# Summary of the Workshop - Detectors

A very special thank to A. Andreazza, R. Farinelli and I. Vivarelli for their help!

**CEPC 2023 International workshop** Edinburgh 06/07/2023

Paolo Giacomelli **INFN Bologna** 

# **CEPC detector concepts**









# What was expected from me

#### Agenda:

### https://indico.ph.ed.ac.uk/event/259/timetable/#20230703

#### Monday

| 14:00 | e+e- Colliders based Peter Williams<br>on Energy Recovery<br>Linacs      | CMOS sensor R&D Magnus Mager 🖉 CP Prof. Andrei Gritsan 🖉 measurements with the Higgs Boson at future co                                   |
|-------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|       | Beam optics design for Yiwei Wang 🥝 the CEPC collider ring               | CMOS pixel Sebastian Grinstein<br>developments<br>in AlDAInnova                                                                           |
| 15:00 | Lecture Theatre C, 40 George Square                                      | CEPC vertex detector Zhijun Liang @ Prospect of top Hongbo Liao @ prototype status                                                        |
|       | CEPC                                                                     | measurements at CEPC       Submission of     Liang Zhang @                                                                                |
|       | Lecture Theatre C, 40 George Square                                      | sensors with stitchin Top mass measurement at Zhan Li                                                                                     |
| 10.00 | Coffee and tea break                                                     | 15:40 16:10                                                                                                                               |
| 16:00 | CEPC booster and damping ring design                                     | Dou Wang PID with Cluster Counting for the Drift Dr Linghui Wu Chamber of CEPC                                                            |
|       | Lecture Theatre C, 40 George Square R&D status of injector linac of CEPC | 16:10 - 16:35         Jingru Zhang Ø         μRWELL technology for       Dr Gianfranco Morello Ø         application in future facilities |
|       | Lecture Theatre C, 40 George Square                                      | 16:35 - 17:00 Resistive Place Chamber: status Dr Gabriella Pugliese 🥝                                                                     |
| 17:00 | CEPC Linac design                                                        | Meng Cai 🦉 and future challenges                                                                                                          |
|       | Lecture Theatre C, 40 George Square                                      | 17:00 - 17:25 Updated progress of TPC R&D for CEPC Huirong Qi                                                                             |
|       | Lecture Theatre C, 40 George Square                                      | 17:25 - 17:50 Update of the IDEA drift chamber Dr Nicola De Filippis @<br>(Remote)                                                        |

| <u> 20</u> | 230703                                                                                  |                                                                                  |                                                                                   |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 09:00      | Impedance Takuya Ishibashi Ø<br>modelling and<br>single-bunch collective instability si | AILASPIX3 Riccardo Zanzottera ()<br>testbeam res                                 | H->bb/cc/gg measurement Yu Bai Ø<br>with modified particle flo                    |
|            | CEPC SRF system Jiyuan Zhai @<br>designs for collider,                                  | Prototyping a long Filippo Bosi 🧭 stave for the CEPC sil                         | Global Shudong Wang 🤌<br>measurements of                                          |
|            | Electron beam Jacqueline Keintzel                                                       | The MightytrackerEva Vilellaproject for the LHCb u                               | Deep learning based Fangyi Guo 🤌 calorimeter clusterin                            |
| 10:00      | future e+e- colliders                                                                   | Updates on the 55 nm Yiming Li                                                   | Implementation of Qiyu Sha Qiyu Ang Qiyu Sha                                      |
|            | Cherenkov<br>Diffraction                                                                | LGAD developments Yunyun Fan 🥝 for HGTD and for                                  | Higgs to Dr Nikolaos Rompotis 🦉                                                   |
|            | Lecture Theatre 3, Appleton Tower                                                       | CEPC time of flight detector 3D SOI pixel sensor Yang Zhou Ø                     | Measurement of Vcb Hao Liang 🖉                                                    |
|            |                                                                                         | update                                                                           | using schilleptote tr un                                                          |
| 11:00      | Coffee and tea break                                                                    |                                                                                  |                                                                                   |
|            | University of Edinburgh George Square Ce                                                | ntral Area                                                                       | 11:00 - 11:30                                                                     |
|            | Trigger and DAQ in FCCeeLecture Theatre 1, Appleton Tower                               | Magnet R&D from     Ben Shepherd     Ø       Cockcroft Institute -     STFC UKRI | Recent flavour William Barter                                                     |
| 12:00      | Technology Horizon Rafal Bielski 🥝<br>Scanning: CodePlay                                | R & D of full-scale Wen Kang                                                     | Lecture Theatre 2, Appleton Tower           LHCb flavour         Mark Whitehead @ |
|            | The FELIX Readout System                                                                | CEPC collider and booster                                                        | potenial after<br>Upgrade II                                                      |
|            | Lecture Theatre 1, Appleton Tower Technology Horizon Alex Titterton @                   | High field magnet progress qingjin Xu<br>for SPPC                                | Tau flavor     Tsz Hong Kwok       universality at C                              |
|            | Scanning: GraphCore                                                                     | ecure meane 3, Appleton rows                                                     | A review of the CEPC Lingfeng Li                                                  |
| 13:00      | Lunch                                                                                   |                                                                                  | Lecture Theatre 2, Appleton Tower                                                 |
|            | Concourse, Appleton<br>Tower 13:00 - 14:00                                              |                                                                                  |                                                                                   |
| 14:00      | FCC BSM Giacomo Polesello                                                               | FCCee Geodetic, survey and alignme Ø<br>challenges of the FCC-ee                 | CALICE SiW- Yuichi Okugawa 🦉                                                      |
|            | Lecture Theatre 2. Appleton Tower                                                       | Lecture Theatre 3, Appleton Tower                                                |                                                                                   |

Dr Yugen Lin

Global Fits at CEPC

Sector at CEPC

at CEPC

15:00

16:00

17:00

Lecture Theatre 2, Appleton Towe SUSY, Dark Matter and Dark Jia Li

Lecture Theatre 2, Appleton Tower Long-Lived Particles Kechen Wang

Lecture Theatre 2, Appleton Tower

Precise calculations Fapeng Huang

Production of a Mukesh Kumar 🥝

Searching for Guglielmo Coloretti

Light Higgs Sven Heinemeyer

Coffee and tea break

of electroweak pha..

riangle Singularity

and New Physics

95~GeV scalar in a...

Low-Mass Res...

bosons at the C...

