CEPC vertex detector prototype status

Zhijun Liang (IHEP) For the CEPC vertex detector prototype team

Vertex detector: Physics goal

- Produce a world-class vertex detector prototype
 - Spatial resolution 3~5 μm (pixel detector)
 - Radiation hard (>1 MRad)
- Physics motivation
 - Higgs precision measurement
 - $H \rightarrow bb$ precise vertex reconstruction
 - $H \rightarrow \mu \mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution

- Main technology
 - Develop the know-how in China to build such detector ullet
 - High spatial resolution technology \rightarrow pixel detector
 - Radiation resistance technology ullet

Vertex detector prototype structure optimization

- Based on CEPC vertex detector conceptual design \rightarrow Three double-layer barrel detector
 - This project plan to prototype the important part of vertex detector (CDR design)
 - The cost for the full vertex detector is high (eg: ~50 M CHF for ATLAS ITk pixel detector)
 - \rightarrow Plan to build full mechanical part of the detector
 - ightarrow install a sector of ladders in prototype , not necessary to build full vertex for R & D
- Optimize the geometry based on real ASIC and electronics dimension
 - Optimize geometry based on its physics performance from simulation
 - Engineering design of prototype structure CEPC Vertex detector Conceptual design (2016)

This project Vertex detector prototype design

3

Vertex detector prototype structure optimization

- One example of detector geometry optimization based on simulation :
 - Increase the length of the inner layer of the detector
 - To improve the impact parameter resolution for forward tracks

Overview of MOST2 vertex detector R & D

- Design CMOS imaging sensor chip
- Detector Module prototyping
- Vertex Detector assembly and testbeam

Vertex detector Prototype for beam test

Research Team in MOST2 silicon project

	Institutes
	IFAE(Spain)/CCNU
	NWPU
СМС	ShanDong University
	Nanjing University

Tasks

Full CMOS chip modeling, Pixel Analog, PLL block Detector module (ladder) prototyping Data acquisition system R & D Vertex detector assembly and commissioning Irradiation, test beam organization

CMOS sensor chip: Pixel Digital

CMOS sensor chip: Periphery Logic, LDO

OS sensor chip: Bias generation, TCAD simulation Sensor test board design

Irradiation, test beam

6

CMOS MONOLITHIC PIXEL SENSOR

- Conventional Hybrid pixel technology at Large Hadron Collider
 - Need to bump bonding with readout ASIC
- Typical pixel size $>=50\mu$ m, much more difficult for bump bonding with smaller pixels • CMOS Monolithic pixel (CIS process) is ideal for CEPC application
 - Sensor and ASIC high integrated in one chip, easier for detector assembly
 - Can have compact structure in pixel array design. •
 - Pixel size can be reduced to 25um or below \rightarrow can achieve better spatial resolution

Monolithic Pixels

CMOS Sensor chip R & D

- The existing CMOS monolithic pixel sensors can't fully satisfy the requirement
- Major Challenges for the CMOS sensor •
 - Small pixel size -> high resolution (3-5 μm)
 - Radiation tolerance (per year): >1 Mrad
 - High readout speed -> for high luminosity CEPC Z pole running (40MHz)

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	\checkmark	Χ	\checkmark
Readout Speed	Χ	\checkmark	Χ
TID	X (?)	\checkmark	\checkmark

TaichuPix sensor architecture

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- >Time stamp added at EOC
- Readout time: 50 ns for each pixel

2-level FIFO architecture

- >L1 FIFO: de-randomize the injecting charge
- > L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- Trigger-less: 3.84 Gbps data interface
- > Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

Full-size TaichuPix3 prototyping (engineering run)

- - Full size 1024×512 Pixel array, Chip Size: 15.9×25.7mm
 - $25\mu m \times 25\mu m$ pixel size \rightarrow high spatial resolution
 - Process: Towerjazz 180nm CIS process
 - Fast Periphery digital readout, high-speed data interface •

Radiation tests

- Taichupix3 was irradiated in-situ tested up to 3 Mrad
 - Normal chip functionality and reasonable noise performance
 - Reach the goal of the project: radiation hardness on total ionization does >1 Mrad

Taichupix3 irradiation test **Pixel threshold vs. TID**

TaichuPix-3 irradiated at Synchrotron radiation beamline (12 keV X-ray)

11

Spatial resolution measured by Laser tests

	Resolution	Overall erro
	(µm)	(µm)
Х	3.98	±0.23
Y	4.12	±0.25

12

Spatial resolution measured by testbeam

- The 6-layer of TaichuPix-3 telescope built
 - Tested at DESY with 4-5 GeV electron beam, 1kHz rate
 - One layer of TaichuPix used as Detector-Under-Test (DUT) •
 - Other five layers as beam telescope used for track fitting
 - Spatial resolution of TaichuPix reach 4.78 μm
 - Reach the goal of the project (3-5 μm)

