Measurement of $|V_{cb}|$ from $ee \rightarrow \ell \nu q q$ at the future ee collider

Presenter: Hao Liang

on the behalf of Hao Liang, Lingfeng Li, Yongfeng Zhu, Manqi Ruan

July 4rd, 2023

Introduction

- Significance of $|V_{cb}|$
 - The normalization factor of the unitarity triangle
 - New Physics study in B_s/B_d mixing

NP parameter in the $B_d - \bar{B}_d$ mixing

Simplified analysis. only minimum number of inputs: f_{B_d} , B_{B_d} , Δm_d , $|V_{ud}|$, $|V_{ub}|$, $|V_{cd}|$, $|V_{cb}|$, $\gamma \delta(\sqrt{|\Delta_d|} - 1) = \frac{\delta f_{B_q}}{f_{B_q}} \oplus \frac{\delta \hat{B}_{B_d}}{2\hat{B}_{B_d}} \oplus \frac{\delta |V_{ud}V_{ub}^*| \cos^2 \alpha}{|V_{ud}V_{ub}^*|} \oplus \frac{\delta |V_{cd}V_{cb}^*| \cos^2 \beta}{|V_{cd}V_{ub}^*|} \oplus \frac{\delta \gamma \sin \beta \sin \alpha}{\sin \gamma}$

- Significance of $|V_{cb}|$ at EW scale
 - $|V_{cb}|$ via *b*-hadron decays
 - non-perturbative QCD contribution
 - Results show discrepancy between inclusive and exclusive analyses
 - $|V_{cb}|$ via W decay
 - Perturbative QCD

Phys.Rev. D91 (2015) 073007 More about this topic: Phys. Rev. D 102, 056023 (2020)

History & Futrue

- LEP:
 - $Br(W \to qq) \& Br(W \to cs)$
- LHC:
 - $Br(W \to qq)$
- Monte Carlo simulation
 - LHC: ~ 3% (Run 1 & Run 2 & Run 3)
 - Future HL-LHC Improve by a factor of 2
- Future ee-collider
 - Statistics & flavor tagging perofmrace & clean collision environment
- CEPC detector and luminosity as instance
 - Lumi. 20 ab^{-1} , \sqrt{s} =240 GeV
- WW semi-hadronic
 - Analysis for $\mu v W$ and $e \mu W$
 - $\tau v W$ in which, the $\tau \rightarrow e/\mu$ was analyzed as side work of analysis of $\mu v W$ and e v W
- Three signals measured simultaneously
 - $W \to cb, W \to c(s+d), W \to u(s+d)$
 - $W \rightarrow ub$ too tiny to observed, fixed

Event selections ($\mu v q q$)

- Purity > 99.5% at Eff. 50% for μνqq and 34% for τ(μ2ν)νqq
- Main backgrounds include:
 - $W \rightarrow c(d/s)$
 - μμqq

	$\mu\nu W, W \rightarrow$			$\tau(\mu\nu)\nu_{\tau}W, W \rightarrow$			$\tau \nu_{\tau} q q, \tau \rightarrow$							
	cb	ub	c(d/s)	u(d/s)	cb	ub	c(d/s)	u(d/s)	$e2\nu$	had. ν_{τ}	$\tau \tau q q$	$\mu\mu q q$	Higgs	others
w/o slections	40.3K	363	24.2M	24.2M	7.73K	74	4.2M	4.2M	8.66M	31.4M	2.18M	$4.47 \mathrm{M}$	$4.07 \mathrm{M}$	2.06G
$E_{L\mu} > 12 \text{GeV}$	37.9K	330	22.6M	22.6M	5.59K	56	2.98M	$2.97 \mathrm{M}$	133K	$687 \mathrm{K}$	422K	2.82M	645K	$186.3 \mathrm{M}$
$R_{L\mu} > 0.85$	35.3K	302	21.1M	21.1M	5.01K	46	2.73M	2.73M	1.55K	43.2K	266K	1.82M	308K	128.8M
$\cos(\theta_{\mathrm{L}\mu})$	35.3K	302	21.1M	21.1M	5.01K	46	2.73M	2.73M	1.55K	43.2K	266K	1.82M	308K	$128.8 \mathrm{M}$
$q_{\mathrm{L}\mu}\cos(\theta_{\mathrm{L}\mu}) < 0.20$	32.8K	283	19.6M	19.6M	4.7K	42	$2.57 \mathrm{M}$	$2.57 \mathrm{M}$	1.26K	39.9K	156K	$1.03 \mathrm{M}$	183K	92.6M
2nd isolation ℓ veto	32.8K	283	$19.5 \mathrm{M}$	19.6M	4.7K	42	$2.57 \mathrm{M}$	$2.57 \mathrm{M}$	1.26K	39.9K	154K	526K	138K	43.9M
multiplicity ≥ 15	32.8K	283	19.5M	19.4M	4.7K	42	2.56M	$2.55 \mathrm{M}$	1.23K	39.6K	153K	522K	118K	185K
Missing $P_T > 9.5 \text{ GeV}/c$	31.5K	264	$18.7 \mathrm{M}$	$18.6 \mathrm{M}$	4.38K	37	$2.4\mathrm{M}$	2.39M	1.18K	37.2K	136K	118K	92.6K	$97.7 \mathrm{K}$
$M_{\rm jets} > 65 \ { m GeV}/c^2$	29.4K	254	$18.1 \mathrm{M}$	18.3M	4.15K	32	2.33M	2.35M	978	$36.0 \mathrm{K}$	132K	112K	85.3K	24.5K
$M_{\rm jets} < 88 ~{ m GeV}/c^2$	24.1K	193	14.3M	14.1M	3.49K	23	$1.87 \mathrm{M}$	$1.85 \mathrm{M}$	641	24.7K	5.62K	11.5K	6.76K	$4.31 \mathrm{K}$
$M_{\rm jets,recoil} < 115 \ {\rm GeV}/c^2$	20.2K	184	13.0M	13.1M	2.96K	23	1.72M	1.73M	505	22.6K	3.57K	6.86K	536	3.02K
$M_{\rm L\mu S\mu} < 75 \ {\rm GeV}/c^2$	19.6K	184	$12.9 \mathrm{M}$	13.0M	2.95K	23	1.72M	1.73M	505	22.6K	3.56K	$5.78 \mathrm{K}$	414	$3.0 \mathrm{K}$
$M_{\ell\nu} > 12 \ { m GeV}/c^2$	19.6K	184	$12.9 \mathrm{M}$	13.0M	2.7K	18	1.54M	1.55M	416	$19.5 \mathrm{K}$	2.08K	5.16K	390	$1.81 \mathrm{K}$
$\epsilon_{ m kin}$ (%)	48.8	50.6	53.5	53.7	34.9	25.0	36.7	36.9	0.0	0.1	0.1	0.1	0.0	0.0
	(0.7)	(8.1)	(0.0)	(0.0)	(1.5)	(12.5)	(0.1)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
$b_1 c_{1,2}$	5.14K	4	2.79K	571	632	0	407	65	0	14	67	228	0	0
61 (%)	12.8	1.3	0.0	0.0	8.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	(0.4)	(1.3)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)