Concourse, Appleton Tower

Jiayin Gu

### Tuesday

| CCee Geodetic, survey and alignme<br>hallenges of the FCC-ee<br>ecture Theatre 3, Appleton Tower | CALICE SiW- Yuichi Okugawa 🥝<br>ECAL beam test       |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------|
| EPC SRF technology Peng Sha @<br>evelopment                                                      | SDHCAL for Prof. Imad Laktineh 🧭 circular collid     |
| ecture Theatre 3, Appleton Tower tatus of beam orbit Daheng Ji                                   | CERN beamtests Tatsuki Murata 🧭 with CALICE scint    |
| evelopment of Andrey Abramov                                                                     | Overview of Andrea Pareti et al. 🥝 fibre-based d     |
| ollimation<br>imulations for the FCC-ee                                                          | Overview of Flavia Cetorelli 🥝<br>crystal-based dua  |
|                                                                                                  | 15:40 - 16:10                                        |
| rogress of CEPC Zhe Duan 🖉<br>olarization studies                                                | LAr calorimeters for future colliders 🤗<br>(15+5)    |
| ecture Theatre 3, Appleton Tower tudies on CEPC plasma Dazhang Li                                | HGC crystal Dr Fangyi Guo et al. 🧭<br>ECAL: hardw    |
| ecture Theatre 3, Appleton Tower                                                                 | HGC crystal ECAL: Yang Zhang 🖉 software developme    |
| EPC high Zusheng Zhou<br>fficiency klystron<br>evelopment                                        | Glass scintillator Sen QIAN 🖉 calorimeter R&D activi |
|                                                                                                  |                                                      |

### Wednesday

| 09:00 | Beam Backgrounds and MDI Design at th   | he CEPC                  |                                                                         | Haoyu Shi 🥝        |  |
|-------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------|--|
|       | ecture Theatre 1, Appleton Tower        | 09:00 - 09:20            |                                                                         |                    |  |
|       | Progress in the design of CEPC Detector | Quan Ji 🥝                |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 09:20 - 09:40            |                                                                         |                    |  |
|       | Px-kick impact on luminosity measurem   | ent at the Z-pole CEPC   | ;                                                                       | Ivanka Bozovic 🥝   |  |
|       | ecture Theatre 1, Appleton Tower        |                          |                                                                         | 09:40 - 10:00      |  |
| 10:00 | Jpdate Design of LumiCal                |                          |                                                                         | suen hou 🥝         |  |
|       | ecture Theatre 1, Appleton Tower        |                          |                                                                         | 10:00 - 10:20      |  |
|       | Preliminary Conceptual Design of Lumin  | Li Meng 🥝                |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 10:20 - 10:40            |                                                                         |                    |  |
|       | Coffee and tea break                    |                          |                                                                         |                    |  |
| 11:00 | Concourse, Appleton Tower               |                          |                                                                         | 10:40 - 11:10      |  |
|       | Simulation of the ATLAS detector at     | Liza Mijovic <i>Ø</i>    |                                                                         |                    |  |
|       | .HC/HL-LHC                              |                          | CEPC parameters and its possible applic<br>to multidisciplinary science | ations Yuhui Li 🧭  |  |
|       | Status of Key4hep and Edm4hep           | Thomas Madlener <i>Ø</i> |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 11:30 - 11:50            | ecture Theatre 3, Appleton Tower                                        | 11:20 - 11:50      |  |
|       | Status of Muon Collider Software        | Nazar Bartosik 🥝         | CEPC Industrialization Preparation and E                                | DeepC Dr Song Jin  |  |
| 12:00 | ecture Theatre 1, Appleton Tower        | 11:50 - 12:10            | Documentation System                                                    |                    |  |
|       | Status of CEPCSW                        | Teng Li 🥝                | ecture Theatre 3, Appleton Tower                                        | 11:50 - 12:20      |  |
|       | ecture Theatre 1, Appleton Tower        | 12:10 - 12:30            | ntroduction on ATF2/3 status and                                        | Angeles Faus-Golfe |  |
|       | Progress in CEPC Drift Chamber Softwa   | re Mengyao Liu 🥝         |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 12:30 - 12:50            | Lecture Theatre 3, Appleton Tower                                       | 12:20 - 12:50      |  |

# What was expected from me

Agenda:

### https://indico.ph.ed.ac.uk/event/259/timetable/#20230703

### Monday

| 14:00 | e+e- Colliders based Peter Williams @<br>on Energy Recovery<br>Linacs | CMOS sensor R&D<br>for next-generatio            | DS sensor R&D Magnus Mager 🖉 CP Prof. Andrei Gritsan 🖉<br>next-generatio with the Higgs Boson at future co |                                        |  |  |  |
|-------|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
|       | Beam optics design for Yiwei Wang @                                   | CMOS pixel Seba<br>developments<br>in AIDAInnova | stian Grinstein 🥝                                                                                          | High Precision Higgs Zhao Li           |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | CEPC vertex detector                             | Zhijun Liang 🥝                                                                                             | Prospect of top Hongbo Liao 🧭          |  |  |  |
| 15:00 | Beam-Beam Effects in Yuan Zhang                                       | prototype status                                 |                                                                                                            | coupling<br>measurements at CEPC       |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | Submission of<br>sensors with stitchin           | Liang Zhang <i>Ø</i>                                                                                       | Top mass measurement at Zhan Li        |  |  |  |
|       |                                                                       |                                                  |                                                                                                            | Lecture Theatre B, 40 George Square    |  |  |  |
|       | Coffee and tea break                                                  |                                                  |                                                                                                            |                                        |  |  |  |
| 16:00 | 40 George Square                                                      |                                                  |                                                                                                            | 15:40 - 16:10                          |  |  |  |
|       | CEPC booster and damping ring design                                  | Dou Wang 🖉 P                                     | ID with Cluster Co<br>hamber of CEPC                                                                       | unting for the Drift Dr Linghui Wu 🥝   |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 16:10 - 16:35                                    |                                                                                                            |                                        |  |  |  |
|       | R&D status of injector linac of CEPC                                  | Jingru Zhang 🦉 <mark>u</mark> a                  | µRWELL technology for Dr Gianfranco Morello 🥝 application in future facilities                             |                                        |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 16:35 - 17:00 R                                  | esistive Place Cha                                                                                         | mber: status 🛛 Dr Gabriella Pugliese 🧭 |  |  |  |
| 17:00 | CEPC Linac design                                                     | Meng Cai 🧷 a                                     | nd future challeng                                                                                         | es                                     |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 17:00 - 17:25                                    | pdated progress o<br>Remote)                                                                               | f TPC R&D for CEPC Huirong Qi          |  |  |  |
|       | New lattice for a Higgs Factory                                       | antaleo Raimondi 🥝                               |                                                                                                            |                                        |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | u<br>17:25 - 17:50                               | pdate of the IDEA<br>Remote)                                                                               | drift chamber Dr Nicola De Filippis 🧭  |  |  |  |

To attend all these sessions and then make a careful summary...

