
Muon Collider Software

 July 5th, 2023
TORINO

(a) INFN Torino (Italy) (b) CERN (Switzerland)

current status and future plans

N. Bartosik (a, b)

for the Muon Collider Physics and Detector Group

International Workshop on CEPC

https://indico.cern.ch/event/1197844/
https://indico.ph.ed.ac.uk/event/259/overview

Nazar Bartosik Muon Collider Software 2

Introduction: Muon Collider

Muon Collider

CLIC
FCC-hh

LHC

HE-LHC

Nature Physics 17 289–292Muon Collider allows to combine in a single facility  
 high precision of e+e- colliders + high energy reach of pp colliders

• muons are elementary particles, like e+/e-, creating "clean" collisions

• ⨉ 200 higher mass → ⨉ 104 less synchrotron radiation losses

At √s ≥ 3 TeV Muon Collider is the most energy efficient machine

Distinctive feature of the Muon Collider  
↳ Beam Induced Background (BIB) 
	 4.1 ⨉ 105 muon decays per meter of lattice at √s = 1.5 TeV

BIB is simulated in two steps:

• muon decays + interaction with accelerator lattice 

using FLUKA ▶

• interaction of particles with the detector 

using GEANT4
neutrons photons electrons positrons FLUKA simulation

https://doi.org/10.1038/s41567-020-01130-x

Nazar Bartosik Muon Collider Software 3

Legacy software: ILCSoft

Main steps of a full-simulation study:

1. generation of stable input particles: ME + PS Pythia/Madgraph/Whizard + BIB FLUKA + FlukaLineBuilder

2. simulation of the detector response  
to the incoming particles

3. simulation of detector effects 
efficiency, electronics noise + thresholds, ...

4. reconstruction of higher-level objects 
photons, tracks, jets, particle identification

5. higher-level analysis can be performed externally

Most of custom packages specific to the Muon Collider  
maintained under the public Muon Collider Software repository

ILCSoft

geometry GEANT4 SimHits> >

digitisation<

Track reco.

Jet clustering

RecHits

PFlow obj.

Particle Flow

Matrix Element + Parton Shower Beam Induced Background

DD4hep

The whole simulation chain is fully working  
with a dozen of physics-analyses and detector-design studies

https://github.com/MuonColliderSoft
https://github.com/iLCSoft
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/

Nazar Bartosik Muon Collider Software 4

Simulation workflow

Full simulated event obtained via three distinct stages: geometry GEANT4 SimHits> > > SIM_sig.slcio

SIGNAL

geometry GEANT4 SimHits> > > SIM_bib_1.slcio

BIB
parallel jobs

SIM_bib_2.slcio
SIM_bib_8.slcio

digitisation<

Jet clustering

Track reco.

RecHits

PFlow obj.

Particle Flow

Overlay

1 event

1 event SIGNAL

BIB

Signal + BIB

GEANT4 simulation of BIB: ~108 particles/BX

↳ extremely slow → need a pool of reusable events

Overlay of BIB: performed in each event before digitisation

↳ sensitive to the # of BIB SimHits and merging logics

Reconstruction speed of higher-level objects strongly depends  
on the amount of input RecHits from BIB

• especially relevant for track reconstruction (combinatorics)

• BIB contribution has to be suppressed as early as possible

BIB contribution creates tremendous amount of data → every step requires careful treatment of computing resources

GEANT4 simulation of Signal: straightforward and fast

DISK STORAGE DISK I/O CPU TIME RAM USAGE DISTRIBUTION

⨉ 1

⨉ N events

⨉ N events

Baseline workflow  
from CLIC

Nazar Bartosik Muon Collider Software 5

Muon Colider software: current stack

The main components of our current software stack:

1. 	 	 	 	 → 	event-data model [LCIO::SimCalorimeterHit, ... stored in *.slcio files]

2. 	 	 	 	 → 	flexible geometry-description language + interface with Geant4

3. 	 	 	 	 → 	framework for simulation components + chaining them together via *.xml files

4. 	 	 	 	 → 	collection of scripts for putting all the software together + all the dependencies 
	 	 	 	 	

The two main methods for distributing our software:

1. Local install	 	 → 	a set of instructions to install the software on a specific machine 
	 	 	 	 	 	 with full control over each component's code → best for development

