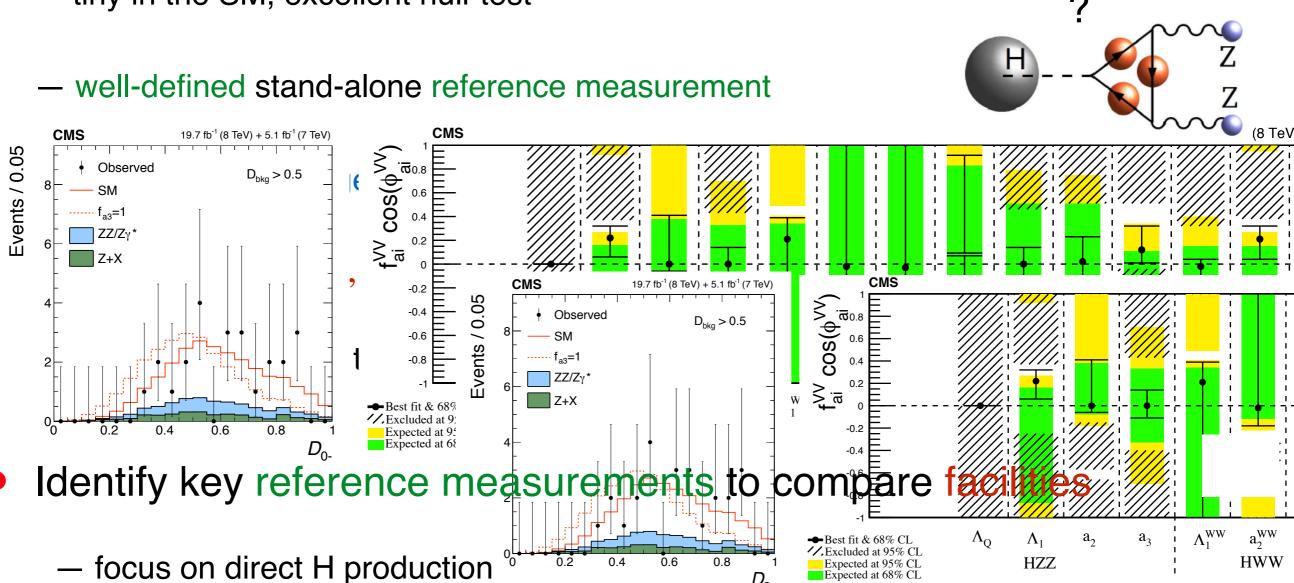
CP measurements with the Higgs boson at future colliders

Andrei Gritsan

Johns Hopkins University



July 3, 2023

International Workshop on Circular e^+e^- Collider University of Edinburgh, UK

CP-violating H(125) Couplings

- CP-violating H(125) couplings
 - tiny in the SM, excellent null-test

connect to indirect (virtual, low-energy) probes

Snowmass White Paper on Higgs CP

Dedicated Snowmass White Paper: <u>arXiv:2205.07715</u> (update 29 Nov 2022)

Snowmass White Paper: Prospects of CP-violation measurements with the Higgs boson at future experiments

Editor: Andrei V. Gritsan,¹ Contributors: Henning Bahl,² Rahool Kumar Barman,³ Ivanka Božović-Jelisavčić,⁴ Jeffrey Davis,¹ Wouter Dekens,⁵ Yanyan Gao,⁶ Dorival Gonçalves,³ Lucas S. Mandacarú Guerra,¹ Daniel Jeans,⁷ Kyoungchul Kong,⁸ Savvas Kyriacou,¹ Kirtimaan Mohan,⁹ Ren-Qi Pan,¹⁰ Jeffrey Roskes,¹ Nhan V. Tran,¹¹ Natasa Vukašinović,⁴ and Meng Xiao¹⁰

Quick overview:

Snowmass-2022

TABLE I: List of expected precision (at 68% C.L.) of CP-sensitive measurements of the parameters f_{CP}^{HX} defined in Eq. (2). Numerical values are given where reliable estimates are provided, \checkmark mark indicates that feasibility of such a measurement could be considered. The $e^+e^- \to ZH$ projections are performed with $Z \to \ell\ell$ in Appendix B but scaled to a ten times larger luminosity to account for $Z \to q\bar{q}$.

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	√	✓	\checkmark	√	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	✓	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~1	√	_	_	_	~1	_	_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	✓	_	_	_	_	_	_	_	_	$< 10^{-2}$
$Htar{t}$	0.24	0.05	✓	_	_	0.29	0.08	√	_	_	√	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	✓	0.01	0.01	0.02	0.06	_	✓	√	√	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_	_	√	_	$< 10^{-2}$

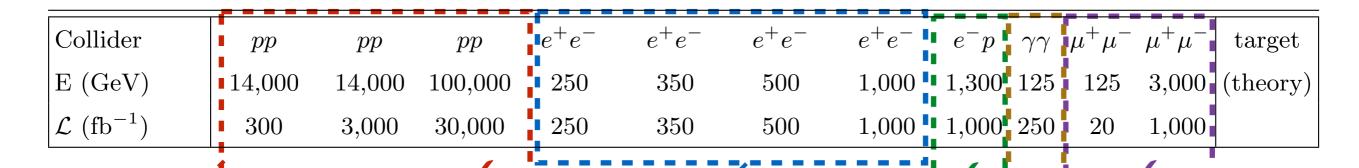
Starting Point: Snowmass-2013

- Start from Snowmass-2013, several developments in 9 years:
 - reliable LHC results on most measurements
 - more studies supporting future proposals (including White Papers)
 - phenomenological development, EFT...
- Focus on: CP in $HZZ/HWW, HZ\gamma, H\gamma\gamma, Hgg, Htt, H\tau\tau, H\mu\mu$

Same parameters of interest as in Snowmass-2013
arXiv:1310.8361

$$f_{\text{CP}}^{HX} \equiv \frac{\Gamma_{H \to X}^{\text{CP odd}}}{\Gamma_{H \to X}^{\text{CP odd}} + \Gamma_{H \to X}^{\text{CP even}}}$$
not enough studies

Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	250	350	500	1,000	126	126	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	250	350	500	1,000	250		
$spin-2_m^+$	$\sim 10\sigma$	$\gg 10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$			$>5\sigma$
VVH^{\dagger}	0.07	0.02	✓	√	√	✓	√	✓	$< 10^{-5}$
VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4\!\cdot\!10^{-5}$	$8 \cdot 10^{-6}$	_	_	$< 10^{-5}$
VVH^{\diamondsuit}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	✓	✓	✓	✓	_	_	$< 10^{-5}$
ggH	0.50	0.16	_				_	_	$< 10^{-2}$
$\gamma \gamma H$	_	_	_	-	_	_	0.06	_	$< 10^{-2}$
$Z\gamma H$	_	✓	_	_	_	_	_	_	$< 10^{-2}$
$\tau \tau H$	✓	✓	0.01	0.01	0.02	0.06	√	✓	$< 10^{-2}$
ttH	√	√	_		0.29	0.08		_	$< 10^{-2}$
$\mu\mu H$	_	-	_	_	_	_	_	\checkmark	$< 10^{-2}$


[†] estimated in $H \to ZZ^*$ decay mode

Snowmass-2013

[‡] estimated in $V^* \to HV$ production mode

 $^{^{\}diamondsuit}$ estimated in $V^{*}V^{*} \rightarrow H$ (VBF) production mode

General Comments

pp LHC & HL-LHC - based on LHC FCC-hh & SPPC expect × 100 ✓

 e^+e^- - keep lumi scenarios from 2013 scaling to \times 10 lumi available

 e^-p - possible VBF and νHt need compatible studies

 $\gamma\gamma$ - focus on unique $H\gamma\gamma$ coupling no recent projections

		•			•							
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb $^{-1}$)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	√	\checkmark	✓	✓	$< 10^{-5}$
$H\gamma\gamma$	-	0.50	✓	-	-	-	-	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	✓	-	-	-	-	_	_	_	-	$< 10^{-2}$
$Htar{t}$	0.24	0.05	✓	-	-	0.29	0.08	✓	_	_	✓	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	✓	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_	_	✓	_	$< 10^{-2}$

 $\mu\mu$ - focus on unique $H\mu\mu$ coupling on-shell \checkmark associated H production at high energies

Unique features of Facilities: $\gamma\gamma$ production

- Photon collider is unique with focus on $H\gamma\gamma$ coupling
 - photon beam polarization is critical for CP
 - most interesting parameter:

$$\mathcal{A}_{3} = \frac{|A_{\parallel}|^{2} - |A_{\perp}|^{2}}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}} = \frac{2\mathcal{R}e\left(A_{--}^{*}A_{++}\right)}{|A_{++}|^{2} + |A_{--}|^{2}} = \frac{|a_{2}|^{2} - |a_{3}|^{2}}{|a_{2}|^{2} + |a_{3}|^{2}} = (1 - 2f_{CP})$$

Detecting and Studying Higgs Bosons at a Photon-Photon Collider: arXiv:hep-ph/0110320

measure as asymmetry between | and ⊥ linear polarizations

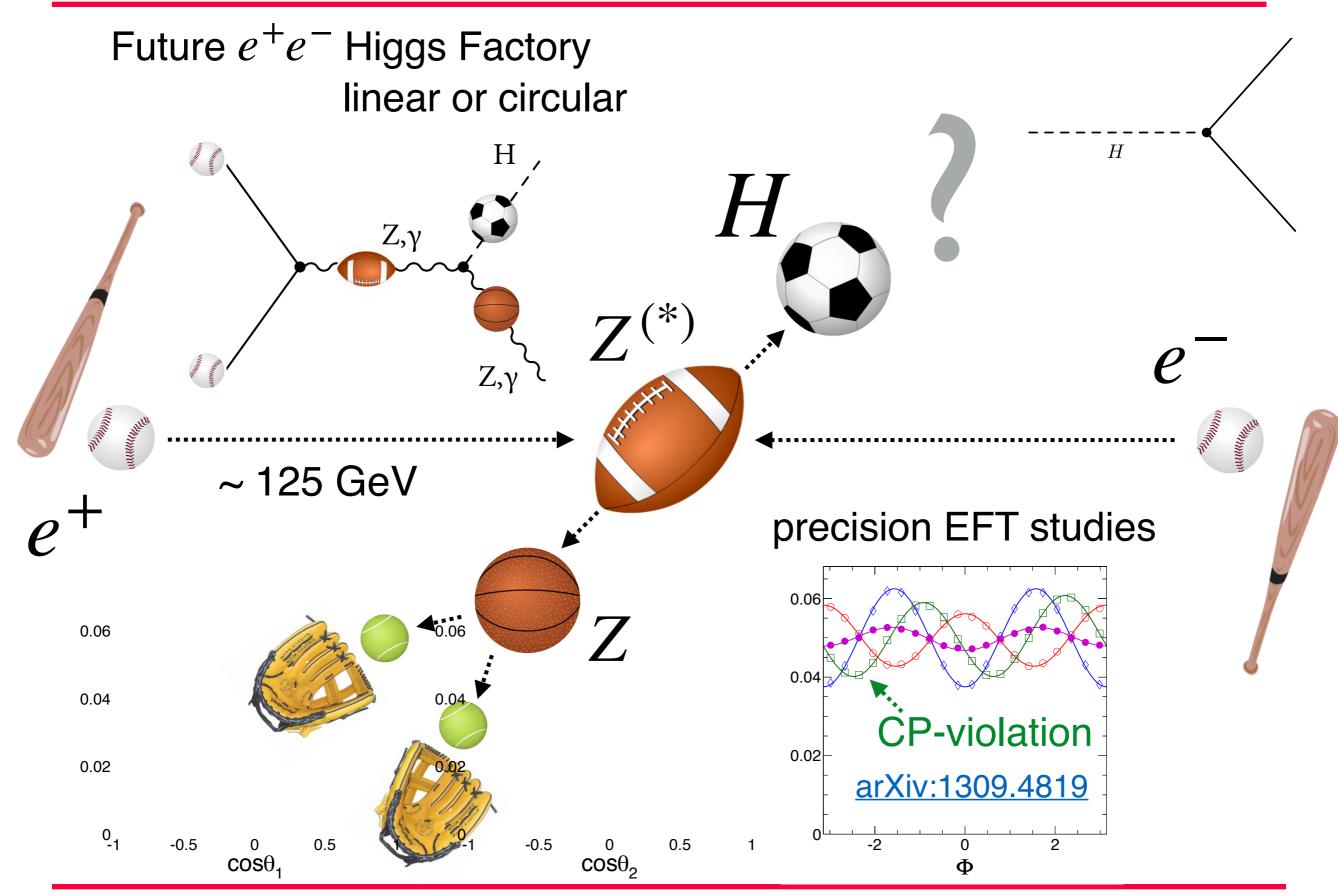
for
$$E_0 = 110$$
 GeV and $\lambda = 1 \,\mu\text{m}$: $f_{CP} = \sin^2(\alpha^{\gamma\gamma}) \sim \pm 0.06$ at $2.5 \cdot 10^{34} \times 10^7 = 250 \, \text{fb}^{-1}$