38 talks ~12:30 hours of presentations (of very good quality)

Impossible to make justice to all this amount of material in only 20' !!

| 09:00 | Impedance Takuya Ishibashi @<br>modelling and<br>single-bunch collective instability si | ATLASPIX3 Riccardo Zanzottera (%)<br>testbeam res                                     | H->bb/cc/gg measurement Yu Bai 🧭 with modified particle flo   |
|-------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|
|       | CEPC SRF system Jiyuan Zhai @<br>designs for collider,                                  | Prototyping a long Filippo Bosi 🤗 stave for the CEPC sil                              | Global Shudong Wang 🥝<br>measurements of                      |
|       | Electron beam Jacqueline Keintzel                                                       | The Mightytracker Eva Vilella 🧭 project for the LHCb u                                | Deep learning based Fangyi Guo 🤗 calorimeter clusterin        |
| 10:00 | future e+e- colliders  BPMs based on Collette Pakuza                                    | Updates on the 55 nm Yiming Li 🧭 technologies                                         | Implementation of Qiyu Sha 🧭<br>Quantum Machine Lear          |
|       | Cherenkov<br>Diffraction                                                                | LGAD developments Yunyun Fan                                                          | Higgs to Dr Nikolaos Rompotis 🥝                               |
|       | Lecture Theatre 3, Appleton Tower                                                       | 3D SOI pixel sensor Yang Zhou                                                         | Measurement of Vcb Hao Liang 🧭<br>using semileptoic W d       |
| 11:00 | Coffee and tea break                                                                    | •                                                                                     |                                                               |
|       | University of Ediphyrap Coorgo Sayero Co                                                | stral Area                                                                            | 11.00 11.20                                                   |
| - 1   | Triversity of Edinburgh George Square Cer                                               | Area                                                                                  | 11:00 - 11:30                                                 |
|       | Lecture Theatre 1, Appleton Tower                                                       | Cockcroft Institute -                                                                 | highlights                                                    |
| 12:00 | Technology Horizon Rafal Bielski 🥝                                                      | R & D of full-scale Wen Kang 🖉                                                        | Lecture Theatre 2, Appleton Tower                             |
| 12.00 | The FELIX Readout System                                                                | prototype magnets for<br>CEPC collider and booster                                    | LHCb flavour Mark Whitehead @<br>potenial after<br>Upgrade II |
|       | Lecture Theatre 1, Appleton Tower                                                       | High field magnet progress qingjin Xu<br>for SPPC                                     | Tau flavorTsz Hong KwokØuniversality at C                     |
|       | Scanning: GraphCore                                                                     | Lecture Theatre 3, Appleton Tower                                                     | A review of the CEPC Lingford Li                              |
|       |                                                                                         |                                                                                       | Flavor White Paper                                            |
| 13:00 | Lunch                                                                                   |                                                                                       | Lecture Theatre 2, Appleton Tower                             |
|       | Concourse, Appleton<br>Tower 13:00 - 14:00                                              |                                                                                       |                                                               |
| 14:00 | FCC BSM Giacomo Polesello                                                               | FCCee Geodetic, survey and alignme<br>challenges of the FCC-ee                        | CALICE SiW- Yuichi Okugawa 🥝<br>ECAL beam test                |
|       | Lecture Theatre 2, Appleton Tower Global Fits at CEPC Jiavin Gu                         | Lecture Theatre 3, Appleton Tower                                                     | SDHCAL for Prof. Imad Laktineh 🥝                              |
|       | Lecture Theatre 2, Appleton Tower                                                       | development<br>Lecture Theatre 3, Appleton Tower                                      | CFRN beemteete Tateuki Murate                                 |
| 15.00 | SUSY, Dark Matter and Dark Jia Liu @                                                    | Status of beam orbit Daheng Ji                                                        | with CALICE scint                                             |
| 15:00 | Lecture Theatre 2, Appleton Tower                                                       | booster ring                                                                          | Overview of Andrea Pareti et al. 🧭 fibre-based d              |
|       | Long-Lived Particles Kechen Wang @<br>at CEPC                                           | Development of Andrey Abramov<br>Collimation<br>Simulations for the FCC-ee            | Overview of Flavia Cetorelli                                  |
|       | Lecture Theatre 2, Appleton Tower                                                       |                                                                                       | ciystai-baseu uua                                             |
|       | Coffee and tea break                                                                    |                                                                                       |                                                               |
| 16:00 | Concourse, Appleton Tower                                                               |                                                                                       | 15:40 - 16:10                                                 |
|       | Precise calculations Fapeng Huang Ø of electroweak pha                                  | Progress of CEPC Zhe Duan @<br>Polarization studies                                   | LAr calorimeters for future colliders 🧭<br>(15+5)             |
|       | Triangle Singularity Dr Yugen Lin @<br>and New Physics                                  | Lecture Theatre 3, Appleton Tower           Studies on CEPC plasma         Dazhang Li | HGC crystal Dr Fangyi Guo et al. 🤗 ECAL: hardw                |
|       | Production of a Mukesh Kumar 🖉                                                          | injector                                                                              | HGC crystal ECAL: Yang Zhang 🥝                                |
| 17:00 | 95~GeV scalar in a                                                                      | Lecture Theatre 3, Appleton Tower                                                     | software developme                                            |
|       | Searching for Guglielmo Coloretti @                                                     | CEPC high Zusheng Zhou<br>efficiency klystron<br>development                          | Glass scintillator Sen QIAN 🖉 calorimeter R&D activi          |
|       | Light Higgs Sven Heinemever                                                             |                                                                                       |                                                               |

sons at the C...

### Tuesday

### Wednesday

| 09:00 | Beam Backgrounds and MDI Design at th   | he CEPC                  |                                                                         | Haoyu Shi 🥝        |  |
|-------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------|--|
|       | ecture Theatre 1, Appleton Tower        | 09:00 - 09:20            |                                                                         |                    |  |
|       | Progress in the design of CEPC Detector | Quan Ji 🥝                |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 09:20 - 09:40            |                                                                         |                    |  |
|       | Px-kick impact on luminosity measurem   | ent at the Z-pole CEPC   | ;                                                                       | Ivanka Bozovic 🥝   |  |
|       | ecture Theatre 1, Appleton Tower        |                          |                                                                         | 09:40 - 10:00      |  |
| 10:00 | Jpdate Design of LumiCal                |                          |                                                                         | suen hou 🥝         |  |
|       | ecture Theatre 1, Appleton Tower        |                          |                                                                         | 10:00 - 10:20      |  |
|       | Preliminary Conceptual Design of Lumin  | Li Meng 🥝                |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 10:20 - 10:40            |                                                                         |                    |  |
|       | Coffee and tea break                    |                          |                                                                         |                    |  |
| 11:00 | Concourse, Appleton Tower               |                          |                                                                         | 10:40 - 11:10      |  |
|       | Simulation of the ATLAS detector at     | Liza Mijovic <i>Ø</i>    |                                                                         |                    |  |
|       | .HC/HL-LHC                              |                          | CEPC parameters and its possible applic<br>to multidisciplinary science | ations Yuhui Li 🧭  |  |
|       | Status of Key4hep and Edm4hep           | Thomas Madlener <i>Ø</i> |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 11:30 - 11:50            | ecture Theatre 3, Appleton Tower                                        | 11:20 - 11:50      |  |
|       | Status of Muon Collider Software        | Nazar Bartosik 🥝         | CEPC Industrialization Preparation and E                                | DeepC Dr Song Jin  |  |
| 12:00 | ecture Theatre 1, Appleton Tower        | 11:50 - 12:10            | Documentation System                                                    |                    |  |
|       | Status of CEPCSW                        | Teng Li 🥝                | ecture Theatre 3, Appleton Tower                                        | 11:50 - 12:20      |  |
|       | ecture Theatre 1, Appleton Tower        | 12:10 - 12:30            | ntroduction on ATF2/3 status and                                        | Angeles Faus-Golfe |  |
|       | Progress in CEPC Drift Chamber Softwa   | re Mengyao Liu 🥝         |                                                                         |                    |  |
|       | ecture Theatre 1, Appleton Tower        | 12:30 - 12:50            | Lecture Theatre 3, Appleton Tower                                       | 12:20 - 12:50      |  |