Event selections (evqq)

- X-section increase by 15% by including *evW* process with kinematical cut on final-state electron
- Some cut adjusted compared to μνqq
- Noisy compared to μνqq
 - Additional backgrounds from bb and τ(had.ν)νqq

	$e\nu W, W \rightarrow$			$ au(e u) u_{ au}W,W ightarrow$			$\tau \overline{\nu_{ au} qq}, \tau \rightarrow$							
	cb	ub	c(d/s)	u(d/s)	cb	ub	c(d/s)	u(d/s)	$\mu 2 u$	had. ν_{τ}	au au q q	eeqq	Higgs	others
w/o slections	47.1K	457	26.1M	26.1M	7.83K	60	4.32M	4.33M	8.41M	31.4M	6.32M	2.18M	$4.07 \mathrm{M}$	$2.04 \mathrm{G}$
$E_{\mathrm{L}\ell} > 12 \mathrm{GeV}$	44.4K	433	24.6M	24.8M	6.19K	51	3.44M	3.54M	3.83M	$19.5 \mathrm{M}$	5.17M	1.43M	743K	1.08G
$R_{L\ell} > 0.75$	40.0K	400	22.1M	22.0M	4.31K	37	2.38M	2.36M	150K	4.34M	4.27M	500K	282K	528.3M
$\cos(heta_{\mathrm{L}\ell})$	40.0K	400	22.1M	22.0M	4.31K	37	2.38M	2.36M	150K	4.34M	4.27M	500K	282K	528.3M
$q_{\mathrm{L}\ell}\cos(\theta_{\mathrm{L}\ell}) < 0.20$	37.1K	381	20.6M	20.5M	4.07K	32	2.25M	2.22M	115K	3.9M	3.31M	305K	170K	$500.7 \mathrm{M}$
2nd isolation ℓ veto	37.1K	381	20.5M	20.4M	4.07K	32	2.24M	$2.21 \mathrm{M}$	115K	3.9M	2.71M	299K	148K	411.1M
multiplicity ≥ 15	37.1K	376	20.5M	20.4M	4.07K	32	2.24M	2.2M	110K	3.88M	2.59M	298K	118K	15.2M
Missing $P_T > 9.5 \text{ GeV}/c$	35.4K	348	19.5M	19.4M	3.79K	23	2.09M	2.05M	105K	3.7M	542K	$261 \mathrm{K}$	79.4K	5.38M
$M_{\rm jets} > 65 \ { m GeV}/c^2$	33.0K	325	18.9M	19.0M	3.53K	23	2.01M	2.0M	74.6K	3.6M	381K	255K	70.3K	4.53M
$M_{\rm jets} < 100 \ { m GeV}/c^2$	30.7K	310	17.5M	17.5M	3.35K	23	1.89M	1.87M	44.7K	2.96M	97.1K	37.5K	11.2K	1.26M
$M_{\rm jets, recoil} > 0$	30.4K	310	17.3M	17.3M	3.31K	23	1.86M	1.84M	44.5K	2.93M	70.6K	35.3K	11.2K	891K
$M_{\rm jets, recoil} < 115 \ {\rm GeV}/c^2$	24.6K	226	15.2M	15.5M	2.78K	14	1.72M	1.72M	18.1K	2.66M	43.2K	26.6K	1.96K	749K
$M_{\rm L\ell S\ell} < 75 ~{\rm GeV}/c^2$	22.5K	179	13.2M	13.1M	2.69K	14	1.66M	1.66M	18.0K	2.58M	33.0K	25.4K	1.68 K	607 K
$M_{\ell\nu} > 12 \ { m GeV}/c^2$	22.5K	179	13.1M	13.1M	2.66K	14	1.64M	1.63M	17.6K	2.5M	32.6K	$25.0 \mathrm{K}$	1.66 K	597K
officiency (%)	47.7	39.2	50.4	50.0	34.0	23.1	37.8	37.6	0.2	8.0	0.5	1.2	0.0	0.0
enciency (70)	(0.7)	(6.4)	(0.0)	(0.0)	(1.4)	(13.3)	(0.1)	(0.1)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)
$b_1 c_{1,2}$	5.11K	0	$2.71 \mathrm{K}$	560	655	0	398	84	14	786	530	646	0	$3.04 \mathrm{K}$
officiency (%)	10.9	0.0	0.0	0.0	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
enciency (%)	(0.3)	(0.0)	(0.0)	(0.0)	(0.7)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)