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p $\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300 125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000 250	20	1,000	

$H\gamma\gamma$	- (0.50	✓	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	✓	_	_	_	~1	_	<u>_</u>	_	_	$< 10^{-2}$

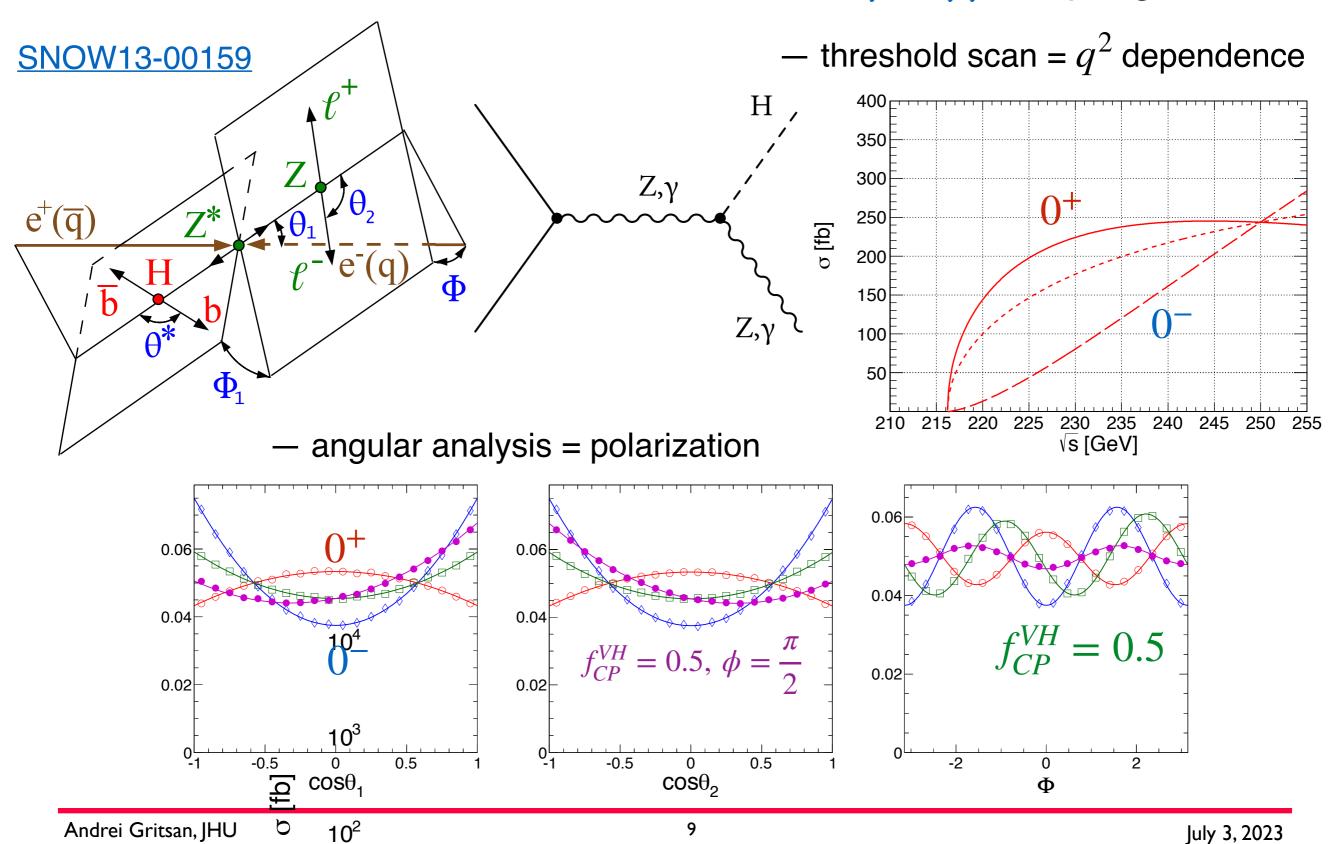
Unique features of Facilities: $\mu^+\mu^-$ production

- Muon collider is unique with focus on $H\mu\mu$ coupling
 - muon beam transverse polarization is critical for CP
 - not many fermion couplings can be tested with polarization and CP later we will discuss $H\tau\tau$ and Htt (both 3rd family)
 - same transverse polarization ⇒ CP-even
 - opposite polarization ⇒ CP-odd

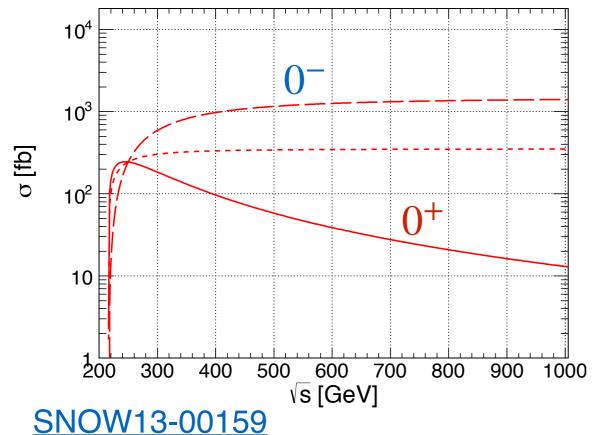

How Valuable is Polarization at a Muon Collider? A Test Case: Determining the CP Nature of a Higgs Boson: arXiv:hep-ph/0003091

