The Mighty Tracker project for the LHCb upgrade

E. Vilella On behalf of the Mighty Tracker group University of Liverpool <u>vilella@hep.ph.liv.ac.uk</u>

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

LHCb

- Towards High Luminosity LHC
 - Increased luminosity and data
- Major tracking detector system upgrade
 - Mighty Tracker
 - Proposed hybrid tracking detector to balance cost and physics/detector performance needs

Mighty Tracker

- Scintillating Fibre Tracker (SciFi)
 - Outer region
 - Twelve layers of scintillating fibres with SiPM readout
 - Installed in LS2, replacements in LS3

3

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

Mighty Tracker

Scintillating Fibre Tracker (SciFi)

- Outer region
- Twelve layers of scintillating fibres with SiPM readout
- Installed in LS2, replacements in LS3

Monolithic High Voltage CMOS sensors

- Inner Tracker (IT) and Middle Tracker (MT)
- Instrument six layers with silicon sensors
 - HV-CMOS pixel chip MightyPix
- To meet the anticipated requirements on granularity, radiation tolerance and cost
- Installation in two stages: LS3 (Inner Tracker) and LS4 (Middle Tracker)
- Total silicon area (IT + MT) ~ 18 m² (minus beam-pipe hole)

Mighty Tracker modules

UK Research and Innovation

5

Single Mighty Tracker module

- Each grey rectangle represents an HV-CMOS pixel chip
- The other side has an offset arrangement such that the entire plane is covered

Monolithic silicon sensors – High Voltage CMOS

- Sensor and readout chip integrated in single device
- In industry-standard High Voltage CMOS processes
 - No bump-bonding is needed
 - Thin sensors (50 μm)
 - Small pixel size possible (50 μm x 50 μm)
 - Faster production
 - Higher yields
 - More cost effective (100k€/m²)
 - Large bias voltage (V_{bias} > 200 V)
 - Fast charge collection by drift (< 200 ps charge collection and 3 ns time resolution)
 - Good radiation tolerance (10¹⁵ 1 MeV n_{eq}/cm²)
 - High resistivity wafers (10 Ω·cm < ρ < 2-3 kΩ·cm)
 - In-pixel amplification (strong signals)
 - High-rate capability

I. Peric, IEEE JSSC 2021

UK Research and Innovation

 \rightarrow W = $\sqrt{\rho \cdot V_{bias}}$

MightyPix: design challenges

Parameter	Valu e
Chip size	~ 2 cm x 2 cm
Chip thickness	200 μm
Pixel size	< 100 μ m x 300 μ m (with smaller sizes to be explored)
Timing resolution	~ 3 ns
In-time efficiency	> 99% within 25 ns window
Power consumption	< 150 mW/cm ²
Data transmission	4 links of 1.28 Gb/s each
Radiation tolerance	6E14 1 MeV n _{eq} /cm² NIEL
Inactive area	< 5%
Compatibility with the LHCb readout system	

- Dedicated R&D programme to develop a High Voltage CMOS sensor chip (MightyPix)
- The programme builds on previous designs ATLASPix (ATLAS ITk upgrade) and MuPix (Mu3e)

UK Research

and Innovation

- Technology process
- 165 μm × 55 μm – TSI 180 nm HV-CMOS
- Submission
 - MPW in engineering run (wafer shared with other 320 4045 projects beyond LHCb)

1/4 of final width

First prototype

MightyPix1

- May 2022
- Delivery
 - December 2022

29 columns Data format

- 2 x 32 bit words per hit
- Data output rate
 - 1.28 Gbit/s going to lpGBT
- **Digital interfaces**

E

- TFC: Timing and Fast Control
- I2C: Slow Control

8

- SR: Config. Shift register interface
- **Clock generation**
 - External: 40 MHz and 640 MHz coming from lpGBT
 - Internal: CML and CMOS PLL with 40 MHz reference clock
- Already Already full length **Bias voltages**
 - Integrated 10 bit voltage DACs

UK Research and Innovation

0.5

Cm

pixel pitch

Analogue readout

- 1. Charge collected by **pixel n-well**
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analogue voltage pulse converted to <u>EnInjection_row_i</u> digital signal by comparator
- 4. Hit information stored in **hit buffer**

