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1. Introduction

The discovery of the Higgs boson [1, 2] by the ATLAS
and CMS experiments at the Large Hadron Collider (LHC)
in 2012 was a significant milestone in particle physics. It
confirmied the fundamental particle spectrum of the Standard
Muodeal and opened a new window to refine our understand-
ing of particle physics (also known as high energy physl:s)
Since then, the LHC i have
studies on the Higgs boson properties: clues for new physics
would emerge if any measurement disagrees with the Stan-
dard Model prediction. Furthermore, Higgs factories [3, 4,
5, 6] based on lepton colliders have been proposed to per-
form more precise measurements of the Higgs boson prop-
erties and study the deeper structure of particle physics. The
Circular Electron-Positron Collider (CEPC), presented by
‘Chinese scientists, is one of such collider that acts as a Higgs
factory. It will be located in a wnnel with a circumference
of approximately 100 km colliding electron-positron pairs
it a centre-of-mass energy of up to 240 GeV, upgradable o
360 GeV as well as Super Proton Proton Collider (SPPC).

Machine learning has enjoyed widespread success in de-
tector simulation, particle reconstruction and data analyses
of experimental particle physics and dramatically enhances
the ahility to achieve physics discovery. For instance, ma-
chine learning algorithms are used in ATLAS and CMS ex-
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periments o help separate signals from backgrounds in the
observation of the Higgs boson production in association
with & top quark pair (\FH), which directly establishes the
Higgs boson couplings to the top quarks [7, 8],

Another essential tood for experimental particle physics
could be quantum machine leaming. It uses quantum com-
puting to perform maching learning tasks that tackle large
data dimensions. Quantum machine learning enables af-
fective operations in high-dimensional quantum state spaces
where computers operate with qubits instead of classical bits.
Therefore, it could provide fast computing speed and better
learning ahility than classical machine learning. As an ex-
ample of quantum machine learming. a support-vector ma-
chine algorithm with a quantum kernzl estimator (QSVM-
Kernely [9, 10] encodes classical data into quantum state
space and makes accurate classifications for certain artificial
data sets_

In recent years, the field of quantum computing has de-
veloped rapidly. Superconducting guantum and optical quan-
tum computers have been successfully fabricated and have
demonstrated capabilities far beyond today’s supercomput-
ers in certain computing tasks [11, 12]. In the following
decades, this feld will likely increase the number of qubits,
improve execution time, and reduce device noise for quan-
tum computers. These developments will lay a foundation
for the practical application of quantum computing,

Studying guantum machines to utilize the potential of
guantum advantage for future particle physics research is im-
portant. There have already been proof-of-principle studies
that apply quantum machine learning algorithms to detector
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Introduction

Machine learning has blossomed in the last decades and becomes essential in many fields.
° |t played a significant role in solving High Energy physics problems, such as reconstruction, particle identification.

o We can use deep learning to handle some high dimensional and complex problems.
Quantum computer is a new tool that offers faster processing capabilities compared to traditional computers.

Quantum machine learning:

o Enhanced computing speed: Quantum computing’s parallel computing capability improves prediction accuracy.

o Improved generalization ability: QML algorithms effectively handle large- scale data and process multiple data sources, leading to better

generalization in practical applications.
Many companies, including Google, IBM, are actively devoted to accelerating the development of quantum technology.

Objectives:
o Apply quantum machine learning to high energy physics.

o Using quantum algorithm to classify the CEPC signal and background in quantum computer.

o Make the algorithm work in both quantum simulators and real quantum computers.
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Introduction---1BM Quantum Computer

IBM Quantum

Quantum algorithm and application modules

Machine Learning | Natural science | Optimization | Finance

Eagle spre ondor Flamingo Kookaburra
127 qubits ubits , ubits 1,386+ qubits 4,158+ qubits

L I
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IBM has ambitious pursuits:
° 433-qubits IBM Quantum Osprey

Readout assignment error v

> Three times larger than the Eagle processor (127-qubits)
° Going up to 10k-100k qubits.

v
GEEENNNNS——

CNOT error v

Credited to Th Prior for TIME . .
redited to Thomas Prior for Now, IBM provides up to 7 qubits for free.

