Development of a wafer-scale CMOS pixel sensor for particle detection

Liang Zhang¹

on behalf of

Yang Zhou², Chenxu Wang³, Min Luo³, Anqing Wang¹, Leyang Dou³, Ruikai Zhang³, Guoqiang Yan², Jianing Dong¹, Mingyi Dong², liangchenglong Jin², Long Li¹, Qinglin Geng¹, Linghui Wu², Guangyan Xiao², Meng Wang¹

¹Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, 266237, Shandong, China

²Institute of High Energy Physics Chinese Academy of Sciences, 19B Yuquanlu, 100049, Beijing, China

³School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China

Outline

Motivation

□ Wafer-scale CMOS pixel sensor R&D

- ✤ Architecture
- ✤ Pixel circuit
- Digital control and data processing
- Stitching layout
- Readout electronics
- ✤ Wafer thinning and bending

Summary

Motivation

□ Wafer-scale CMOS pixel sensor using stitching technology

✤ A wafer can be scribed into one die

❑ Attractive features

- It can be bended with very thin thickness
 - ✓ Self-support
 - ✓ Few chips can form a cylinder
- Very low material budget
 - The power consumption is mainly concentrated in the peripheral circuit
 - ✓ Cooling outside the sensitive area
 - ✓ Peripheral circuits are directly drawn out at the end
 - ✓ Less electronics pinout required

□ It has a high potential

- Being developed @ CERN for the ALICE-ITS3
- ✤ For the inner tracker of BESIII, CEPC

8 inch wafer

Wafer-scale CMOS pixel sensor

□ The reticle size of the chip is about few cm²

□ Stitching technique has bee developed in order to realize larger chips

- ✤ Up to a wafer-scale chip
- □ Stitching components
 - ✤ 9 segments: TL, TC, TR, ML, MC, MR, BL, BC, BR

Chip architecture

350 nm CIS process

- Epitaxial layer: thickness 14 μm, resistivity 500 2kΩ·cm
- ✤ 4 metal layers
- No deep P-well: PMOS cannot be used in pixel circuit

Total size

☆ ~11×11 cm² (only one die in a wafer)

D Pixel array

- Basic pixel array: 92 rows × 600 columns
- ✤ After stitching: 644 rows × 3600 columns
- Rolling shutter readout mode (200 ns/row, ~129 μs/frame)

□ Full functional chip

- Analog test point for pixel array
- Column-level discriminator
- On-chip zero suppression
- Interface: Bias DAC/Buffers/I2C/PLL/LVDS/LDO

General Submitted in Feb 2023

Pixel architecture and column readout

Basic pixel array with 6 submatrices

- * rφ : 30 μm
- ζ : 120/160/200 μm

□ 6 submatrices: study charge collection and charge sharing

- Different pixel sizes and diode arrangements
- **Οctagonal diode:** 20 μm²
- **Diode surface/footprint:** 0.1

3 different diode arrangements are used

Pixel architecture and column readout

Column-level discriminator

Diodes No.	Amp. Gain	SF	CVF [μV/e ⁻]
1	14	0.8	135
2	13.5		75
3	11		40

*Reference: A.Dorokhov, "Optimization of amplifiers for Monolithic Active Pixel Sensors", IPHC

Discriminator performance:

- □ Offset cancellation technique
- □ Threshold: V_{ref1}-V_{ref2}
- \square Power consumption: 134 μ W
- **Δ** Area: 30×290 μm²
- $\hfill\square$ Thermal noise: 158 μV

Pixel architecture and column readout

Timing for pixel and discriminator: 200ns @ 80 MHz clock

Basic clock 80MHz

- ✤ 200 ns/row
- Readout time: ~ 129 μs/frame

D Power consumption

✤ ~ 25 mW/cm² (pixel matrix area)

Combination of total 3600 column-level discriminators

- **Every 600 columns driven by one buffer**
 - Improve driving capability, reduce delay time, keep timing matching
- Threshold voltages Vref1 & Vref2 are divided into 6 groups
 - Increase drive capability, reduce settling time

Digital control and data processing

Functions

Scan control

- □ Provide rolling shutter sequence
- Composed of 7 blocks with 92 rows each block

Mode control

- □ Integrate interactive interface
- Change working mode & generate control signal

Readout circuit core

- Data readout, suppression, storage and serial output
- Composed of 6 blocks with 600 columns each block

Digital control and data processing

Digital control and data processing – scan control

Digital control and data processing - readout circuit

- □ The column outputs are divided into 10 groups, each group consisting of data scan and state construct.
- □ **Token blocker:** if there is a signal in the column, the token is blocked.
- □ Token unlocker: if the token is blocked, 'enable' is valid and the token is unlocked after the next input arrives.
- Through the token chain, the hit is readout one by one with a 64-bit data format.

Digital control and data processing – readout circuit

- Address encoder: encode the 64-bit wide Enable signal into a 6-bit wide state.
- Data buffer: collect all the states in a bank and encode into status.

Digital control and data processing – readout circuit

- State mux: Add Row and BANK address to status and state, respectively
- compression ratio: according to the physics environment, there are maximum 40 pixels in a column of reticle.
 77: 1

Number of

State

Mark

Already encode

Row address

Stitching layout

Reticle floorplan

- ✤ Area: ~ 2 × 2 cm²
- 9 groups of modules
 - > TL,TC,TR,ML,MC,MR,BL,BC,BR
 - \succ Pixel array in a reticle: 92 \times 600

Given Stitching

- ✤ Area: ~ 11 × 11 cm²
- ✤ Pixel array
 - 7 rows and 6 columns
 - > Total pixel array: 644 × 3600

8 inch wafer (die size 11 cm \times 11 cm) 15

DUT board

Few components, connector, wire bonding

Readout board

- FPGA core board: XC7K325T, DDR3
- ✤ Carrier board: ADC, DAC
- Power board: supply different voltages

Wafer bending and bonding study

- $\hfill\square$ Dummy wafer is used to thin down to 50 μm
- □ Wafer bending with different radii
- **Ring support**
 - Wafer bending and fixed with glue
 - PMI: High strength, low material, mass density is about 0.05g/cm³

Wafer bending with radii 63mm, 48mm and 35mm

Wafer bending and bonding study

Wire bonding with thinned dummy wafer

- Dicing a part of dummy wafer
- ✤ Bonding with test board
- The wire shape doesn't change after bending

Summary

- The thinned wafer-scale CMOS pixel sensor will have extremely low material budget, having a high potential for the inner tracker.
- A wafer-scale sensor prototype has been designed and submitted. It expects to be back at the end of July.
- □ The readout electronics have been ready for the test.
- □ Wafer thinning and bending have been studied, and they perform well.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant U2032203, Grant 12075142 and Grant U2106202.