Setup for Taichupix beam telescope

Residual distribution

DUT measured position – expected position from track

Spatial resolution measured by testbeam : alignment The measured hits position misaligned due to non-ideal installation precision

- Method: Millepede matrix method

$$\chi^2 = \sum_{j \in tracks} \sum_{i \in hits} \vec{r}_{ij}^T(g, l_j) V_{ij}^{-1} \vec{r}_{ij}(g, l_j)$$

Six alignment parameters used for each chip position Translation along X, Y, Z direction Rotation around X, Y, Z axis

Impact of the alignment on residual distribution

Spatial resolution and cluster size VS threshold The spatial resolution extracted by the unbiased residual distribution after substracting the track uncertainty \rightarrow The spatial resolution less than 5 um

- Less charge sharing effects in modified process with full depletion
- If lowering the threshold, cluster size will be dominated by noise

Efficiency Vs threshold

- predicted hit from the telescope to all tracks of the telescope
 - It can reach about 99% efficiency in optimized threshold

Efficiency is the ratio of tracks that match the hit on the DUT within a distance around the

Detector module (ladder) R & D

- Completed detector module (ladder) design

 - Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support \bullet
- Signal, clock, control, power, ground will be handled by control board through flexible PCB
- Challenges
 - Long flex cable \rightarrow hard to assemble & some issue with power distribution and delay
 - ullet

Taichupix chip wire bonded on **FlexPCB**

Solutions

• Readout from both ends, readout compose of three parts, careful design on power placement

Detector module (ladder) = 10 sensors + readout board + support structure + control board

17

Laser test result of ladder > A full ladder includes two identical fundamental readout units Each contains 5 TaichuPix chips, a interposer board, a FPGA readout board Functionality of a full ladder fundamental readout unit was verified > Scanning a laser spot on the different chips with a step of 50 μ m, \rightarrow Clear and correct letter imaging observed \rightarrow Demonstrating 5 chips working together \rightarrow one ladder readout unit working

Double-side ladder in CECP vertex detector

- Ladder in vertex detector is double-sided • • Two flexible PCB + one carbon fiber support
- Both side has wire-bonding \rightarrow Challenging
- Dedicated tooling for double-side assembly

Designed and fabricate carbon fiber support

Vacuum plate for flex and CFRP support fixation

Air Cooling test on ladder

- **Test bench setup for ladder air-cooling**
- **Vibration follows Gaussian distribution**
 - **Core of Gaussian is still under control 1~2µm** ullet

Test setup prototype for ladder cooling Use compressed air for cooling

Typical Vibration displacement during air cooling

Vertex detector Prototype assembly Six double-side ladders installed on the vertex detector prototype 12 flex PCB , 24 Taichupix chips installed on detector prototype

Test beam @ DESY

- 2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6GeV electron)
 - Vertex detector prototype testbeam
- TaichuPix Beam Telescope testbeam

2022 DESY test beam

1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6GeV electron)

2023 DESY test beam

Test beam @ DESY for detector prototype

- Six double-side ladders installed on the vertex detector prototype for DESY testbeam
- 12 flex PCB, 24 Taichupix chips installed on detector prototype
- Beam spot ($\sim 2 \times 2$ cm) is visible on detector hit map
- Record about one billion tracks in two weeks

Hit maps of all layers taichupix on prototype

Layer number L3/Left

- L4/Left
- **L**4/Right
- L5/ Left
- L5/Right

Air Cooling for vertex prototype

- Dedicated air cooling channel designed in prototype.
 - Measured Power Dissipation of Taichu chip: ~60 mW/cm2 (17.5 MHz clock in testbeam) ullet
 - Before turning on the fan, chip temperature can go above 41 °C. ullet
 - With air cooling, chip temperature can reduced to $25 \,^{\circ}C$ (in average) ullet
 - In good agreement to our cooling simulation
 - ullet

No visible vibration effect observed in position resolution offline analysis when turning on the fan

Test beam results (April 2023)

- Extract Spatial resolution from detector prototype testbeam data
- One layer (L1) of TaichuPix used as Detector-Under-Test (DUT)
- Other layers of vertex detector prototype used for track fitting
- Spatial resolution reached 4.9 μ m (Y axis \rightarrow bending direction)
 - Spatial Resolution met the requirement (3-5μm)

Residual distribution in Y axis

DUT measured position – expected position from track

Spatial resolution vs hit positions Y axis is bending direction

Summary of CECP vertex detector prototype

- Developed full-size CMOS pixel sensor
 - High spatial resolution and radiation hard
- Developed the first vertex detector prototype in China
 - Readout electronics and data acquisition for detector prototype was developed
- - The Assessment indicators of the project have been achieved

	Requirement	
Single point Spatial resolution	3-5 µm	Cl Pro
Radiation hardness (total ionization dose, TID)	>1 Mrad	

