad
- and hit rates up to: 94 MHz/cm²

Unprecedented performance figures
largely leverages on the ITS3 developments
pushes improvements on a number of fronts

ALICE 3 vertex detector

ALICE 3 vertex detector

Summary

- ALICE is continuously developing cutting edge low-material, high-resolution vertex and tracking detectors
- ALICE ITS2 (now):
 - 10 m² 12.5 GPixel tracker based on the ALPIDE chip (180 nm)
- ALICE ITS3 (LS3) project is on track, significantly pushing MAPS R&D:
 - 65 nm process qualified
 - stitched design exercised, testing started
- With ALICE 3 (LS4), the R&D will continue in a natural way:
 - increased spatial resolution, radiation hardness and rate capabilities + in-vacuum operation (vertex detector)
- Developed concepts and technology very well suited for future lepton colliders