# What was expected from me

Agenda:

### https://indico.ph.ed.ac.uk/event/259/timetable/#20230703

### Monday

| 14:00 | e+e- Colliders based Peter Williams @<br>on Energy Recovery<br>Linacs | CMOS sensor R&D<br>for next-generatio            | DS sensor R&D Magnus Mager 🖉 CP Prof. Andrei Gritsan 🖉<br>next-generatio with the Higgs Boson at future co |                                                   |  |  |  |
|-------|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|       | Beam optics design for Yiwei Wang @                                   | CMOS pixel Seba<br>developments<br>in AIDAInnova | stian Grinstein 🥝                                                                                          | High Precision Higgs Zhao Li 🧭 Production at CEPC |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | CEPC vertex detector                             | Zhijun Liang 🥝                                                                                             | Prospect of top Hongbo Liao 🧭                     |  |  |  |
| 15:00 | Beam-Beam Effects in Yuan Zhang                                       | prototype status                                 |                                                                                                            | coupling<br>measurements at CEPC                  |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | Submission of<br>sensors with stitchin           | Liang Zhang <i>Ø</i>                                                                                       | Top mass measurement at Zhan Li                   |  |  |  |
|       |                                                                       |                                                  |                                                                                                            | Lecture Theatre B, 40 George Square               |  |  |  |
|       | Coffee and tea break                                                  |                                                  |                                                                                                            |                                                   |  |  |  |
| 16:00 | 40 George Square                                                      |                                                  |                                                                                                            | 15:40 - 16:10                                     |  |  |  |
|       | CEPC booster and damping ring design                                  | Dou Wang 🖉 P                                     | ID with Cluster Co<br>hamber of CEPC                                                                       | unting for the Drift Dr Linghui Wu 🥝              |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 16:10 - 16:35                                    |                                                                                                            |                                                   |  |  |  |
|       | R&D status of injector linac of CEPC                                  | Jingru Zhang 🦉 <mark>u</mark> a                  | µRWELL technology for Dr Gianfranco Morello 🥝 application in future facilities                             |                                                   |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 16:35 - 17:00 R                                  | esistive Place Cha                                                                                         | mber: status 🛛 Dr Gabriella Pugliese 🧭            |  |  |  |
| 17:00 | CEPC Linac design                                                     | Meng Cai 🧷 a                                     | nd future challeng                                                                                         | es                                                |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | 17:00 - 17:25                                    | pdated progress o<br>Remote)                                                                               | f TPC R&D for CEPC Huirong Qi                     |  |  |  |
|       | New lattice for a Higgs Factory                                       | antaleo Raimondi 🥝                               |                                                                                                            |                                                   |  |  |  |
|       | Lecture Theatre C, 40 George Square                                   | u<br>17:25 - 17:50                               | pdate of the IDEA<br>Remote)                                                                               | drift chamber Dr Nicola De Filippis 🧭             |  |  |  |

To attend all these sessions and then make a careful summary...

38 talks ~12:30 hours of presentations (of very good quality)

**Impossible** to make justice to all this amount of material in only 20' !!

| 09:00 | Impedance Takuya Ishibashi<br>modelling and<br>single-bunch collective instability si | AILASPIX3 Riccardo Zanzottera 🧭<br>testbeam res                      | H->bb/cc/gg measurement Yu Bai 🧭 with modified particle flo |
|-------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
|       | CEPC SRF system Jiyuan Zhai                                                           | Prototyping a long Filippo Bosi                                      | Global Shudong Wang 🧭 measurements of                       |
|       | boosters and upgrade plan           Electron beam         Jacqueline Keintzel         | The Mightytracker Eva Vilella                                        | Deep learning based Fangyi Guo 🧭 calorimeter clusterin      |
| 10:00 | polarisation for<br>future e+e- colliders                                             | Updates on the 55 nm Yiming Li                                       | Implementation of Qiyu Sha 🧭<br>Quantum Machine Lear        |
|       | Cherenkov<br>Diffraction                                                              | LGAD developments Yunyun Fan Ø                                       | Higgs to Dr Nikolaos Rompotis 🧭                             |
|       | Lecture Theatre 3, Appleton Tower                                                     | 3D SOI pixel sensor Yang Zhou                                        | Measurement of Vcb Hao Liang 🧭 using semileptoic W d        |
| 11:00 | Coffee and tea break                                                                  |                                                                      |                                                             |
|       | University of Ediphyrap Coorae Sauero Co                                              | stral Area                                                           | 11.00 11.20                                                 |
|       | Onversity of Edinburdh Georde Souare Cer                                              | Irai Area                                                            | 11.00 - 11.30                                               |
|       | Trigger and DAQ in FCCee       Ø         Lecture Theatre 1, Appleton Tower            | Magnet R&D from Ben Shepherd @<br>Cockcroft Institute -<br>STEC UKRI | Recent flavour William Barter @                             |
|       | Technology Horizon 🛛 Rafal Bielski 🥝                                                  |                                                                      | Lecture Theatre 2, Appleton Tower                           |
| 12:00 | Scanning: CodePlay                                                                    | orototype magnets for<br>CEPC collider and booster                   | LHCb flavour Mark Whitehead                                 |
|       | The FELIX Readout System                                                              | High field magnet progress gingjin Xu                                | Upgrade II                                                  |
|       | Technology Horizon Alex Titterton                                                     | or SPPC<br>.ecture Theatre 3, Appleton Tower                         | Tau flavor     Tsz Hong Kwok       universality at C        |
|       | Scanning: GraphCore                                                                   |                                                                      | A review of the CEPC Lingfeng Li                            |
| 13:00 | Lunch                                                                                 |                                                                      | Lecture Theatre 2, Appleton Tower                           |
|       | Concourso Apploton                                                                    |                                                                      |                                                             |
|       | <i>Tower</i> 13:00 - 14:00                                                            |                                                                      |                                                             |
| 14:00 | FCC BSM Giacomo Polesello                                                             | FCCee Geodetic, survey and alignme<br>challenges of the FCC-ee       | CALICE SIW- Yuichi Okugawa 🥝<br>ECAL beam test              |
|       | Global Fits at CEPC Jiayin Gu 🦉                                                       | CEPC SRF technology Peng Sha @<br>development                        | SDHCAL for Prof. Imad Laktineh 🥝 circular collid            |
|       | Lecture Theatre 2, Appleton Tower                                                     | Lecture Theatre 3, Appleton Tower                                    | CERN beamtests 🛛 Tatsuki Murata 🖉                           |
| 15:00 | SUSY, Dark Matter and Dark Jia Liu                                                    | Status of beam orbit Daheng Ji                                       | with CALICE scint                                           |
| 15:00 | Lecture Theatre 2, Appleton Tower                                                     | booster ring                                                         | Overview of Andrea Pareti et al. @ fibre-based d            |
|       | at CEPC                                                                               | Collimation<br>Simulations for the FCC-ee                            | Overview of Flavia Cetorelli 🧭 crystal-based dua            |
|       | Coffee and tea break                                                                  |                                                                      |                                                             |
| 16:00 | Concourse Annleton Tower                                                              |                                                                      | 15:40 - 16:10                                               |
| 10.00 |                                                                                       |                                                                      | 10.40 10.10                                                 |
|       | Precise calculations Fapeng Huang <i>O</i> of electroweak pha                         | Progress of CEPC Zhe Duan @<br>Polarization studies                  | LAr calorimeters for future colliders 🧭<br>(15+5)           |
|       | Triangle Singularity Dr Yugen Lin @                                                   | Lecture Theatre 3, Appleton Tower Studies on CEPC plasma Dazhang Li  | HGC crystal Dr Fangyi Guo et al. 🧭 ECAL: hardw              |
|       | Production of a Mukesh Kumar 🧭                                                        | injector                                                             | HGC crystal ECAL: Yang Zhang 🥝                              |
| 17:00 | 95~GeV scalar in a                                                                    | Lecture Theatre 3, Appleton Tower                                    | software developme                                          |
|       | Low-Mass Res                                                                          | efficiency klystron<br>development                                   | Glass scintillator Sen QIAN @<br>calorimeter R&D activi     |
|       | Light Higgs Sven Heinemeyer                                                           |                                                                      |                                                             |

