

Overview: Deep learning based calorimeter clustering and PFA

Fangyi Guo, IHEP

CEPC International Workshop, 2023 EU Edition

University of Edinburgh

3-6 July, 2023

Institute of High Energy Physics Chinese Academy of Sciences

CEPC: future lepton collision experiment

- e^+e^- collider, $\sqrt{s} = 91 \sim 360$ GeV within 100 km turnel.
- Physics target:
 - Z mode: EW, flavor factory for b, c, τ , QCD.
 - W threshold: EW, W mass ...
 - Higgs mode: Higgs precise measurement, new physics ...
 - top mode: $t\bar{t}$ physics e.g. top mass, $\alpha_S(m_{top})$...
- Detector requirement:
 - Jet energy resolution $\sigma/E < 30\%/\sqrt{E}$ (For separation of $W/Z \rightarrow q\bar{q}$ process.)

IP 2 Booster Positron Ring Electron Ring RF station e^+e^- Higgs (Z) factory Ring length ~ 100 km Linac

IP 1

Particle flow approach: principle

- Measure the jet by it's components: 60% charged particles, 30% photons, 10% neutral hadrons.
- Final resolution: $\sigma_{Jet} = \sqrt{\sigma_{track}^2 + \sigma_{EM}^2 + \sigma_{Had}^2 + \sigma_{confusion}^2}$.
- Requirement: Hardware + software
 - Distinguish showers in calorimeter is high granularity ECAL/HCAL.
 - Minimize transverse spread of EM shower \Rightarrow small Moliere radius $R_M \Rightarrow$ SiW sampling ECAL in ILD.
 - Separate EM and Hadronic showers longitudinally \Rightarrow large λ_I / X_0 ratio.
 - Software: a novel pattern recognition algorithm.

Particle Flow

Particle flow approach: PandoraPFA and ArborPFA

- PandoraPFA: hand-tuned algorithms for clustering. Artificial recognition.
- ArborPFA: arbor-structure of shower development.

2023/7/4

Particle flow approach: PandoraPFA and ArborPFA

- PandoraPFA and ArborPFA are trying to demonstrate the dominant contribution to σ_{jet} ;
- And optimize the performance w.r.t. the detector.

Fangyi Guo | CEPC International Workshop, 2023 EU Edition

• Particle flow for the future collider:

- 2020s is the AI era: point cloud
 - HG calorimeter hits are naturally point clouds: spatial + features (energy + time).
 - Several mature models can be used: <u>PointNet</u>, <u>DGCNN</u>, <u>GravNet</u>, etc.
 - Facing the challenge of large dataset: O(10 k) hits / event.
- What we want from AI:

2023/7/4

- A general PFA: lower confusion, better performance.
- Easy migrated model: fast reconstruction for detector design & optimization. (e.g. CEPC 4th crystal ECAL)

Fangyi Guo | CEPC International Workshop, 2023 EU Edition

Deep learning clustering

Model: Dynamic graphic CNN (DGCNN)

- CNN-based model for graphic dataset.
- Proposed the *EdgeConv* to handle the graph structure.
- Is able to handle classification and **segmentation** tasks.
- Application: ParticleNet for c-tagging in CMS.

mlp { a,, a,, ..., a }

Deep learning clustering

Application: from simplest case

- Diphoton separation:
 - Event simulated within CEPC-v4 (SiW ECAL) geometry for training
 - γ_1 : $E_{\gamma} \in [3, 7]$ GeV, $\theta_{\gamma} \in [88^\circ, 90^\circ]$, $\phi \in [0^\circ, 3^\circ]$
 - γ_2 : $E_{\gamma} \in [3, 7]$ GeV, $\theta_{\gamma} \in [90^\circ, 92^\circ]$, $\phi \in [0^\circ, 3^\circ]$
 - ~200 hits / event.
 - Input feature: spatial coordinates only.
 - Loss function: cross entropy.

Deep learning clustering

- Preliminary performance: separation efficiency with distance.
 - Applied into a set of di-photon events

2023/7/4

ECAL

A A

Discussion

9

Facing challenges:

- Loss function: cross entropy can not handle the clustering problem.
 - Condensation loss: $L = L_V + L_\beta + L_P [2002.03605]$
 - L_V : potential loss, make hits closer to the condensation points.
 - L_{β} : condensation score, $\beta \rightarrow 1$ is the cluster center.
 - L_P : features can be trained in the model: e.g. $E_{cluster}$.
 - Can deal with multiple objects, but need to design for overlapping.

(Expected) potential from 2002.03605

- Hit size: O(10) more in crystal ECAL than SiW ECAL.
 - Harder to converge.
 - Overlapping issue would be more critical.

Discussion

• Other models:

- GravNet: distance weighted graph network architectures.
 - Commonly used in CMS machine learning studies: <u>MLPF</u>, <u>End-to-End reconstruction</u>, etc.

Fig. 5: Comparison of inference time for the network architectures described in the text, evaluated on CPUs and GPUs with different choices of batch size. The shaded area represents the $+1\sigma$ statistical uncertainty band.

Model architecture in MLPF

Summary and outlook

• Calorimeter clustering with deep-learning:

- Showed the attempt of 2 clusters with DGCNN segmentation task.
- Is a promising way to the detector reconstruction in Al's era.

• Next step:

- Tune the models and loss functions.
- Add features (energy, time) into the model.
- Solve the data size issue in crystal ECAL.

• Future:

- Add track info and pre-trained shower shape info as bias.
- Final target: a general deep learning based PFA.