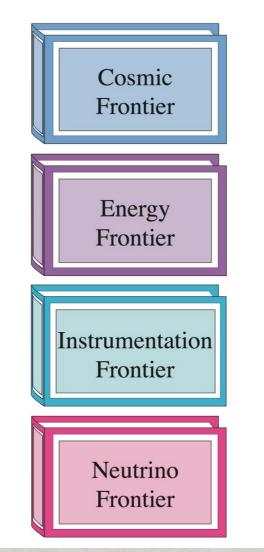
EUROPEAN WORKSHOP ON CEPC

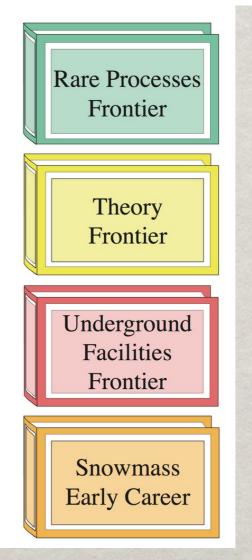
JULY 6, 2023

Tao Han
Pitt PACC
University of Pittsburgh

Thank you for inviting me to the important panel!


https://www.slac.stanford.edu/econf/C210711/




Proceedings of the 2021 US Community Study on the Future of Particle Physics

(Snowmass 2021)

organized by the APS Division of Particles and Fields

Snowmass 2021 Executive Summary in EF:

(Energy Frontier Report: arXiv:2212.11084)

The EF supports continued strong US participation in the success of the LHC, and the HL-LHC construction, operations, computing and software, and most importantly in the physics research programs, including auxiliary experiments.

The EF supports a fast start for construction of an e+e- Higgs factory (linear or circular), and a significant R&D program for multi-TeV colliders (hadron and muon). The realization of a Higgs factory will require an immediate, vigorous, and targeted detector R&D program, while the study towards multi-TeV colliders will need significant and long-term investments in a broad spectrum of R&D programs for accelerators and detectors.

The US EF community has also expressed renewed interest and ambition to bring back energy-frontier collider physics to the US soil while maintaining its international collaborative partnerships and obligations.

Snowmass 2021 EF Scenarios:

(Collider Implementation Task Force arXiv:2208-06030)

Higgs factories:

New frontier @ multi-TeV

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	Start Date	
			e^-/e^+	ab^{-1}/IP	Const.	Physics
HL-LHC	pp	14 TeV		3		2027
ILC & C^3	ee	$250~{ m GeV}$	$\pm 80 / \pm 30$	2	2028	2038
		$350~{\rm GeV}$	$\pm 80/ \pm 30$	0.2		
		500 GeV	$\pm 80/ \pm 30$	4		
		1 TeV	±80/ ± 20	8		
CEPC	ee	M_Z	,	50	2006	2035
		$2M_W$		3	-	
		$240~{ m GeV}$		10	_	
		$360~{\rm GeV}$		0.5		
FCC-ee	ee	M_Z		75	2033	2048
		$2M_W$		5		
		$240~{ m GeV}$		2.5		
		$2~M_{top}$		0.8		
μ -collider	$\mu\mu$	125 GeV		0.02		

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$	Start Date	
]]			e^{-}/e^{+}	ab^{-1}/IP	Const.	Physics
FCC-hh	pp	100 TeV		30	2063	2074
SppC	pp	75-125 TeV		10-20		2055
CLIC	ee	1.5 TeV	±80/0	2.5	2052	2058
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		10 TeV		10		

- Complete the **HL-LHC** program,
- Start now a targeted program for <u>detector R&D for Higgs Factories</u>
- Support a <u>fast start of the construction of a Higgs factory</u>
- Ensure the long-term viability of the field by <u>developing a multi-TeV energy frontier facility</u> such as a *muon collider* or a *hadron collider*.

EF Resources and Timelines

Five year period starting in 2025

- Prioritize HL-LHC physics program, including auxiliary experiments
- Establish a targeted e⁺e⁻ Higgs Factory detector R&D for US participation in a global collider
- Develop an initial design for a first stage TeV-scale Muon Coll. in the US (pre-CDR)
- Support critical detector R&D towards EF multi-TeV colliders

Five year period starting in 2030

- Continue strong support for *HL-LHC program*
- Support and advance construction of an e+e- Higgs Factory
- Demonstrate principal risk mitigation and deliver CDR for a first-stage TeV-scale Muon Coll.

> After 2035

- Support continuing *HL-LHC physics program* to the conclusion of archival measurements
- Begin and support the physics program of the Higgs Factories
- Demonstrate readiness to construct and deliver TDR for a first-stage TeV-scale Muon Coll.
- Ramp up funding support for detector R&D for EF multi-TeV colliders