- Unique feature of the muon collider (CP in coupling to 2nd family)
 - though comes with a price of lumi, likely not a priority at first stage

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$H\mu\mu$	_	_	_	_	_	_	_	_	_	\checkmark	_	$< 10^{-2}$


• High energy $\mu^+\mu^-$: associated production $t\bar{t}H$, VBF

Unique features of Facilities: e^+e^- production


Unique features of Facilities: e^+e^- production

• e^+e^- collider $\to Z^* \to ZH \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$ couplings

e^+e^- production at higher energies (LC)

- e^+e^- collider $\to Z^* \to ZH$
- Scan q^2 dependence of HVV
- ⇒ increased sensitivity (no cutoff)

• VBF $e^+e^- \rightarrow \nu\bar{\nu}H$

not much angular information q^2 -dependence through $p_T^H \dots$

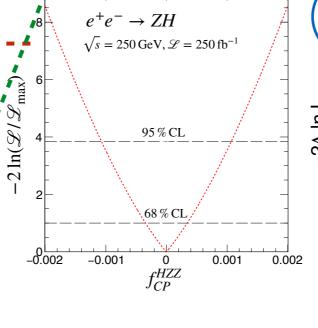
• VBF $e^+e^- \rightarrow e^+e^-H$

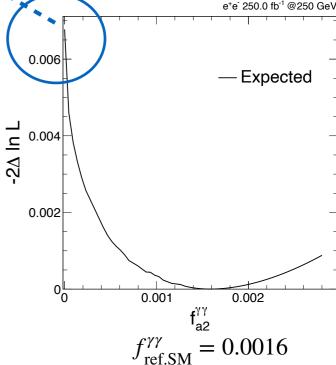
recent study (ICHEP-2022) does not surpass $e^+e^- \rightarrow Z^* \rightarrow ZH$ at intermediate energies

Unique features of Facilities: e^+e^- production

• e^+e^- collider $\to Z^*/\gamma^* \to Z/\gamma^*H \Rightarrow HZZ, HZ\gamma, H\gamma\gamma$ couplings

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	√ ($3.9 \cdot 10^{-8}$	$52.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	√	✓	√	√	$ \boxed{<10^{-5}} $
$H\gamma\gamma$	_	0.50	√, ⟨		>	_	-	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~1	//	_	_	_	~1)	 - 	_	_	_	$< 10^{-2}$
			,					ı				<u> </u>


Appendix B: Recent updates of the studies at an electron-positron collid


see also <u>arXiv:2203.11707</u>

in agreement

Contributed	by	Lucas	S.	Ma	ndac	$ar\acute{u}$	Guerra	a and	Savvas	Kyr	iacou.
			hiii	mi	X	10	*to	COV	/er 7	\rightarrow	$a\bar{a}$

E (GeV	\mathcal{L} (fb ⁻¹)	f_{CP}^{nvv}	$f^{\gamma\gamma}$	$\int_{-\infty}^{\infty} f^{Z\gamma}$	$f_{CP}^{\gamma\gamma}$	$\int_{CP}^{Z\gamma}$	
250	250	$\pm 3.4 \cdot 10^{-4}$	< 0.144	< 0.234			
250	2,500	$\pm 3.9 \cdot 10^{-5}$	< 0.037	< 0.079	_	_	
350	350	$\pm 1.2 \cdot 10^{-4}$	< 0.058	< 0.088	_	_	
350	3,500	$\pm 2.9 \cdot 10^{-5}$	< 0.016	< 0.032	_	_	
500	500	$\pm 4.3 \cdot 10^{-5}$	< 0.028	< 0.039	_	_	1
500	5,000	$\pm 1.3 \cdot 10^{-5}$	< 0.009	< 0.016	_		,
1,000	1,000	$\pm 1.0 \cdot 10^{-5}$	< 0.009	< 0.014	_	- /	
1,000	10,000	$\pm 3.0 \cdot 10^{-6}$	< 0.004	$0.0050^{+0.0026}_{-0.0028}$	_ (± 0.96	

fractions in $H \rightarrow 2e2\mu$: $f_{\text{ref.SM}}^{\gamma\gamma} = 0.0016$ $f_{\text{ref.SM}}^{Z\gamma} = 0.0050$