Avg 1.208e-2
-
o———
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Introduction---Origin Quantum Computer

‘ Job Scheduling System ‘—

T Classical Computer

Xq[1]
Xql2] i
CNOT ql21,q[1] J Quantum-classical

Hybrid Program

Quantum Compiler f

Quantum Scheduling System |

| Quantum Circuit Compilation |

=

y SN —
Classical computing H 5

22 H Quantum Computer
tasks |

@® Quantum
computing tasks
alibration tasks

& Quantum Resource
Quantum

Management

Origin wuyuan:
o The first “practical quantum computer” in China.

Fidelity average 0.99915 Fidelity average 0.9808

. . - -
o 24-qubits with own control system.

min: 0.999 max: 0.9993 min: 0.9707 max: 0.9909

Origin wuyuan provide up to 6 qubits for free. ‘
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Data encoding and processing
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(_ Dataset > y Feature map (Quantum Device)

00 _ @0 ogo. 0 R 2) R )] ~
e00 8 ®e0

\‘_‘__‘___—___'__r/
[0) R.(2-z,) R, (x,)

0O _@0 O Og
Oe'50® OO' CIe
0y — H A B2 ) Ryx)

~— Y
00 ooo!O.
000009 807
O O _00 0gCe
T
O O _e0 0OgCe
0@

©)
(20083080

9

™

—

here X; € [1, —1]

i — Xi, min

X
Xi, max — Xi, min

—))_(',',W

|0 " R:(2-2)) Ry(x,)

N

X;, for each X; € R, such that

J L
Data processing

—2.

—

Xi

0) —TH B2 2) [ Ry (2,)

]

X ¢ X

(]
support-vector machine

|0y I R.(2-z)) Ry(x)

2]

%ng

Quantum Kernel estimation

K, %) = [(0) <b(f,.>)|2

@®Encodingthe ete™ » ZH — qqyy (signal) and e*e™ — (Z/y*)yy (background)

@ Six variables are passed through preliminary mapping and then passed to a quantum circuit for evaluation.

@ The Quantum support-vector machines kernel (QSVM-Kernel) is evaluated for each data point and the rest.

2023/7/4 Qiyu Sha qgsha@cern.ch




Feature map and quantum kernel estimation

Quantum feature map determines the QSVM-Kernel: 10) — 5 R e
> Tyvo |dent|<.:al Iaye.rs . =]
» Single-qubit rotation gates
> Two-qubits CNOT entangling gates 107 e : Ll (2 =]
O (T ! & (7
Rotation Depth Events Best AUC Variation [O0Y — :
Rz(2-23) + Ry(2;) 0.935 0.009 i
R (%) + Ry(2}) 0.933 0.015 10y ———— '
Ry (25) + Ry (a5) 9 5000 0.932 0.015
R: (%) + Rz () 7 0.932 0.014 0y ———
Ry () 0.928 0.008
R, (73) 0.928 0.008
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QSVM-Kernel estimation:
» Using 6 variables mapped to 6-qubit
» The expectation of each data point
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AUCs as function of the event

» The QSVM-Kernel and classical SVM classifiers with different dataset size from 1000 to 12500 events.

» The quoted errors are the standard deviations for AUCs calculated from several shuffles of the dataset.
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Performance of the quantum simulator

» The performance of the QSVM-Kernel using State-vector-simulator from IBM and the classical SVM.

» Use 12500 events for both signal and backgrounds.
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Performance of the real quantum computers

» IBM Nairobi & Origin Wuyuan quantum computer hardware

» Use 100 events for both signal and backgrounds.
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Conclusion and outlook

» We studied the signal/background classification using quantum/classical ML algorithm.
» We compared QSVM-kernel with quantum simulator (state-vector) and classical SVM.
» Each QSVM and SVM algorithm is optimized to its best before comparing them

» Real quantum computing systems with 100 events for signal and background:
® Wuyuan v.s IBM

» We obtained a similar classification performance to the classical SVM algorithm with different
dataset size.
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Conclusion and outlook

For next step, we are working on the classification using different algorithms and build a
corresponding quantum algorithms, like Quantum transformer and Quantum particle transformer.

» For example, using Quantum feature map to Quantum Device | e~ (Za),~@00)?
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