### Tuesday

#### Wednesday

| 09:00 | Ream Backgrounds and MDI Design at                                             | t the CERC         |                                                 | Haovu Shi 🖉        |  |  |  |
|-------|--------------------------------------------------------------------------------|--------------------|-------------------------------------------------|--------------------|--|--|--|
|       | beam Backgrounds and MDI Design a                                              |                    |                                                 | naoyu Shi 🕑        |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               |                    |                                                 | 09:00 - 09:20      |  |  |  |
|       | Progress in the design of CEPC Detect                                          | Quan Ji 🥝          |                                                 |                    |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               | 09:20 - 09:40      |                                                 |                    |  |  |  |
|       | Px-kick impact on luminosity measure                                           | Ivanka Bozovic 🥝   |                                                 |                    |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               | 09:40 - 10:00      |                                                 |                    |  |  |  |
| 10:00 | Jpdate Design of LumiCal                                                       |                    |                                                 | suen hou 🥝         |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               |                    |                                                 | 10:00 - 10:20      |  |  |  |
|       | Preliminary Conceptual Design of Lum                                           | Li Meng 🥝          |                                                 |                    |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               |                    |                                                 |                    |  |  |  |
| 11:00 | Concourse, Appleton Tower<br>Simulation of the ATLAS detector at<br>-HC/HL-LHC | Liza Mijovic 🥝     | CEPC parameters and its possible applic         | 10:40 - 11:10      |  |  |  |
|       | Status of Key4hep and Edm4hep                                                  | Thomas Madlener 🥝  | o multidisciplinary science                     |                    |  |  |  |
|       | ecture Theatre 1, Appleton Tower.                                              | 11:30 - 11:50      | ecture Theatre 3, Appleton Tower                | 11:20 - 11:50      |  |  |  |
|       | Status of Muon Collider Software                                               | Nazar Bartosik 🥖   | CEPC Industrialization Preparation and I        | DeepC Dr Song Jin  |  |  |  |
| 12:00 | ecture Theatre 1, Appleton Tower                                               | 11:50 - 12:10      | Documentation System                            |                    |  |  |  |
|       | Status of CEPCSW                                                               | Teng Li 🥝          | Lecture Theatre 3, Appleton Tower               | 11:50 - 12:20      |  |  |  |
|       | ecture Theatre 1, Appleton Tower.                                              | 12:10 - 12:30      | ntroduction on ATF2/3 status and collaborations | Angeles Faus-Golfe |  |  |  |
|       | Progress in CEPC Drift Chamber Softv                                           | vare Mengyao Liu 🥝 |                                                 |                    |  |  |  |
|       | ecture Theatre 1, Appleton Tower                                               | 12:30 - 12:50      | Lecture Theatre 3, Appleton Tower               | 12:20 - 12:50      |  |  |  |

I followed (almost) all the presentations, but decided not to make a normal summary.

### Caveat

Any omission or mistake is only mine













### **Copyright of this idea:** <u>Guy Wilkinson</u>





## Many of the most interesting discussions happen outside the sessions.



#### **Copyright of this idea:** <u>Guy Wilkinson</u>





## Many of the most interesting discussions happen outside the sessions.



There you often hear the real questions and issues that concern people. Here I highlight the most frequent topics of conversations, and give some responses.