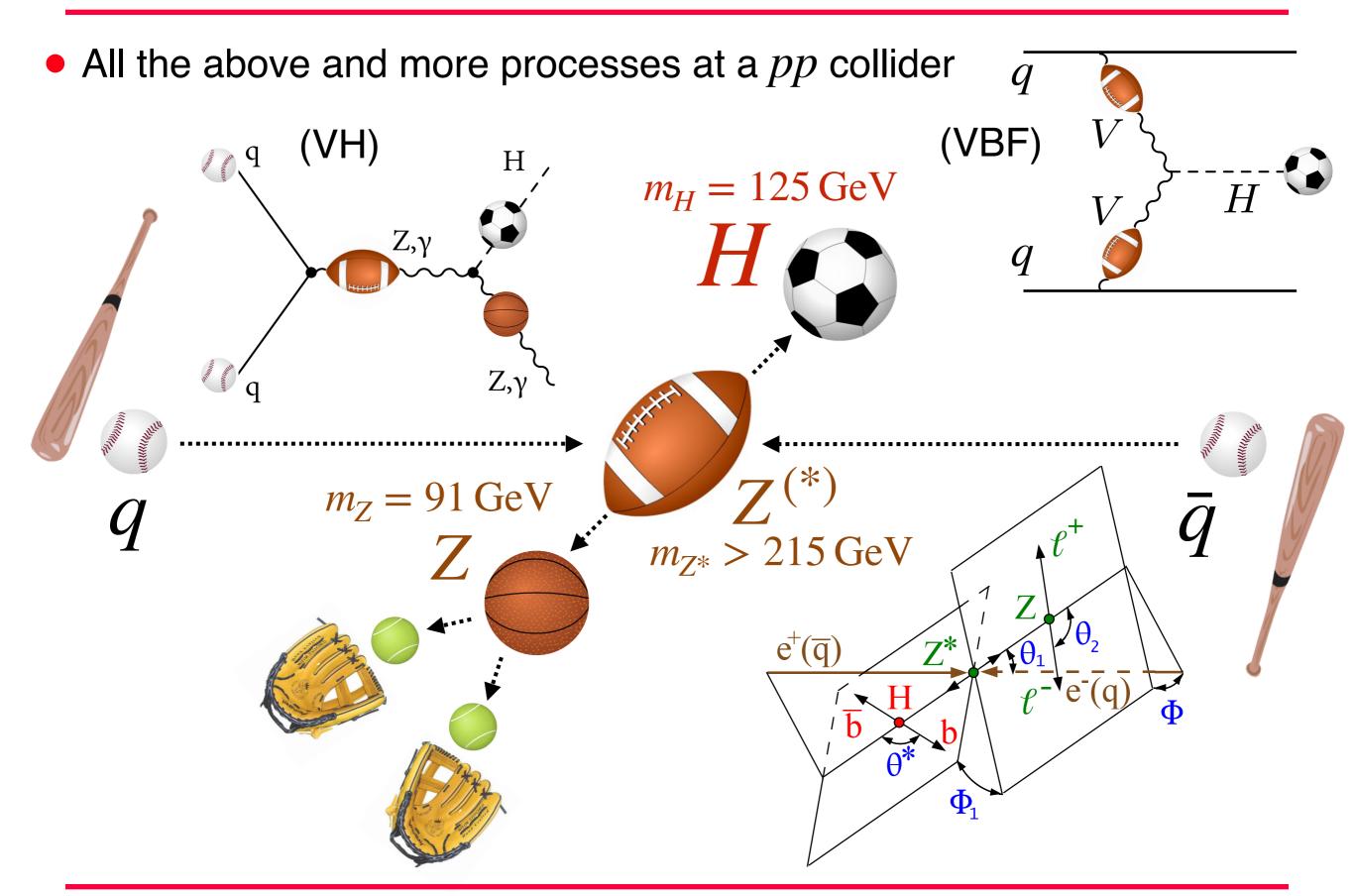
Fermion couplings at an e^+e^- collider

• e^+e^- pheno studies at Snowmass-2013: arXiv:1308.2674

- $-H \rightarrow \tau \tau$ the only CP in $H\!f\!f$ at $e^+e^ \sqrt{s} < 500~{\rm GeV}$
- reach $f_{CP} \sim 0.008 \ \left(\alpha \sim 5^{\circ}\right)$ at $e^{+}e^{-}$ ref. lumi

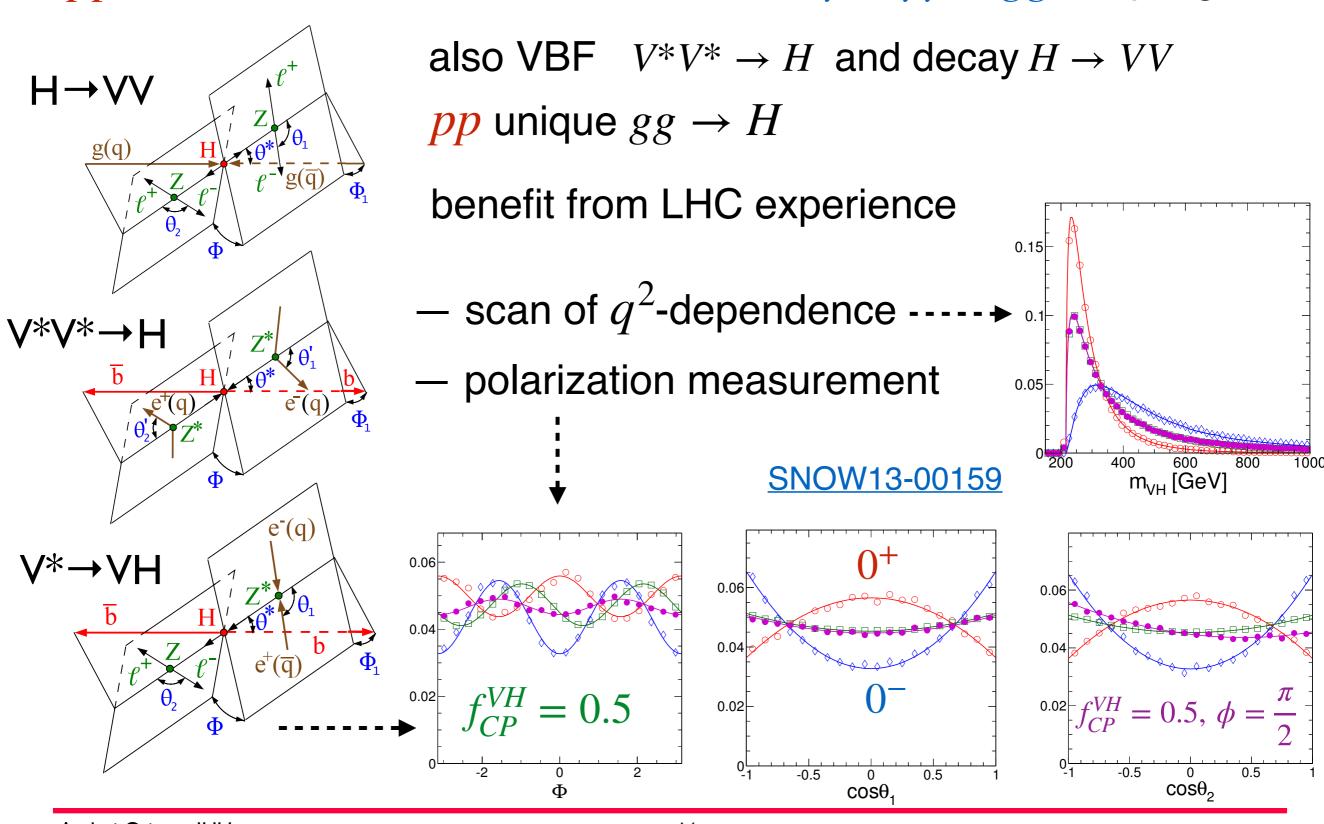
note: worse at higher \sqrt{s} : no vertex in $e^+e^- \to \nu\bar{\nu}H$

cross section dependence studied of $0^+ vs$. 0^- at <u>Snowmass-2013</u>


recent similar study in arXiv:1807.02441

need dedicated CP-sensitive study (see LHC studies)

