LGAD developments for HGTD and for CEPC time of flight detector

The 2023 International Workshop on Circular Electron Positron Collider

Yunyun Fan on behalf of IHEP HGTD group

(IHEP, Chinese Academy of Sciences)

4th, July, 2023

I. LGAD development for HGTD

II. LGAD development for CEPC time of flight detector

S

Challenges of HL-LHC

From ~2026, LHC will be upgraded, In ~2029, LHC will run in "high luminosity", called HL-LHC

- increase the number of collisions per unit time
- The **instantaneous luminosity** will be approximately a factor of \sim 5 7.5 higher than the LHC nominal values
- 4000 fb⁻¹, collect $\sim x10$ more data than Run3 in the long term
- Pileup of ~200 vertices per interaction
- Track reconstruction: complexity increases exponentially or worse with pileup

Several LHC experiment sub-systems will operate in the high rate, hit occupancy and harsh

radiation environment

On average 1.6-2.35 vertices per mm

Why need the time information?

• At High Luminosity -LHC

- Pileup: $\langle \mu \rangle$ = 200 interactions per bunch crossing ~1.6 vertex/mm on average
- Problems of the vertex reconstruction in ATLAS
 - degradation significantly in the forward region compared to the central region
 - Need z_0 resolution < 0.6 mm
 - Liquid Argon based electromagnetic calorimeter has coarser granularity
 - New inner tracker (ITk) has poor z resolution in the forward region
- Using timing information easier to reconstruct vertices
- Timing information is necessary for the HL-LHC

High Granularity Timing Detector (HGTD)

- A High Granularity Timing Detector (HGTD) is proposed in front of the Liquid Argon end-cap calorimeters to reduce pileup
- Time resolution for particle 2 orders of magnitude higher (ns→30 ps)
- Reduce the pileup in HL-LHC
 - Detector area: 6.4 m², time resolution: 30 ps
 - mm granularity, 3.6 million readout channels

- Detector can withstand the lifetime of the HL-LHC running (3 ring layout)
 - Maximum n_{eq} fluences: 2.5×10¹⁵ n_{eq}/cm^2
 - Total Ionising Dose (TID): **2 MGy** at the end of HL-LHC (4000 fb⁻¹)
 - Average time resolution: 35 ps (start), 70 ps (end) per hit / 30 ps (start), 50 ps (end) per track
 - Collected charge per hit >4 fC
 - Hit efficiencies of 97% (95%) at the start (end)of their lifetime

Low Gain Avalanche Detectors (LGAD)

- Silicon pixel detectors are especially important for the precise determination of tracks and vertices , enabling the selection of interesting events through the identification of b jets (b tagging)
- LGAD is a new silicon detector technology developed recent years, that could measure the particle time at ps precision (20 – 30 ps) mm position resolution before irradiation
- Compared with APD and SiPM, LGAD has moderate gain (10-50)
 - High S/N (high efficiency) , no self triggering
 - Thin depleted region decrease t_{rise} (fast timing), increase the electric field and electron drift velocity

Yunvun Fan

Toward Radiation Hard LGAD

Could (LGADs) operate at harsh HL-LHC radiation environment of high fluences beyond
 10¹⁵ n_{eq}/cm²?

20

10

1E+15

- LGAD sensors have been extensively studied during the R&D phase of the HGTD project
 - Performance degrades due to loss of the gain layer
 - Increase the bias voltage to maintain performances, leads to single event burnout (SEB)
 - Key parameter of the gain degradation is the acceptor removal coefficient

$$V_{gl} = V_{gl0} \times \exp(-\boldsymbol{c} \times \Phi_{eq})$$

2E+15

Reactor neutrons Φ_{eq} [cm⁻²]

Yunyun Fan

3E+15

Radiation Hard LGAD

Aim to develop radiation hard LGADs for HGTD

Improve the gain layer design, acceptor removal coefficient targeting $1 - 2 \times 10^{-16} cm^2$

- I. Geometry design, such as increase the doping concentration, depth, width, shape
- II. Different doping materials, add the Carbon, Ga to gain layer
- Performance of LGAD: B+C > B > Ga
 - Simultaneously show good enough CC/timing/efficiency after 2.5×10¹⁵ n_{eq}/cm²

LGAD Measurements with Particle Beams

- Motivation : check the performance in real beam conditions and compare with the results from lab measurement from Sr90
- Goal :
 - Qualify sensor performance (timing resolution, efficiency, collected charge) from different manufacturers
 - How to avoid "single event burnout" (SEB)

- **3 testbeam campaigns** in 2021 and early 2022:
 - SEB studies at DESY and CERN SPS
 - Performance studies (timing resolution, efficiency, collected charge)
 - Time reference : SiPM+quartz bar, CNM unirradiated LGAD
 - Track reconstruction : EUDET-type telescope (DESY) , MALTA telescope (CERN)

