

Advancement and Innovation for Detectors at Accelerators

CMOS Pixel Developments in AlDAInnova

3 July 2023

F. Hügging, N. Wermes (U. Bonn) and <u>S. Grinstein</u> (IFAE-Barcelona)

for the AIDAinnova WP5 team

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

About AIDAInnova

- AIDAInnova's goal is to enable technology advances mainly for particle physics (upgrades of research infrastructures)
- European Commission co-founded project through H2020 program (2021-2025)
- Project involves 8 industrial companies, 3 RTOs and 34 academic institutions in 15 countries, with main target of common detector projects
 - Several Work Packages... one dedicated to **DMAPS**

Geneal Approach

- Two basic approaches to Depleted Monolithic Active Pixel Sensors (DMAPS)
 - a) Large charge collecting electrode, with electronics inside n-well
 - b) Small electrode with the electronics separated

- Within the structure of the AIDAInnova effort (WP5)
 - a) Large electrode mostly targets *radiation hardness*
 - b) Small electrode primarily aims to *high granularity* lower noise and power
- *Categories are only an approximation:* large electrode efforts try to reduce pixel sizes while small electrode approach also targets large depletion regions
- The objective of the WP5 is to design, fabricate and test (before and after irradiation) DMAPS on both these lines

Activities and Submissions

Past and future submissions that will be, or have been, *partially* supported by AIDAinnova (several activities are mostly supported by **other** funds). These are core of WP5 activities.

Submission	Process	Time-scale	Target	Main Institute	Comment	Υ.
LF-Monopix 2	LF 150 nm	v2 produced	rad. hard	Bonn/CPPM	Follow from ATLAS R&D	-
RD50-MPW 3/4	LF 150 nm	v4 in 0.5-1.0 yr	rad. hard, high granularity	Liverpool	R&D	-
CACTUS	LF 150 nm	mini-CACTUS v2 submitted	timing	CEA	LHC upgrade & beyond	Note: TJ: Tower
TJ-Monopix 2	TJ 180 nm	v2 produced	high granularity	Bonn	Belle II, follow up by Obelix	LF: LFoundr
MALTA 2/3	TJ 180 nm	v3 in ~0.5 yr	high granularity	CERN	LHC upgrade & beyond	-
ARCADIA	LF 110 nm	next version ~0.5 yr	high granularity	INFN	Demonstrator	
TJ 65 nm	TJ 65 nm	2nd iteration just submitted	high granularity	IPHC	R&D, ALICE	

- All activities produced device/prototype during the first phase of the project
- Some lines/sub-projects more advanced than others

LF-Monopix 2 Large electrode, radiation hardness

- Successor of LF-Monopix-1
- LFoundry 150 nm
- Column drain RO architecture
- 2 kOhm.cm, thinning & back-side processing
- Explored in-pixel circuit flavors
- Beam tests confirmed excellent efficiency before irradiation

Dingfelder J., et al., NIMA 1034 (2022) 166747

Pixel size: 50x150 µm²

 Devices irradiated and tested with beam

LF-Monopix 2 Large electrode, radiation hardness

- Irradiated to 1E15 neq/cm2 @ Bonn Cyclotron
- Test-beam characterization followed
 - Very high eff in-time (>99%)
 - no efficiency degradation with respect to non-irradiated
 - Operation threshold ~2000 e⁻
 - Plan to study higher fluencies (2E15 neq/cm2)

100.000

I. Caicedo-Sierra, L. Schall et al. See also Dingfelder J., et al., NIMA 1034 (2022) 166747

99.58% 99.59% 99.49%		ITk Outer Layer		
99.38%	Occupancy	1 MHz/mm ²		
96.250	Time Res.	25 ns		
column [μm] - 95.625	NIEL	10 ¹⁵ n _{eq} /cm ²		
Compatible with outer layers	of TID	80 Mrad		
the HL-LHC pixel tracker	rs Area	O(10m²)		
CEPC Works	aan			

