

Framework

LHCb UPGRADE II

_HCb Upgrade II

4/7/2023

- Hugely successful experiment, > 600 publications
- Significant discoveries
 - CPV observed in new systems
 - Rare decays
 - 64 of 72 new hadrons discovered at the LHC
- Broad physics programme
 - World leading for core topics, but also
 - Heavy ions
 - Fixed target
 - Electroweak
 - Dark Sector

LHCb Upgrade I

- Major project achieved on budget
 - All sub detectors installed
 - Commissioning to detector and dataflow ongoing
 - Detector performance studies underway
 - 90% of channels upgraded
 - Replaced readout electronics
 - Operate at 30 MHz
 - Peak luminosity x5 w.r.t. Run 1

 $2 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

LHCb Upgrade II

38

и,

Physics case

Accelerator study

- European strategy Update 2020:
 - The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited
- Approved March 2022

EOI

Report

LHCb TDR 23

ork

Upgrade II

2033-

LHCb Upgrade II

- Complete new detector required
 - Vertexing: Pixel detector with timing
 - Hadron PID: RICH with timing and better resolution, TORCH for low momentum tracks
 - Tracking: New magnet stations and pixel mighty tracker
 - Calorimeter: Better resolution and timing information
 - Muon system: New technologies for high occupancy regions

LHC

• LHCb physics programme not limited by the LHC

Ambitious future upgrades plan

- Integrated luminosity ~ $300 \, \text{fb}^{-1}$
 - For Run 5 + 6
- Install during LS4
- Smaller detector consolidation and enhancements during LS3

LHC

Summary of golden modes

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08,0.06,0.18	_	0.02,0.02,0.05	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	14 mrad	_	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	$11 \mathrm{mrad}$	Under study [611]
a_{sl}^s	33×10^{-4} [211]	10×10^{-4}	_	3×10^{-4}	-
$ ec{V}_{ub} / V_{cb} $	6% [201]	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [612]
$ au_{B^0_s ightarrow \mu^+ \mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}$	_	_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} \operatorname{LUV} \operatorname{studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
<u>Charm</u>					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	3.2×10^{-4}	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

Physics case

4/7/2023

Unitarity triangle

Picture remains consistent at the moment, need better precision

- Many key observables have negligible theoretical uncertainties
- Flavour physics still one of the more promising areas to find a paradigm shifting discovery at HL-LHC
 <u>CKM Fitter</u> <u>Physics case</u>

CKM angle γ

- Already outperforming our estimates for LHCb original
 - Charm mixing parameters also determined simultaneously
 - In the SM, irreducible theory uncertainty $|\delta_{\gamma}/\gamma| \le 10^{-7}$
 - Expect to reach a precision of 0.35°
 - Will be interesting to compare B meson species and decay modes to look for NP effects in treelevel decays!

LHCb-CONF-2022-003

 $\gamma = (63.8^{+3.5}_{-3.7})$

$|B_s^0$ mixing phase ϕ_s

- Complementary area for LHCb, ATLAS and CMS
 - World average -0.039 ± 0.016 rad is statistically limited
 - Will remain so even after LHCb

Includes brand new preliminary result from LHCb

- Golden mode for NP searches, precise SM predictions
 - Current LHCb results $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$

 $\mathscr{B}(B^0 \to \mu^+ \mu^-) = (1.2^{+0.8}_{-0.7} \pm 0.1) \times 10^{-10}$

- Current precision of the B_s^0 mode is 15%
 - Expect to reach 1.8% with Upgrade II
 - Experimental systematics should scale
 - Hard to predict uncertainty of f_s/f_d
 - Expect to reach 10% for the B^0 mode
- Effective lifetime (2%) and CPV (10-20%) also within reach

4/7/2023

LHCb-PAPER-2021-007

- Exhibits rich angular structure, including the famous P'_5 discrepancy
 - Expected >400k signal events with Upgrade II
 - Cleanly discriminate between NP scenarios and the SM
 - Need to understand charm loops and SM contributions!

Lepton Universality: $R(K^{(*)})$

- Latest results from LHCb now consistent with the SM LHCb-PAPER-2022-045
 - Nevertheless these ratios remain interesting to follow-up in Upgrade II
 - If NP appears, will have sensitivity to distinguish between different options

Physics case

LHCb Upgrade II R_{K} [1,6]	Yield	Run 1 result	$9{\rm fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
Scenario I R_{\star} [1,6]	$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29 [274]	1120	3300	7500	46000
LHCh Upgrade II	$B^0 \rightarrow K^{*0} e^+ e^-$	$111 \pm 14 \ [275]$	490	1400	3300	20000
Scenario II	$B_s^0 \rightarrow \phi e^+ e^-$	—	80	230	530	3300
	$\Lambda_b^0 \rightarrow p K e^+ e^-$	_	120	360	820	5000
Scenario III	$B^+ \rightarrow \pi^+ e^+ e^-$	—	20	70	150	900
	R_X precision	Run 1 result	$9{\rm fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$
LHCb Upgrade II Scenario IV	R_K	$0.745 \pm 0.090 \pm 0.036$ [274]	0.043	0.025	0.017	0.007
	$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05 \ [275]$	0.052	0.031	0.020	0.008
LHCb Run 1	R_{ϕ}	—	0.130	0.076	0.050	0.020
0.4 0.6 0.8 1 1.2	R_{pK}	—	0.105	0.061	0.041	0.016
R_X	R_{π}	_	0.302	0.176	0.117	0.047

Lepton Universality: $R(D^{(*)})$

- Latest results still in about 3σ tension with SM predictions
 - Two new results from LHCb in the last year didn't change the picture LHCb-PAPER-2022-039 LHCb-PAPER-2022-052

Spectroscopy

- Hugely successful area for LHCb original
 - 64 particle discoveries to date! Many of them appear to be exotic
 - Many conventional particles are waiting to be found, just a question of statistics:

Spectroscopy

- Hugely successful area for LHCb original
 - Explore the nature of 4 and 5 quark states
 - Look for new decay modes and look for their partners
- Where are the hexaquarks?
- With enormous data samples, can we compete for some nuclear resonances?

Physics case

Summary

- Majority of the LHCb physics programme is statistically limited
 - We do not, yet, run at the maximum peak luminosity of the LHC
 - Upgrade II will allow us to take full advantage of the HL-LHC
- Haven't covered prospects for non-flavour topics
 - See physics document for more details

$\pm 33.0 \times 10^{-4}$	±5.4	±49	$\pm 28.0 \times 10^{-5}$	LHCb
				Current
	±1.5		$\pm 35.0 \times 10^{-5}$	Belle II ATLAS/CMS
$\pm 10.0 \times 10^{-4}$	<u>±1.5</u>	<u>±14</u>	$\pm 4.3 \times 10^{-3}$	LHCb 2025
		±22		
$\pm 3.0 \times 10^{-4}$	±0.35	±4	$\pm 1.0 \times 10^{-5}$	
a ^s	γ[°]	φ _s [mrad]	AΓ	HL-LHC

Summary

- Majority of the LHCb physics programme is statistically limited
 - We do not, yet, run at the maximum peak luminosity of the LHC
 - Upgrade II will allow us to take full advantage of the HL-LHC
- Haven't covered prospects for non-flavour topics
 - See physics document for more details