9

complete irrecoverable failure

- According to DESY and SPS , "safe zone" at <11V/μm exist
 - 74 sensors tested, 55 survived to voltages expected to meet HGTD specs
 - SEB only appears above a certain bias voltage while the 4 fC is obtained at the same time, even after irradiation
 - Carbon helps to reduce the gain layer degradation, thus reduce the operation bias voltage of highly irradiated sensor
- The SEB probability
 - DESY in June 2021 (6 GeV electrons)
 about 10⁻⁶ to ~10⁻⁵ depending on irradiation, for ~12 V/µm
 - SPS in November 2021 (120 GeV pions)

below 10⁻⁵

Could the sensor performances still meet the HGTD specs in this safe zone?

Yunyun Fan

LGAD Prototypes for HGTD

- **Tested most promising LGAD** : C-enriched prototypes from 3 vendors(FBK, USTC-IME and IHEP-IME)
- Sensors irradiated up to $1.5 \times 10^{15} n_{eq}/cm^2$ and $2.5 \times 10^{15} n_{eq}/cm^2$ at the TRIGA reactor in Ljubljana, Slovenia with fast neutrons
- Qualify sensor performance (timing resolution, efficiency, collected charge)
- Bias voltages were kept lower than the SEB voltage

		Device name Vend		dor	lor Sensor ID		Implant		Irradiation type		Fluence [n _{eq} /cm ²]	Tested at	
		CNM-0	CNM		W9LGA35		boron		unirradiated			DESY/CERN	1
	or	FBK-1.5	FBK		UFSD3.2 W19		boron + carbon		neutrons		1.5×10^{15}	DESY/CERN	1
IHEP-IME sense		FBK-2.5	FBK USTC-IME USTC-IME IHEP-IME IHEP-IME		UFSD3.2 W19 v2.1 W17		boron + carbon boron + carbon		neutrons neutrons		2.5×10^{15} 1.5×10^{15}	DESY/CERN	DESY/CERN
		USTC-1.5										DESY	
with shallow		USTC-2.5			v2.1 W17		boron + carbon		neutrons		2.5×10^{15}	DESY	
carbon		IHEP-1.5			v2 W7 Q2	2 boron +		arbon	neutrons		1.5×10^{15}	DESY/CERN	
		IHEP-2.5			v2 W7 Q2		boron + carbon		neutrons		2.5×10^{15}	CERN	
				Dev	vice name	V	/ _{gl0} [V]	Diff	usion	c [cn	n ²]		
				FB	K-1.5/2.5		50]	H	$1.73 \times$	10^{-16}		
				UST	C-1.5/2.5		27		L	$1.23 \times$	10^{-16}		
			Î	IHE	EP-1.5/2.5		25	CH	IBL	$1.14 \times$	10^{-16}		

- Test beam @DESY and @SPS in 2021 (setup)
 - CERN North Area SPS H6A beamline (120 GeV pion beam)
 - DESY T22 beamline (5 GeV e-beam)
 - Tracking Use of beam telescopes for tracking (EUDET-type 10 um/MALTA 5um)
 - Time reference : LGAD (CNM 0) used as a time reference in some tests (CERN SPS) as well as a SiPM device (DESY)

Collected Charge & Time Resolution

- Although irradiated at fluences of to 2.5×10¹⁵ n_{eq}/cm², the LGADs were operated at voltages below 550 V
- Under these conditions, IHEP-IME LGADs with shallow carbon achieved the objectives of:
 - Collected charge of more than 4 fC while guaranteeing an optimum time resolution below 70 ps
 - An efficiency larger than 95% uniformly over sensors' surface is obtained with a charge threshold of 2 fC
- These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
- Ongoing studies on the performance of ALTIROC2+full sensor

<u>S. Ali et al 2023 JINST 18 P05005</u>

Production of LGAD sensors

- LGAD sensors passed the FDR
- HGTD project of ATLAS needs > 20,000 LGAD sensors (6.4 m²)
- 2023 IHEP-IME got all the share of the order from CERN tendering
 - > 10,000 LGAD (54%, will be produced by IME according to IHEP design)
 - Compete with HPK, FBK et al.