Completed beam tests for the sensor prototype and the detector prototype at DESY

Result

Laser test: ~ 4 µm hip-level Beam Test: 4.8 µm totype level Beam Test: 4.9µm

>3 Mrad

Summary of CECP vertex detector prototype (2) **Developed three double-layer vertex detector prototype** From CDR design to vertex detector prototype

CEPC design (2016)

Vertex detector prototype (2023)

backup

Preliminary result of impact parameter resolution

- No real interaction point or real primary vertex (PV) in testbeam setup
 - Define PV as the centre of the point in xy plane extrapolated from the up/downstream
 - Calculate the impact parameter between primary vertex and upstream/downstream tracks

Estimated Material budget for vertex detector prototype

- Estimated material budget 0.026 X0 for three double ladders vertex detector (6 layers) \bullet
 - Target for final CEPC vertex detector is 0.009 X0 (0.015% X0 per layer)
- Copper in flexible PCB are major contributions
- Plan to replace copper into Aluminum in final CEPC vertex detector ullet
- Further thinning of silicon wafer (150um \rightarrow 50um) ullet

Estimated material budget for this prototype

Carbon fiber Support structure of the ladder

- Fabricated support structure prototype of the ladder (IHEP designed)
 - 4 layer of carbon fiber, 0.12mm thick for the whole support
 - Shallow design inside ladder support to reduce material
 - 2~3 time thinner than conventional carbon fiber in China

of the ladder the ladder (IHEP designed) he whole support ce material n fiber in China

Air cooling for CEPC vertex detector

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix design : $\leq 100 \text{ mW/cm}^2$. (trigger mode), $\leq 150 \text{ mW/cm}^2$ (triggerless mode),
 - Taichupix measured result: ~60 mW/cm²(triggerless mode, 17.5MHz)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done.
 - Need 2 m/s air flow to cool down the ladder

temperature 5 ℃)			
3	2	1	
5.0	30.6	43.4	
5	43.4	62.6	

International Collaboration

Active collaboration with IFAE (Spain) in sensor chip design. > We have one engineer visited Oxford and Liverpool for 4 weeks in 2019 Planning to collaborate on module and detector structure Unfortunately, Collaboration didn't continue due to CovID

Lab visit in Oxford

Mu3e ladder, Atlas barrel strip stave prototype.

Labs visit in Liverpool

Module of Alice's OB tracker, Advance material Lab

Offline analysis results of first test beam

Less charge sharing effects in modified process with full depletion

 If lowering the threshold, cluster size will be dominated by noise

34

Structure and process of sensor

Technology: CMOS Monolithic pixel sensor

- N-well/P-epitaxial diodes employed collection elements
- Readout electronics integrated on the same Si-substrate
- Low material budget, low pixel capacitor, easy to assemble

Process : TowerJazz CIS 180 nm process

Process splits: >

Standard process

Baseline option, the only choice available in the MPW submissions

Modified process*

- Adding an extra low dose n-type layer based on the standard process, to achieve faster charge collection, thus a better radiation tolerance
- Very difficult to access, the first time available to a Chinese institute

Modified process*

nwell collection

Standard process

Additional specifications on the full-scale chip

Additional specifications besides the main goals of project High detection efficiency \rightarrow small dead time >

- Assembled on ladder \rightarrow large sensitivity area >
- Low material \rightarrow low power density \geq
- Bunch spacing: Higgs: 680 ns; W: 210 ns; Z: 25 ns >

Specs	Paramet
Hit rate	120 MHz
Data rate	3.84 Gbp ~110 Mb
Dead time	< 500 ns (for 98%
Pixel array	512 row
Chip size	~1.4 × 2.
Power Density	< 200 m\ (air coolir

Major innovation: High data-rate processing maintaining good spatial resolution

Hit density: 2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for $Z \rightarrow high hit rate$

ter

/chip

os (triggerless) ps (trigger)

efficiency)

× 1024 col

56 cm²

W/cm²

ng)

Pixel analog front-end

Based on ALPIDE* front-end scheme

- modified for faster response
- 'FASTOR' signal delivered to the EOC (end of column) when a pixel fired, timestamps of hit recorded at pos. edge of 'FASTOR'

Schematic of pixel front-end

*Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042

Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp of a step of 25 ns.

CEPC vertex detector R & D

- Three on-going R & D programs on vertex detector
 - Previous update in CEPC day (June 15th) https://indico.ihep.ac.cn/event/11875/
- This talk focuses on MOST2 project
 - MOST2 aims to build full-size vertex detector prototype

Funding	Process	International	Objectives of the project	schedule
agency		collaborators		
CEPC	CMOS	Strasburg IPHC	Small pixel size design with in-	2016.6-2021.5
MOST1			pixel digitization and low power	
			frontend	
MOST2	CMOS	IFAE/Oxford/	vertex detector prototyping (Full-	2018.5-2023.4
		Livepool	size sensor support structure,	
			module)	
NSFC	SOI	KEK/SOIPIX	Verification of SOI process with	2016-
		collaboration	small pixel size and low noise	
			design	