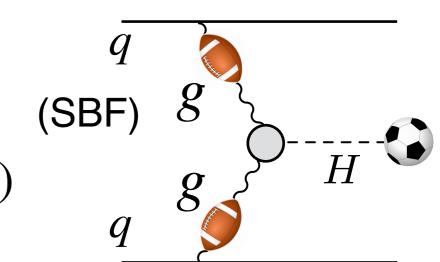
from Snowmass-2013


pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	$\left \text{(theory)} \right $
300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
0.24	0.05	\checkmark	_	_	0.29	0.08	√	_	_	√	$< 10^{-2}$
0.07	0.008	✓	0.01	0.01	0.02	0.06		√	√	√	$< 10^{-2}$
_	_	_	_	_	_	-	_	_	√	_	$< 10^{-2}$
	14,000 300 0.24	14,000 14,000 300 3,000 0.24 0.05	$14,000$ $14,000$ $100,000$ 300 $3,000$ $30,000$ 0.24 0.05 \checkmark	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$14,000$ $14,000$ $100,000$ 250 350 500 $1,000$ 300 $3,000$ $30,000$ 250 350 500 $1,000$ 0.24 0.05 \checkmark $ 0.29$ 0.08	$14,000$ $14,000$ $100,000$ 250 350 500 $1,000$ $1,300$ 300 $3,000$ $30,000$ 250 350 500 $1,000$ $1,000$ 0.24 0.05 \checkmark $ 0.29$ 0.08 \checkmark	$14,000$ $14,000$ $100,000$ 250 350 500 $1,000$ $1,300$ 125 300 $3,000$ $30,000$ 250 350 500 $1,000$ $1,000$ 250 0.24 0.05 \checkmark $ 0.29$ 0.08 \checkmark $-$	$14,000$ $14,000$ $100,000$ 250 350 500 $1,000$ $1,300$ 125 125 300 $3,000$ $30,000$ 250 350 500 $1,000$ $1,000$ 250 20 0.24 0.05 \checkmark $ 0.29$ 0.08 \checkmark $ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

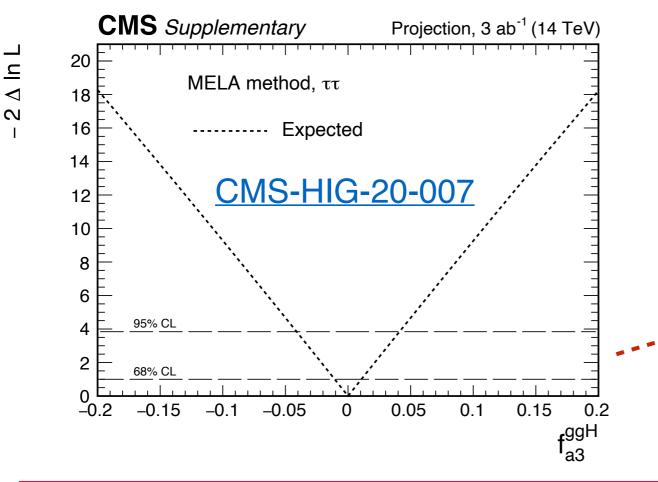
Unique features of Facilities: pp production

Unique features of Facilities: pp production

• $pp \rightarrow V^* \rightarrow VH \Rightarrow HWW, HZZ, HZ\gamma, H\gamma\gamma, Hgg$ couplings


Gluon fusion in pp production

pp is unique to measure Hgg coupling


BSM loop (point-like) or SM fermion loop

$$a_2^{gg} = -\alpha_s \kappa_Q / (6\pi) \quad & \quad a_3^{gg} = -\alpha_s \tilde{\kappa}_Q / (4\pi)$$

$$a_3^{gg} = -\alpha_s \tilde{\kappa}_Q / (4\pi)$$

Update Snowmass-2013 (pheno) with recent LHC (mutual benefit):

Collider	pp	pp	pp
E (GeV)	14,000	14,000	100,000
\mathcal{L} (fb ⁻¹)	300	3,000	20,000
Hgg	0.12	0.011)

benefit from multiple H decay modes

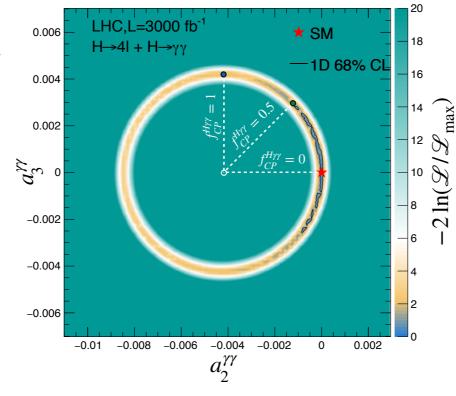
$H\gamma\gamma$, $HZ\gamma$ in pp production

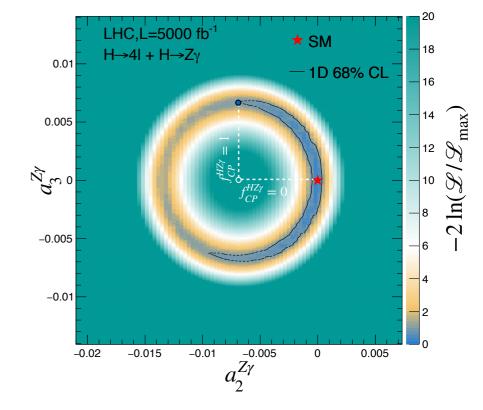
CP in photon couplings appear challenging at all colliders

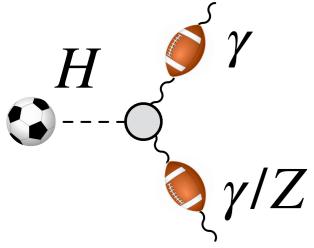
poor precision in VBF and VH

Appendix A: Recent updates of the studies at a hadron collider

Contributed by Jeffrey Davis, Savvas Kyriacou, and Jeffrey Roskes.