Copyright of this idea: <u>Guy Wilkinson</u>













## Silicon Tracker Session

- 10 presentations, covering the vertex detector, tracker and wrapper
- Focused on monolithic pixel sensors
  - R&D for CEPC detectors and other experiments
  - Many processes in the market, CMOS and SOI
- Interesting progresses on advanced technological options
  - stitching for wafer-size detectors
  - 3D integration
  - Mechanics
- TOF detector to complement central tracker dE/dx





| Submission      | Process   | Time-scale                   | Target                         | Main Institute | Comment                       |                    |
|-----------------|-----------|------------------------------|--------------------------------|----------------|-------------------------------|--------------------|
| LF-Monopix 2    | LF 150 nm | v2 produced                  | rad. hard                      | Bonn/CPPM      | Follow from<br>ATLAS R&D      | -                  |
| RD50-MPW<br>3/4 | LF 150 nm | v4 in 0.5-1.0<br>yr          | rad. hard, high<br>granularity | Liverpool      | R&D                           |                    |
| CACTUS          | LF 150 nm | mini-CACTUS<br>v2 submitted  | timing                         | CEA            | LHC upgrade<br>& beyond       | Note:<br>TJ: Tower |
| TJ-Monopix 2    | TJ 180 nm | v2 produced                  | high granularity               | Bonn           | Belle II, follow up by Obelix | LF: LFound         |
| MALTA 2/3       | TJ 180 nm | v3 in ~0.5 yr                | high granularity               | CERN           | LHC upgrade<br>& beyond       | -                  |
| ARCADIA         | LF 110 nm | next version<br>~0.5 yr      | high granularity               | INFN           | Demonstrator                  | rein               |
| TJ 65 nm        | TJ 65 nm  | 2nd iteration just submitted | high granularity               | IPHC           | R&D, ALICE                    | S. Grinste         |

But also:

- TSI 180 nm (ATLASPix, MightyPix)
- HLMC 55 nm, SMIC 55 nm
- Iapis Semiconductor 200 nm FD-SOI



|       |  |  | al manufacture |  |  |
|-------|--|--|----------------|--|--|
| 8 8 8 |  |  |                |  |  |









## Silicon Tracker: DMAPS

- - tracker







## Silicon Tracker: advanced technologies

- Full-wafer size detector are possible using stitching
  - prototypes built to get experience with the process
  - aspect ratio differs depending on applications (vertex or large area tracker)

Stitching simplified principle

final circuit is a concatenation of different parts of the masks



- 3D integration now available at commercial vendors
  - very interesting opportunity
  - encouraging results on the CPV-4 chip
  - still at the beginning of the learning curve





**Detectors summary - Paolo Giacomelli** 



## Silicon Tracker mechanics

- Prototypes of mechanical structures are being developed, following the baseline CEPC detector design
- important steps towards demonstrating the detector feasibility
- but also keep in mind innovative solutions which may become mature in the CEPC timescale











- excellent time resolution of LGADs
- tracking precision by charge interpolation, even with a large pitch size
- promising results from the IHEP-IME prototypes



**10** 

 $\langle S \rangle$  5



|              | Pitch size | Spatial resolution | Time resolution |
|--------------|------------|--------------------|-----------------|
| Sensors      | [µm]       | [µm]               | [ps]            |
| IHEP AC-LGAD | 1000       | 15                 | 22 (laser)      |
| FBK AC-LGAD  | 500        | 11                 | 32 (laser)      |
| BNL AC-LGAD  | 100        | -                  | 45 (beta sour   |





# Gas detectors - the pub perspective







## Gas detectors - the pub perspective







## Large drift chambers

### PID with Cluster Counting of the CEPC Drift Chamber

Linghui Wu

For the DC-PID group of CEPC the 4th conceptual detector



The 2023 International Workshop on Circular Electron Positron Collider (European Edition), Jul 6, 2023, University of Edinburgh

#### Comparison between LSTM and derivative model



d derivative model Better AUC for LSTM, due to the better pile-up recovery ability of the LSTM model



15



### Beam test of DC prototype

- Beam tests organized by INFN group
- Joint efforts of INFN and Chinese groups
  - Data taking
  - Data analysis
  - Optimizing DC simulation
  - Plan to apply ML algorithm on online FPGA





Preliminary results of peak finding with ML algorithm



Clusterization under optimization



# IDEA's drift chamber



#### Update of the IDEA drift chamber

#### **Nicola De Filippis**

Politecnico and INFN Bari on behalf of the DCH community

The 2023 International Workshop on Circular Electron Positron Collider (European Edition)

University of Edinburgh, July 3-6 2023

#### N. De Filippis

#### Beam test results: recombination and attachment



- The loss of efficiency at large angles is partially due to the fact that increasing the number of clusters in the same drift time, increases the probability of pileup, then decreasing the counting efficiency.
- The lower counting efficiency in 2cm tubes compared to 1cm ones is only partially explained by the effects of recombination and attachment; other possible effects under investigation

N. De Filippis

N. De Filippis



### Beam test setup at T10/CERN in 2023

- 20 tubes with different wires (different material and diameter) and different cell size.
- 1 16-channel DRS
- 2 4-channel DRS
- custom PCBs for the 2 trigger scintillators.
- two external hard disk to store the data collected



- · Data to be collected at different percentages of helium and isobutane: 90-10., 85-15, 80-20.
- Data to be collected with muon beam momentum between 1 and 12 GeV





N. De Filippis

#### Geant4 vs DD4HEP: comparison

• Goal: to validate the implementation of the IDEA drift chamber (DC) geometry and its reconstruction in the DD4hep by doing a comparison with the Geant4 framework. Muons at 10 GeV are used for the validation. Good agreement is observed between the results from the two frameworks.





## µRWELL detectors



#### The micro-RWELL technology for application in future facilities

#### G. Morello[LNF-INFN]

on behalf of LNF-INFN (leading group) Bologna-Ferrara INFN teams R. De Oliveira - CERN-EP-DT-MPT Workshop

The 2023 International Workshop on Circular Electron Positron Collider, Edinburgh, July 3rd 2023



#### The μ-RWELL technology: beam tests measurements



#### The μ-RWELL technology: the evolution

In construction 50 x 50 and 150 x 50 cm<sup>2</sup>



Geometrical PARAMETERS

| Layout | GND pitch<br>[mm] | Dead<br>Area<br>[mm] | DOCA<br>[mm] | Geom.<br>Acceptance |
|--------|-------------------|----------------------|--------------|---------------------|
| PEP1   | 6 // 8            | 1                    | 0.475        | 66%                 |
| PEP2.1 | 8.9               | 0.8                  | 0.375        | 91%                 |
| PEP2.2 | 17.8              | 0.8                  | 0.375        | 95.5%               |

DOCA (Distance of Closest Approach): the minimum distance between a grounding line and an amplification channel.