UK Research and Innovation

LIVERPOC

Analogue readout

- 1. Charge collected by **pixel n-well**
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analogue voltage pulse converted to <u>EnInjection_row_i</u> digital signal by comparator
- 4. Hit information stored in **hit buffer**

UK Research and Innovation

LIVERPOO

10

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

Amplifier

- Integrated inside the pixel
- CMOS type amplifier
- Equivalent Noise Charge (ENC) 67 e-(88 fF pixel capacitance)
- Time-walk 2.4 ns
 (2.4 ke- to 24 ke- signals)

Analogue readout

- 1. Charge collected by **pixel n-well**
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analogue voltage pulse converted to <u>Enlnjection_row_i</u> digital signal by comparator
- 4. Hit information stored in **hit buffer**

IVERPO

UK Research

and Innovation

Analogue readout

- 1. Charge collected by **pixel n-well**
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analogue voltage pulse converted to <u>Enlnjection_row_i</u> digital signal by comparator
- 4. Hit information stored in **hit buffer**

UK Research

and Innovation

Digital readout

 Readout driven by Readout Control Unit (RCU) Finite State Machine (FSM)

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

LIVERPOOL

UK Research and Innovation

ÄŘ

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

15

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

16

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

17

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

18

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

19

Digital readout

- 4. Hit information stored in **hit buffer**
- 5. Data loaded from highest active hit buffer to End of Column (EoC) buffer
- 6. Read data from EoC
- 7. For every hit 2 x 32 bit data words
- 8. Parallel scrambler analogue to VELOPix
- 9. Data sent to serialiser tree and sent out

20

MightyPix1 – Problem and solution

- Design error
 - A load signal for the chip configuration (bias block) was not connected correctly
- Fix idea
 - Do Focused Ion Beam (FIB) to connect the load signal to the appropriate value
 - A few samples have been repaired
 - Unfortunately fixed samples have shown no improvement
 - Post-layout simulations, including the bias block with the load signal connected correctly, suggest the chip works ok
 - Currently *repairing* a few more samples with an alternative FIB supplier

Sensor evaluation

ATLASPix3.1

- Full-size HV-CMOS pixel chip
- Very close to MightyPix specifications
- Analogue front-end is different (amplifier, comparator)
- Evaluated its radiation tolerance and dependence of time resolution

ATLASPix3.1 test beams

- DESY (June and December 2022)
- Non-irradiated chips
- Irradiated chips up to 3E15 n_{eq}/cm^2
- At three operating temperatures: -10, 0 and +5 °C
- TelePix and Run202x chips
 - Not full-size HV-CMOS pixel chip
 - Same analogue front-end as MightyPix
 - Plan to evaluate them in 2023

ource:

Hammerich

an

ATLASPix3.1 – Test beam results

UK Research

and Innovation

23

7

- Significant decrease in efficiency at 3E14 n_{eq}/cm²
- External clock improves things, but chip requires cooling

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

UK Research

and Innovation

24

- As expected the time resolution is not good enough (~ 5 ns at best)
- High impact of the radiation for 3E14 MeV n_{eq}/cm²

Run202x chips – Test beam results

- Run 2021 has same analogue front-end as MightyPix1 (same amplifier and comparator)
- Half pixel size, and different periphery
- Promising results show the good performance of new analogue front-end

04.07.2023 – The 2023 International Workshop on CEPC, Edinburgh, UK – Eva Vilella

Conclusion and outlook

- Mighty Tracker is a proposed LHCb upgrade that uses monolithic HV-CMOS sensors
 - Total silicon area $\sim 18 \text{ m}^2$ (minus beam-pipe hole)
- Dedicated R&D programme to develop an HV-CMOS sensor chip (MightyPix)
 - Builds on previous designs ATLASPix (ATLAS ITk upgrade) and MuPix (Mu3e)
 - MightyPix1 is first LHCb compatible HV-CMOS sensor chip
 - MightyPix1 fabricated with FIB solution under investigation
 - MightyPix2 design is in progress
- Currently evaluating other HV-CMOS sensor chips that are available
 - Radiation tolerance not as expected (several ideas)
 - Timing as expected, but not enough for LHCb
 - Plan to evaluate TelePix and Run2021 chips, which have shown promising results