2023/7/4

Flavor tagging

- LCFIPlus used at the CEPC
- Trained using Z-pole sample

quark \setminus tag	b_1	b_2	c_1	c_2	q_1	q_2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
c	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.000104	0.00477	0.00145	0.054	0.538	0.401

classify events into 21 categories

6 tags for a jet, and 21 tag combinations for an event (di-jet).

2023/7/4

LCFIPlus performs excellent for jets from W boson decay

Extract the signal strength

- The χ^2 $-2\log(L(S_a)) = \sum_{i=1}^{21} \frac{(\sum_a S_a N_i^a + bkg_i N_i^{obs})^2}{N_i^{obs}}$
 - Signal strengths for $W \rightarrow cb$ and $W \rightarrow c(ds)$ and $W \rightarrow u(ds)$
 - The ratio of $\mu \nu q_1 q_2$ to $\tau(\mu 2\nu) \nu q_1 q_2$ is assumed to be known
- μνqq
 - Statistical (relative) error: 1.5%, 3.4E-4, 3.4E-4
 - Correlation coef. $\begin{pmatrix} 1 & -0.077 & 0.020 \\ \cdots & 1 & -0.46 \\ \cdots & \cdots & 1 \end{pmatrix}$
 - $|V_{cb}|$ Statistical error: 0.75%
- *evqq*
 - statistical (relative) error: 1.7%, 3.7E-4, 3.7E-4
 - Correlation coef. $\begin{pmatrix} 1 & -0.076 & 0.021 \\ \cdots & 1 & -0.47 \\ \cdots & \cdots & 1 \end{pmatrix}$
 - $|V_{cb}|$ Statistical error: 0.85%

Extrapolation for flavor tagging performance

- Trace of the confusion matrix
 - $\operatorname{Tr}(M) = (M_{bb_1} + M_{bb_2}) + (M_{cc_1} + M_{cc_2}) + (M_{uds,q_1} + M_{uds,q_2})$
 - *M_{ij}* the *i* quark tagged as label *j*.
- Extrapolation
 - Scale the non-diagonal elements

A conceptual design of VTX: Vin-B

- Conceptual design
 - Put the innermost layer of the VTX into the beam-pipe
 - Reduce the radius of innermost layer of the VTX: from 16mm to 8 mm
 - We simplify the support structure
- Trace improved by 0.1, Vcb by 20%

Discussions on theory & systematics

 $|V_{cb}|^2 \simeq \sum_{f=d,s,b} (|V_{uf}|^2 + |V_{cf}|^2) R_{cb} \qquad R_{cb} = \operatorname{Br}(W \to bc) / \operatorname{Br}(W \to qq)$

- Theory
 - We exam the uncertainties from M_W , m_t , calculation are negligible, if the unitarity of CKM matrix is imposed
- Systematics
 - Uncertainties from kinematic selection & WW boson yields are mostly canceled in calculation of R_{cb}
 - For the signal
 - $b \rightarrow b_1 \& c \rightarrow c_{1,2}$ can be measured from Z-pole data
 - For the backgrounds:
 - $W \to u(d/s)$
 - $uds \rightarrow b_1$ is not feasible to be measured from Z-pole data

Conclusion

- evqq and μvqq
 - 0.75% and 0.85% @ 20 ab⁻¹ 240GeV
 - (current best: 2% for inclusively and exclusive, respectively)
- Conceptual VTX design are exam
 - 20% improvement in Vcb
- Outlook:
 - Further development of flavor tagging algorithm is required
 - Simulation at WW threshold is ongoing

thanks