The share of the contribution of the LGAD sensors in HGTD

- **IHEP-IME: 78%** (54% from CERN tendering+24% in-kind sensors)
- UCSC-IME: 10% in-kind sensors
- CNM: 12% in-kind sensors

I. LGAD development for HGTD

II. LGAD development for CEPC time of flight detector

Motivation

- CEPC will produce 10¹² Z boson at Z pole: Rich flavor physics program
- **Particle separation problems** of Gas detector (dE/dx) for CEPC flavor physics:
 - 0.5-2 GeV for K/pi separation, >1.5 GeV for K/p separation
- **CEPC International Advisory Committee: one of the key recommendations** Precision timing detector should be determined as a matter of urgency (4D track)
- Timing detector is complementary to gas detector: improves the separation ability

0 - 4 GeV for K/pi separation, **0 - 8 GeV** for K/p separation

Yunyun Fan

- Two concept designs of the timing detector:
 - I. Only offer the time information, between tracker and calorimeter
 - Large area LGAD : high timing resolution (20 ps) serve as timing detector, low gain, high S/N, large pixel size to reduce the readout electronics, put near the SET
 - II. Offer the time and spatial information (4D track) replace the SET
 - $\checkmark~$ AC-LGAD $\,:$ 4 dimension detection (spatial and time resolution) $\,$, $\,$ 20 pico-second (ps) , 7-10 μm

Close to SET tracker, Radius ~1.8 m

Area of detector (Barrel : 50 m², Endcap 20 m²)

Baseline detector concept in CDR

Fan

Sime Resolution of the Large Aera LGAD

- Time resolution test of large aera LGAD: 20 ps
 - Beta source (Sr90)
 - Under test large aera LGAD :
 - 6.5 mm x 6.5 mm LGAD
 - 5*5 LGAD connected by wire bonding to mimic the large aera LGAD
 - 1 channels readout board designed by UCSC
- Best time resolution of large area LGAD is 56 ps
- Still need optimize the design of IHEP-IME LGAD to improve the time resolution.

5*5 Large area LGAD sensor Connected by wire bonding

Readout board

18

Design and Production of AC-LGAD

- Aim to 4D track : 20 ps , 7-10 μ m
- AC-LGAD: 4D information, no dead region

- Different designs of AC-LGAD in IHEP
 - ✓ Pixels AC-LGAD : reduce the material budget
 - Strip AC-LGAD : no bump bonding , easy to produce
 Strip AC-LGAD

Performance Test Setup of AC-LGAD

- Timing and spatial resolution test of AC-LGAD
- **Transient current technique (TCT)**
- Picosecond Laser: 1065 nm , spot size10 μ m (3 σ)
- 4 channels readout board designed by IHEP
 - -470Ω Broadband inverting trans-impedance amplifie
 - Reference of 1 channel board designed by UCSC

4 channels readout board designed by IHEP

Yunvun Fan

Timing resolution of AC-LGAD

Timing resolution of AC-LGAD with different N+ dose

- 22~25 ps

N+ very slightly affects the time performance

Timing resolution of AC-LGAD with different N+ dose

Spatial resolution of AC-LGAD

Spatial resolution vs N+ dose

- 10 P \rightarrow 0.2 P, spatial resolution 15 µm (minimum)
- Estimated laser point positions fit the measured well
- Better than the FBK design even with 2 times larger pitch

Summary

- Although irradiated at fluences of 2.5×10¹⁵ n_{eq}/cm², the LGADs were operated at voltages below 550
 V (safe region of the Single Event Burnout)
- Under these conditions, IHEP-IME LGADs achieved the objectives of:
 - Collected charge of more than 4 fC while guaranteeing an optimum time resolution below 70 ps
 - An efficiency larger than 95% uniformly over sensors' surface is obtained with a charge threshold of 2 fC
- IHEP-IME will contribute 78% LGAD sensors(54% from CERN tendering+24% in-kind sensors) in the HGTD project
- For the CEPC ToF study, two concept designs were mentioned
 - A. Pure ToF with only time information :
 - ✓ Aim 20 ps
 - ✓ The time resolution of large area LGAD is about 56 -100 ps in Beta test. Need optimization in the future
 - B. ToF with track information :
 - $\checkmark~$ Aim 20 ps , 10 μm
 - ✓ the time resolution and spatial resolution of AC-LGAD could be $22 \sim 25 ps$ and $15 \mu m$ according to the laser test

Thanks for your attention !