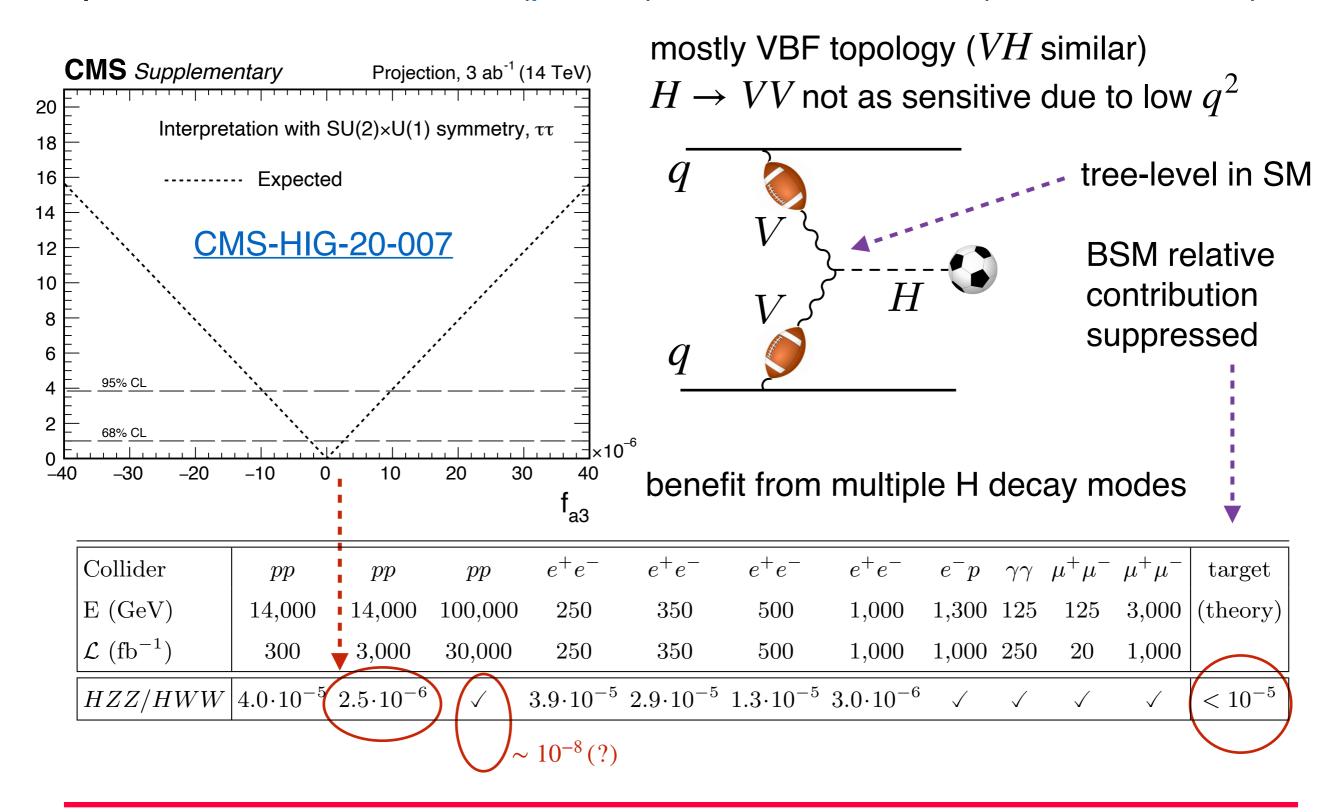

constrain $(a_2^{V\gamma})^2 + (a_3^{V\gamma})^2$


$$H \to \gamma^* \gamma^* (Z \gamma^*) \to 4\ell$$

resolve $a_2^{V\gamma}/a_2^{V\gamma}$

expect good constraints at pp 100 TeV

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	

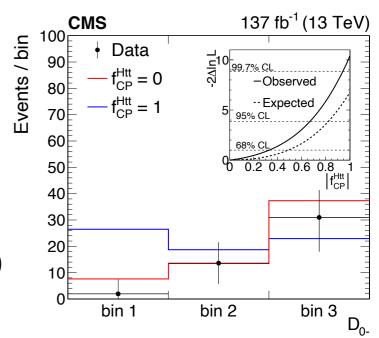

						(0.05(.)								
7	$H\gamma\gamma$	_	0.50	\	\checkmark	_	_	_	_	_	0.06	_	_	$ < 10^{-2}$
1	$HZ\gamma$	_	~ 1	/ \	✓	_	_	-	(~ 1)	_		_	_	$< 10^{-2}$

Andrei Gritsan, JHU

< 0.05(?)

HZZ, HWW in pp production

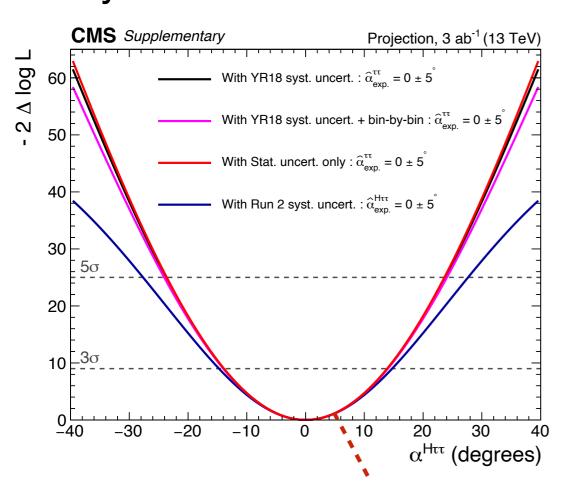
Update Snowmass-2013 (pheno) with recent LHC (mutual benefit):