RD50-MPW2/3 Large electrode, radiation hardness

- **RD50-MPW2**: small prototype with several test structures
- On LF 150nm, 10-3k Ohm.cm
- Main matrix pixels: $60 \times 60 \ \mu m^2$
- In pixel CSA + discriminator, analog readout
- Initial beam tests (UK & Austria)
 - Results indicated expected results in terms of charge collection
- **RD50-MP3**: fabricated
 - add digital readout (column drain)
 - IV shows Vbd ~ 150V
 - High noise, studies on-going

Next RD50-MPW4: with backside processing to improve radiation hardness

CACTUS Large electrodes for Timing

- Target is monolithic device that can provide ~50 ps timing resolution
- LFoundry 150 nm, thinned to 100-200 μm
- Large (~1x1 mm²) passive pixels with FE at column level
- Mini-CACTUS
 - Small prototype to address limitations of CACTUS (low S/N)
 - Implements different pixel flavors
 - Tested with beam (before irradiation)
 - Achieved ~ 65 ps resolution
- Second iteration of mini-cactus
 - Implement different amplifiers types
 - Improved front-end: better discriminator, etc
 - Y. Dangleri et al., <u>https://doi.org/10.1016/j.nima.2022.167022</u>

CEPC Workshop

Layout of MiniCACTUS chip

TJ-Monopix 2 Small electrode, High granularity

- Successor of TJ-Monopix-1, based on ALPIDE (ALICE ITS upgrade)
- **Tower 180 nm**, various sensing thicknesses (Cz-bulk, epi)
- Column drain RO architecture
- Implements four FE types
 - Cascode transistor to reduce threshold dispersion
 - Improved achievable threshold wrt previous iteration

Pixel size: 33x33 μm^2 Chip size: 2x2 cm^2

Clear noise reduction with respect to TJ-M1, which had ~30 e noise level.

TJ-Monopix 2 Small electrode, High granularity

- About 9 um position resolution (<cluster size> ~ 2, Cz)
- Excellent efficiency before irradiation
 - Testing of irradiated sensors ongoing

Pixel size: 33x33 μm^2 Chip size: 2x2 cm^2

C. Bespin et al., NIMA 040 (2022) 167189

Basis of OBELIX, prototype for Belle-II VXD upgrade

MALTA 2 High granularity, rad hardness

- Follows previous MALTA prototypes
 - Original target ATLAS ITk outer layer
- Tower 180 nm with process modification to improve E field
- Fast asynchronous readout (low power)
- Different flavors in 2 substrates (epi, CZ)
- Irradiated up to 3E15 neq/cm2

Modified process with extra deep p-well (XDPW). Improved charge collection in the pixel edges.

MALTA 2 High granularity, rad hardness

- Excellent results from beam tests after 3E15 neq/cm2
 - Efficiency (>95%)
 - In-time (>95% in 25ns)
- Dual and quad modules fabricated (with MALTA1)

20.2mm 224 x 512 pixels 10.1mm C42 C43 C48 C4

Pixels: 36.4 x 36.4 μm2

LeBlanc M., et al., NIMA 1041 (2022) 167390

12

submission targeted for 2023

ARCADIA High granularity

- Targets very low power, small pixel
- LFoundry 110 nm, largely founded by INFN
- Backside process, 50-500 μm thick
- Triggerless binary readout
- First demonstrator fabricated
 - 100 and 200 μm thick
 - Chip communication, injection, etc
 - Initial tests w/ radiation sources and cosmic rays
 - Higher power due to bug
- MD2 already submitted and being characterized
- Plan for next submission
 - System-grade main demonstrator chip
 - Gain layer being added for improved timing

M. Rolo (INFN) VCI2022

MD1 pixels: 25 x 25 μ m²

65 nm **High granularity**

65 nm test structures and simple chips

- Explore smaller size tech: Tower 65 nm
- Targets excellent position resolution, low mass, high rate, >1E15 neq/cm2
- 1st submission in July 2021 (MLR1)
 - Several test blocks included
 - Digital pixel test structure
 - Lab and beam tested

95

90

85

80

75

70

Detection efficiency (%)