Back up

• The leakage currents of IHEP-IME LGAD sensors after 2MGy TID dose

D. Dannheim, G. Kramberger, M. Zhao, Status&News, HGTD sensor meeting

Statusing

	Task Identifiers	Start Dates	Finish Dates	Task Info	Progress	Your Comments
Testing with	Activity: LGAD Sensors Title: Testing of prototypes bump bonded to ALTIROC2 P2UG ID: R3-SEN-M6-1 ID/UID: 4/4083 Type: Schedule Task	Baseline: 2022-04-25 Working: 2022-06-24 Actual/Expected: 2022-06-24	Baseline: 2022-10-20 Working: 2023-04-28 Actual/Expected: 2023-06-30	Duration: 218d Free Slack: 617d Total Slack: 1014d	Complete(%): 70 COVID Delay(%): 0 ✓	
ASIC Contract Award	Activity: Tendering Title: Contract Award P2UG ID: SEN-17 ID/UD: 29/3062 Type: Schedule Task	Baseline: 2022-12-30 Working: 2023-03-02 Actual/Expected: 2023-03-02	Baseline: 2023-03-01 Working: 2023-04-14 Actual/Expected: 2023-05-03	Duration: 30d Free Slack: 0d Total Slack: 258d	Complete(%): 100 COVID Delay(%): 0 ✓	Notification of the award of the Contract to the Contractor at 3th May. contract modification ongoing, will be finished in June
	Activity: Tendering Title: Development of QC system for sensor production P2UG ID: R3-SEN-17-1 ID/UID: 30/4085 Type: Schedule Task	Baseline: 2022-09-26 Working: 2022-11-01 Actual/Expected: 2022-11-01	Baseline: 2023-04-21 Working: 2023-05-30 Actual/Expected: 2023-07-14	Duration: 147d Free Slack: 0d Total Slack: 278d	Complete(%): 60 COVID Delay(%): 0 ✓	probe card fabrication ongoing, switch box will be delivered to testing sites
preparat ion	Activity: Tendering Title: Development of DAQ and DB interface for sensor production P2UG ID: R3-SEN-17-2 ID/UID: 31/4086 Type: Schedule Task	Baseline: 2022-09-26 Working: 2022-11-01 Actual/Expected: 2022-11-01	Baseline: 2023-05-18 Working: 2023-06-26 Actual/Expected: 2023-07-31	Duration: 165d Free Slack: 90d Total Slack: 260d	Complete(%): 50 COVID Delay(%): 0 ✓	
	Activity: Sensors pre-production Title: pre-production (China In-kind) P2UG ID: R3-SEN-18-1 ID/UID: 33/4087 Type: Schedule Task	Baseline: 2022-10-21 Working: 2023-02-06 Actual/Expected: 2023-02-06	Baseline: 2023-04-24 Working: 2023-07-26 Actual/Expected: 2023-07-26	Duration: 119d Free Slack: 0d Total Slack: 170d	Complete(%): 80 COVID Delay(%): 0 ✓	Most process finish, sensors without UBM and thinning will be delivered at July for testing.
preproduct ion	Activity: Sensors pre-production Title: pre-production (Spain In-kind) P2UG ID: R3-SEN-18-2 ID/UID: 34/4088 Type: Schedule Task	Baseline: 2023-03-16 Working: 2023-05-19 Actual/Expected: 2023-07-03	Baseline: 2023-08-28 Working: 2023-10-26 Actual/Expected: 2023-11-30	Duration: 114d Free Slack: 0d Total Slack: 251d	Complete(%): 0 COVID Delay(%): 0 ✓	radiation testing of last run ongoing
	Activity: Sensors pre-production Title: pre-production (CERN Procurement) P2UG ID: R3-SEN-18-3 ID/UID: 35/4089 Type: Schedule Task	Baseline: 2023-03-02 Working: 2023-04-17 Actual/Expected: 2023-05-04	Baseline: 2023-08-30 Working: 2023-10-17 Actual/Expected: 2023-10-31	Duration: 130d Free Slack: 7d Total Slack: 258d	Complete(%): 10 COVID Delay(%): 0 ✓	Detailed Design File and Quality Plan accepted at 9th June. Pre-production fabrication start.

> 7 tasks ongoing

- Fendering almost finish. Notification of the award of the Contract to the Contractor at May. Contract modification ongoing, will be finished in June
- > Pre-production(China in-kind), IHEP-IME and USTC-IME, first batch will finish at July
- Pre-production(Spain in-kind), start date is unclear, testing of radiation hardness(JSI, CNM, CERN TB) ongoing

Pre-production(CERN Procurement), start after Notification of the award of the 04/07/2023 Contract to the Contractor

The calculation of the timing and spatial resolution

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D}\right) = X_0 + k_x m$$

$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D}\right) = Y_0 + k_y n$$

$$k_x = L \frac{\sum (m_{i+1} - m_i)}{\sum (m_{i+1} - m_i)^2} \qquad k_y = L \frac{\sum (n_{i+1} - n_i)}{\sum (n_{i+1} - n_i)^2}$$

Discretized Positioning Circuit model (DPC)

Assuming resistan

Position reconstruction with the center mass method

Spatial resolution

 $\sigma_{spatial}^2 = \sigma_{reconstruction}^2 - \sigma_{platform}^2$

Timing resolution :

 $\sigma_t = \sigma_{t1+t2+t3+t4}$