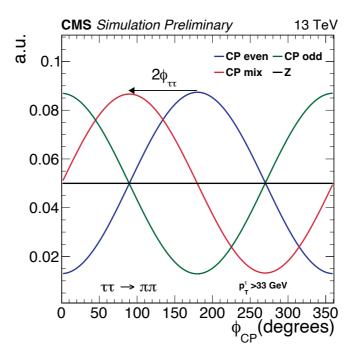

Fermion couplings: $t\bar{t}H$ at pp

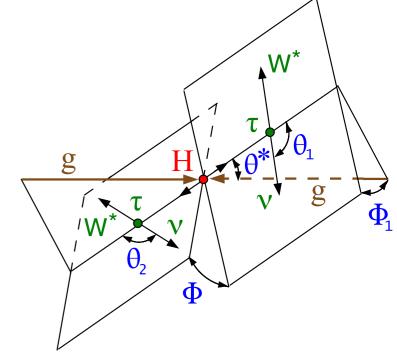
- Very first test of CP in Hff in 2020:
 - ttH spin-off from Snowmass-2013 (arXiv:1606.03107)
 pheno projection agreement with CMS/ATLAS

no sensitivity to $2\text{Re}\left(A_{\text{CP even}}A_{\text{CP odd}}^*\right)$ (semi-leptonic, hadronic)

- reach $f_{CP}\sim 0.05~(\alpha\sim 13^\circ)$ at HL-LHC <u>arXiv:2110.07635</u> pheno projection with di-leptonic, semi-leptonic, hadronic $t\bar{t}$ decay
- similar in tH; no sensitivity to $b\bar{b}H$, or other light q


CMS <u>arXiv:2003.10866</u> ATLAS <u>arXiv:2004.04545</u>


Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$Htar{t}$	0.24	0.05	✓	_	_	0.29	0.08	✓	_	_	✓	$\boxed{<10^{-2}}$


Decay: $H \rightarrow \tau^+ \tau^-$ at pp

• Very first test of CP in $H\tau\tau$ in 2020

CMS: <u>CMS-HIG-20-006</u>

pp pheno studies at Snowmass-2013: arXiv:1308.1094

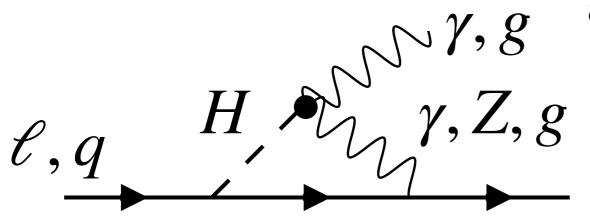
— reach $f_{CP} \sim 0.008$ ($\alpha \sim 5^\circ$) at HL-LHC CMS-HIG-20-006

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
$H\tau\tau$	0.07	0.008	✓	0.01	0.01	0.02	0.06	_	√	✓	√	$< 10^{-2}$

Overview of Higgs CP at Colliders

• Now cover all couplings at pp and e^+e^- colliders:

new numerical estimates for the first time (since 2013) pp 100 TeV would be the best new entries (since 2013)												
		$\frac{\partial p}{\partial y} \times 100$,	1		
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	1,300	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	4.0·10 ⁻⁵	$5 \ 2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-1}$	$^{5} 2.9 \cdot 10^{-1}$	$5 1.3 \cdot 10^{-5}$	$5 \ 3.0 \cdot 10^{-6}$	3 V	√	\checkmark	√	
$H\gamma\gamma$	<u>} - 7</u>	0.50	√	_	_	_	_	i –	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	Sec.	~ 1	√	<u> </u>	_	_	~1	-	_	_	_	$< 10^{-2}$
Hgg	0.12	0:011	√		_	A –		_	_	_	_	$< 10^{-2}$
$Htar{t}$	▼ 0.24	0.05	\	_	_	0.29	0.08	√	_	_	√	$< 10^{-2}$
$H\tau\tau$	0.07	0.008	V	0.01	0.01	0.02	0.06	_	√	\checkmark	√	$< 10^{-2}$
$H\mu\mu$	_	_	1-	_	_	i –	_	_	_	✓	_	$< 10^{-2}$
revised numerical estimates ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;												ecision


Andrei Gritsan, JHU 20 July 3, 2023

Higgs CP from EDM

Electric Dipole Moment (EDM) of electron $d_e < 1.1 \times 10^{-29} e \text{ cm}$ atoms/molecules $d_n < 1.8 \times 10^{-26} e \text{ cm}$

HZZ

 $Htar{t}$

expect $\times 10^{-2}$ in ~10 years <u>arXiv:2203.08103</u>

Appendix C: EDM constraints


 $d_e^{\rm SM} \sim 10^{-38} e \, \rm cm$

Hee

Contributed by Wouter Dekens.

Hdd

 $Hu\bar{u}$

 $2.2 \cdot 10^{-2}$ 0.720.039only EDM

 $H\tau\tau$

- assuming CP-even SM coupling to 1st family
- assuming one CP-odd coupling at a time

lost tight constraints with 3 couplings already

$$f_{\text{CP}}^{H\gamma\gamma}, f_{\text{CP}}^{HZ\gamma}, f_{\text{CP}}^{HZZ}$$

Summary on Higgs *CP*

- Higgs CP is a good reference measurement for Snowmass-2022
 - Snowmass-2013 was already a good starting point
- Reached several conclusions on colliders:
 - -pp reach full spectrum of Higgs CP, except $H\mu\mu$
 - $-e^+e^-$ comparable to HL-LHC in Higgs CP, except Hgg
 - $-\gamma\gamma$ at 125 GeV + polarize unique CP in $H\gamma\gamma$
 - $-\mu^{+}\mu^{-}$ at 125 GeV + polarize unique CP in $H\mu\mu$ (2nd family)
 - $-e^-p$ allow CP in VBF
 - -pp at 100 TeV the furthest reach, including CP in $HV\gamma$
- EDM constraints on Higgs CP
 - strongest, but assuming one CP-odd coupling at a time
 - assuming CP-even SM coupling to 1st family

HWW, HZZ $HZ\gamma, H\gamma\gamma, Hgg$ $Htt, H\tau\tau, H\mu\mu$