Suitable for large size apparatuses





## TPC









## Status of Pixelated and Pad Readout TPC Technology R&D at CEPC

**Huirong Qi** 

Yue Chang, Xin She, Liwen Yu, Zhi Deng, Jian Zhang, Jinxian Zhang Linghui Wu, Guang Zhao, Gang Li, Manqi Ruan, Jianchun Wang

On behalf of CEPC TPC study group and Special thanks to LCTPC collaboration 2023 international workshop on CEPC, 3-6 July, 2023, Edinburgh

#### Simulation of the pixelated TPC - ongoing

- All detailed simulation **starting** at IHEP using Garfied++ and Geant4
  - Setup the new simulation framework
  - TPC detecror module simulated **under 2T and T2K gas** from CEPC CDR
  - Progress presentaion will be prepared soon

Yue Chang, Guang Zhao, Linghui Wu, Gang Li



#### CEPC TPC detector prototyping roadmap

- From TPC module to TPC prototype R&D for beam test
  - Low power consumption FEE ASIC (reach <5mW/ch including ADC)
- Achievement by far:
  - Supression ions hybrid GEM+Micromegas module
    - IBF × Gain ~1 at Gain=2000 validation with GEM/MM readout
  - Spatial resolution of  $\sigma_{r_0} \leq 100 \ \mu m$  by TPC prototype
  - dE/dx for PID: <4% (as expected for CEPC baseline detector concept)





Huirong Qi

#### Same goal: Low power consumption pixelated TPC technology IHEP/LCTPC

- R&D @ IHEP based on **0.5**×**0.5** mm<sup>2</sup> pixels and electronics uses a power of <**0.2mW/channel**.
- For all the active area of 160 000 cm<sup>2</sup> one has 64 M channels and <1.2 kW power consumption
- > 89% coverage in the endplate
- Current TPX3 chip has 256×256 channels and a surface of 1.41×1.41 cm<sup>2</sup>
- Power consumption ~2W/chip; this means 30 mW/channel
- A full pixel TPC in the detector will have a total area 160 000 cm<sup>2</sup>
  - For full coverage one needs 80 000 chips
  - With the current TPX3 chip one reaches about 60% coverage
  - For the pixel TPC the total power is 160 kW (so 80 kW per endcap)
- Low power consumption is the first requirement for the pixelated TPC technology to LCTPC
  - TPX3 Gridpixes in low power mode reduces the power consumption for a pixel TPC to **8 kW per** endcap at the cost of a worse time resolution.
  - Ref1 https://iopscience.iop.org/article/10.1088/1748-0221/14/01/C01024
  - Ref2 https://iopscience.iop.org/article/10.1088/1748-0221/14/01/C01001

18 Huirong Qi











### R&D with eco-gas mixtures

G. Pugliese

| Gas mixture | $C_2H_2F_4$ | HFO-1234ze | CO2 | I-C <sub>4</sub> H <sub>10</sub> | SF <sub>6</sub> |
|-------------|-------------|------------|-----|----------------------------------|-----------------|
| STD         | 95.2        | 0          | 0   | 4.5                              | 0.3             |
| ECO1        | 0           | 45         | 50  | 4                                | 1               |
| ECO2        | 0           | 35         | 60  | 4                                | 1               |
| ECO3        | 0           | 25         | 69  | 5                                | 1               |

Comparable efficiency plateau and slightly higher WP (1kV) between standard and HFO based mixtures measured with a CMS RPC and without



Several HFO based gas mixtures tested

CMS

**CEPC 2023** 

 $\blacktriangleright$  A fraction of CO<sub>2</sub> is needed to lower the HV working point



- Comparable efficiency plateau with a 1.4 mm double gap RPC
- Small increase of cluster size  $<C_{s}>$  for the std. TFE gas = 2.78  $<C_{s}>$  for 60% CO2 + HFO = 3.67







# Calorimeters - the pub perspective







## Calorimeters - the pub perspective

How do we build 5D calorimeters? How many channels will they have? Can we afford them?





### Calorimetry - W and Sci based ECAL /HCAL



CALICE ECAL (SiW ~ 21 X<sub>0</sub> read out with different generations of FEV and COB boards) + AHCAL - Results on quality check + PID + MIP energy deposits

20

# Calorimeters - the pub perspective

•Lots of amazing progress all over the board, with many hardware and software developments (and lots of data from test beams!)



Scintillator based (Sc-ECAL, W absorber read out with SiPM - 23.3 X<sub>0</sub>) + AHCAL





## Calorimetry - SDHCAL

•SemiDigital hadronic calorimeter (using Glass Resistive plate chambers - originally designed for ILC, now adapted to circular colliders (CC). No power-pulsing at  $CC \Rightarrow$  Need for cooling.



Water cooling circulation obtaining uniform temperatures on the board

# Calorimeters - the pub perspective

#### Imad Laktineh



Towards 5-D calorimeter. Timing improves cluster separation. Studies ongoing with MultiGAP RPC + PETIROC promising

Dedicated studies on the use of glass doped with nanoparticles to improve rate capabilities of detector



## Calorimetry - dual readout

•Fiber calorimeter aiming at hadronic-size prototype (next two years)



Pion resolution in [10, 100] GeV Range



# Calorimeters - the pub perspective

• Crystal-based EM section proposed - working on the choice of crystals and filters to separate (in frequency) Cherenkov from scintillation light.

#### BGO emission and Final LP680 Filter Spectrum



#### PWO emission and Final LP580 Filter Spectrum







## Noble gas calorimeters for lepton colliders

- Successfully used in ATLAS (and other experiments before).
- •Being reoptimised for lepton collider.
  - •Optimisation of geometry, electrodes design, electronics (cold or warm?), absorber and gas



## Calorimeters - the pub perspective



•Mechanical challenge to support electrodes while maintaining structure light being also investigated.



## HGC-ECAL

- •Impressive progress: module developed and put on beam at CERN.
- •Software challenges connected with Ambiguity problem being tackled





# Calorimeters - the pub perspective

#### Fangyi Guo, Zhang Yang



5GeV e- HG49 LG44 TimingHG230 Shaping87.5ns HoldDelay200ns







## Glass Scintillator calorimeter

- •Inspired to the AHCAL (scintillator/steel), replace plastic with glass (higher light yield, more compact)
- Prototype built and tested at CERN in 2022
- •Understanding how to scale up from lab production is key



## Calorimeters - the pub perspective

Size= $50*50*10 \text{ mm}^3$ **Density=5.8 g/cm<sup>3</sup>** LY=172 ph/MeV ER=None BGRI-54 BGRI-55 BGRI-56 BGRI-57 BGRI-58 - BGRI-59 ADC channel







# The 10 B€/\$ question - the pub perspective



Detectors summary - Paolo Giacomelli



# The 10 B€/\$ question - the pub perspective



Detectors summary - Paolo Giacomelli



# The 10 B€/\$ question - the pub perspective



## All that follows is my own personal opinion!

Detectors summary - Paolo Giacomelli



## **Options being discussed**

Detectors summary - Paolo Giacomelli

## Higgs factory - the pub perspective





# Higgs factory - the pub perspective

## **Options being discussed**

## Circular



China





CERN

 $\sqrt{s} = 90 - 375 \text{ GeV}$ 



Detectors summary - Paolo Giacomelli

## Linear



#### CERN




### **Options being discussed**

#### Circular



China

- (Too) Many options on the table.
- To the ones listed here you should also add: **Muon Collider C**<sup>3</sup>

HEP can afford only 1 very large project. It has to be truly worldwide.