- Excellent efficiency
- Second submission
 - Small prototypes (evolution of versions on MLR1)
 - Two large stitched sensors
 - 25 cm long, stitching
 - Submitted Dec 2022

Very encouraging results on 65 nm

Summary

- In the context of AIDAInnova, many institutions are collaborating in common DMAPS projects, mostly R&D, but some focused on applications
 - See https://aidainnova.web.cern.ch/wp5
- Effort focused on two main lines and two foundries (*LF and TJ*)
- Intense effort, not detailed here, DAQ development, irradiation and testbeam efforts, etc
- All research lines with devices to characterize
 - High granularity, radiation hardness and timing
 - Overlap with TaichuPix effort (also in TJ)
- Specially interesting for CEPC could be activities towards 65 nm and timing with DMAPS

Back Up Slides

Group Contacts

Contact person per institution:

Carlos Solans <carlos.solans@cern.ch> – CERN Eva Vilella Figueras <<u>vilella@hep.ph.liv.ac.uk</u>> – Liverpool Jerome Baudot <<u>jerome.baudot@jphc.cnrs.fr</u>> – IPHC Thomas Bergauer <<u>Thomas.Bergauer@cern.ch</u>> – HEPHY Francesco Forti < Francesco. Forti@pi.infn.it > – Pisa Marlon Barbero <<u>barbero@cppm.in2p3.fr</u>> – CPPM Daniela Bortoletto <<u>Daniela.Bortoletto@physics.ox.ac.uk</u>> – Oxford SCHWEMLING Philippe < Philippe.Schwemling@cea.fr> – IRFU "C. Marinas" <cmarinas@ific.uv.es> – IFIC Manuel Dionisio da Rocha Rolo <<u>darochar@to.infn.it</u>> – Torino Attilio Andreazza <a trilio.andreazza@mi.infn.it> - Milano Valerio Re <<u>valerio.re@unibg.it</u>> – Pavia F. Hügging <<u>huegging@physik.uni-bonn.de</u>> – Bonn S. Grinstein <<u>sgrinstein@ifae.es</u>> – Barcelona

Thanks to all for providing input for this talk.

Governing Board

Governing board chair – Felix Sefkow (DESY) One representative from each participant Scientific Coordinator (ex-officio) Deputy Scientifc Coordinators (ex-officio) Scientific Industrial Advisory Panel I.Jonak-Auer, D.Fournier, M.Kasemann, P-S. Marrocchesi, P.Merkel, J.Strait

Steering Committee

Management Team Scientific Coordinator – Paolo Giacomelli (INFN) Deputy Scientific Coordinators – Daniela Bortoletto (UOXF) and Giovanni Calderini (CNRS) Administrative Manager – Svet Stavrev (CERN)										RS)						
WP2 Antoine Le Gall (Margherita Marini	CERN) i (CERN)		WP3 Marcel Stanitzki (DESY) Matthew Wing (UCL)				WP4 Federico Ravotti (CERN) Fernando Arteche (ITAINNOVA)				WP5 Sebastian Grinstein (IFAE) Fabian Huegging (UBONN) Norbert Wermes (UBONN)				ا Anna Ma Claudia G	NP6 cchiolo (UZH) emme (INFN)
	WP7 Silvia Dalla Torre (INFN) Burkhard Schmidt (CERN)			Katja Roman Roberte	WP8 atja Krüger (DESY) man Pöschl (CNRS) berto Ferrari (INFN)			WP9 Dario Autiero (C Andrzej Michal (UNIMAN)		(CNRS) Paolo al Szelc Ma N)		Paolo F Marc	WP1 Petagn cel Vos	0 a (CERN) s (CSIC)		
		WP11 Christophe De La Taille (CNRS) Angelo Rivetti (INFN)			WP12 Frank-Dieter Gaede (DES Graeme Andrew Stewa (CERN)		2 Iede (DESY) w Stewart I)		WP13 Peter Krizan (JSI)							
						Paolo G Svetlom	WP1 iacomo ir Stavi	4 elli (INFN) rev (CERN)								