#### Linear



#### CERN









**Detectors summary - Paolo Giacomelli** 



Detectors summary - Paolo Giacomelli

### Higgs factory - the pub perspective



#### ·ILC

Detectors summary - Paolo Giacomelli

### Higgs factory - the pub perspective



- ·ILC
  - Would have been a great machine if it was already running in parallel to LHC and HL-LHC



- ILC
  - Would have been a great machine if it was already running in parallel to LHC and HL-LHC
  - It is not the best Higgs factory to start building now

eady running in parallel to LHC and HL-LHC g now



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow



### ·ILC

- $\cdot$  Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

• CLIC



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

Not a realistic alternative to start building now



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC
- It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex

• **C**<sup>3</sup>



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex

#### • **C**<sup>3</sup>

It might be my fault but I don't see any advantage compared to the other proposed options



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex
- **C**<sup>3</sup>
  - It might be my fault but I don't see any advantage compared to the other proposed options
- Muon Collider



### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC It is not the best Higgs factory to start building now
- - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex
- **C**<sup>3</sup>
  - It might be my fault but I don't see any advantage compared to the other proposed options.
- Muon Collider
  - Very interesting idea, however one needs to first build a full demonstrator of the technology (15-20) years?)





### ·ILC

- Would have been a great machine if it was already running in parallel to LHC and HL-LHC It is not the best Higgs factory to start building now
  - Only 1 IP, lower luminosity than a circular collider, no high energy hadron collider to follow

#### • CLIC

- Not a realistic alternative to start building now
  - Has some of the limitations of the ILC
  - Cannot study with precision the lower part of the EW scale
  - Could go up to 3 TeV, but at about the same price than the full FCC-ee and FCC-hh complex
- **C**<sup>3</sup>
  - It might be my fault but I don't see any advantage compared to the other proposed options
- Muon Collider
  - Very interesting idea, however one needs to first build a full demonstrator of the technology (15-20) years?)
  - Could be the next-to-next collider





Detectors summary - Paolo Giacomelli





• We are therefore left with two similar and competing circular options: FCC and CEPC

Detectors summary - Paolo Giacomelli





We are therefore left with two similar and competing circular options: FCC and CEPC

•Why don't we move from competing to collaborating?

# ompeting circular options: FCC and CEPC ollaborating?





- We are therefore left with two similar and competing circular options: FCC and CEPC
  - •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects

# ompeting circular options: FCC and CEPC ollaborating?





- We are therefore left with two similar and competing circular options: FCC and CEPC
- •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D





- We are therefore left with two similar and competing circular options: FCC and CEPC
- •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes





- We are therefore left with two similar and competing circular options: FCC and CEPC
  - •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)







- We are therefore left with two similar and competing circular options: FCC and CEPC
  - Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)
      - ECFA DRDs









- We are therefore left with two similar and competing circular options: FCC and CEPC
  - •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)
      - ECFA DRDs
  - How about collaborating with FCC-hh on HTS magnets?









- We are therefore left with two similar and competing circular options: FCC and CEPC
- •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)
      - ECFA DRDs
  - •How about collaborating with FCC-hh on HTS magnets?
    - NbSn<sub>3</sub> magnets are not appealing to industry, also CERN is slowly getting convinced...







- We are therefore left with two similar and competing circular options: FCC and CEPC
- •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)
      - ECFA DRDs
  - •How about collaborating with FCC-hh on HTS magnets?
    - NbSn<sub>3</sub> magnets are not appealing to industry, also CERN is slowly getting convinced...
      - China could play a big role here

**DA** 







- We are therefore left with two similar and competing circular options: FCC and CEPC
- •Why don't we move from competing to collaborating?
- Key4Hep is a great example of software collaboration across different projects
  - Could do a similar thing for detector R&D
    - Could collaborate using different funding schemes
      - European projects like AIDAinnova and EURO-LABS (we have excellent links...)
      - ECFA DRDs
  - •How about collaborating with FCC-hh on HTS magnets?
    - NbSn<sub>3</sub> magnets are not appealing to industry, also CERN is slowly getting convinced...
      - China could play a big role here
    - Other machine components

**IDA** 







Detectors summary - Paolo Giacomelli



#### •4 detector concepts proposed so far for CEPC

Detectors summary - Paolo Giacomelli



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors



- 4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers



- 4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers



- 4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - Time of flight detectors



- •4 detector concepts proposed so far for CEPC
- •A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters


- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software
- Could increase collaboration with FCC



- •4 detector concepts proposed so far for CEPC
- A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software
- Could increase collaboration with FCC
  - Detector R&D



- •4 detector concepts proposed so far for CEPC
- •A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software
- Could increase collaboration with FCC
  - Detector R&D
  - Machine components



- 4 detector concepts proposed so far for CEPC
- •A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software
- Could increase collaboration with FCC
  - Detector R&D
  - Machine components
  - HTS magnets



- •4 detector concepts proposed so far for CEPC
- •A lot of interesting R&D on all sub detectors
  - Vertex trackers
  - Large gas central trackers
  - •Time of flight detectors
  - Calorimeters
    - High granularity, Dual readout, crystal calorimeters
  - Muon detectors
  - MDI
  - •Software
- Could increase collaboration with FCC
  - Detector R&D
  - Machine components
  - HTS magnets

**Detectors summary - Paolo Giacomelli** 

### Let's make sure we get at least one collider approved between FCC and CEPC!



# **CEPC International workshop in Nanjing**

# **Positron Collider**

Oct 23 – 27, 2023 Asia/Shanghai timezone

**Overview** 

Nanjing, October 23-27/10/2023:

participation

https://indico.ihep.ac.cn/event/19316/

The workshop will be with in-person

Scientific Program

Call for Abstracts

Registration

Accommodation & Travel

Participant List

Previous workshops

### Support

cepcws2023@ihep.ac.cn **\*** +86 18951633979

The 2023 International Workshop on the High Energy Circular Electron

Enter your search term

The 2023 international workshop on the high energy Circular Electron-Positron Collider (CEPC) wi take place at Nanjing, Oct 23-27, 2023.

The workshop intends to gather scientists around the world to study the physics potentials of the CEPC, pursue international collaborations for accelerator and detector optimization, deepen R&D work of critical technologies, and develop initial plans towards Technical Design Reports (TDR). T high energy Super proton-proton Collider (SppC), a possible upgrade of the CEPC, will also be discussed. Furthermore, industrial partnership for technology R&Ds and industrialization preparat of CEPC-SppC will be explored.

The workshop program consists of plenary, parallel and poster sessions. Parallel session presentations and posters are selected from the abstract submissions. The workshop encourage participation, especially from graduate students and postdocs. Top posters will receive awards, selected by a committee that consists of the SPC members, the conveners and the local organize

The abstract submission deadline is Sept 1, 2023. The registration deadline is Oct 1, 2023.

For further assistance please contact cepcws2023@ihep.ac.cn.



Starts Oct 23, 2023, 8:00 AM Ends Oct 27, 2023, 11:59 PM Asia/Shanghai



Shan Jin **Jianchun Wang** 











### Have a nice flight back home!