2. Container		 	 → 	download and run on any machine via Docker/Singularity/Apptainer 
	 	 	 	 	 	 with limited possibility to modify the code → best for analysis

Transition to Key4hep started a few months ago

LCIO

DD4hep

Marlin

Local install

Container

ILCSoft

Key4hep

Nazar Bartosik Muon Collider Software

DONE

6

Transition step: DD4hep

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

DD4hep

Marlin

We both use DD4hep for detector-geometry description

↳	 no changes needed on our side

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi

Nazar Bartosik Muon Collider Software

DONE

7

Transition step: Spack

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

DD4hep

Marlin

The latest release 2.8 can now be installed with two recipes: for ILCSoft and for Spack 
↳ includes specific versions for the main dependencies: ROOT, GEANT4, Marlin packages, etc.

Spack installation also available under CVMFS: /cvmfs/muoncollider.cern.ch/release/2.8-patch2/

Using key4hep-spack as a downstream repository → only 11 mucoll-spack packages on top 
↳	 need to use specific commits from spack and key4hep-spack repositories to ensure stable builds

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi

https://github.com/key4hep/key4hep-spack/tree/release
https://github.com/MuonColliderSoft/mucoll-spack

Nazar Bartosik Muon Collider Software

IN PROGRESS

8

Transition step: Gaudi

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

Marlin

Gaudi has a Marlin-wrapper package → only configuration files have to be adapted (no code changes)

ILCSoft Spack

Key4hep software stack:

EDM4hep

Gaudi

DD4hep DD4hep

XML config Bash script+ Python config

configured via XML

NO multithreading support

configured via Python

built with multithreading in mind

→ short term

Nazar Bartosik Muon Collider Software

TO BE DONE

9

Transition step: EDM4hep

ILCSoft software stack:

1. 	 	 	 	

2. 	 	 	 	

3. 	 	 	 	

4. 	 	 	

LCIO

All EDM4hep data classes defined in a single YAML file: edm4hep.yaml → generates actual C++ code

Switching from LCIO → EDM4hep will change input for all our simulation code

↳	 each processor has to be adapted to the new data format → substantial amount of work

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep DD4hep

→ long term

Marlin Gaudi

used only by us → no other maintainers

NO multithreading support

used and maintained by other experiments

built with multithreading in mind

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml

Nazar Bartosik Muon Collider Software 10

Event data model: transition plan

On-the-fly EDM4hep ↔ LCIO conversion is available 
using EDM4hep2LCIO module developed for CLIC

Beam Induced Background in a single event ▶ 
simulated in GEANT4 → 120M SimHits

↳	 enormous amount of data to be processed 
	 ~25 GB (SimHits) + ~10 GB (RecHits) of RAM

We can't afford in-memory conversion of all SimHits 
but can be feasible for filtered digitized RecHits

↳	 transition to EDM4hep must happen in one step 
	 for all the code taking SimHits as input: BIB overlay + digitisers

Collection name # of elements
ECalBarrelCollection 52.219.721

ECalEndcapCollection 11.489.880

HCalBarrelCollection 20.657.110

HCalEndcapCollection 15.296.598

HCalRingCollection 1.858.377

InnerTrackerBarrelCollection 2.839.607

InnerTrackerEndcapCollection 2.553.195

OuterTrackerBarrelCollection 5.111.755

OuterTrackerEndcapCollection 3.386.256

VertexBarrelCollection 2.816.752

VertexEndcapCollection 2.135.425

YokeBarrelCollection 273

YokeEndcapCollection 35.267

TOTAL 120.400.216

Si
mC

al
or

im
et

er
Hi

t
Si

mT
ra

ck
er

Hi
t

Nazar Bartosik Muon Collider Software 11

Release automation: using CERN resources

Several computing resources at CERN have been recently established for Muon Collider 
to automate our software-related tasks

1. CVMFS repository:		 /cvmfs/muoncollider.cern.ch/

• to store our software for use by the whole collaboration

2. GitLab group: 	 	 	 https://gitlab.cern.ch/muon-collider

• Docker image registry with web GUI

• repository with deployment pipelines: mucoll-deploy 
↳		 running on the dedicated GitLab Runner machines

3. OpenStack project: 	 Muon Collider Software

• dedicated Virtual Machines to run the lengthy automation tasks set up as GitLab Runners

• deployment of releases to CVMFS (stable + nightly builds)

• building of Docker images + conversion to Singularity/Apptainer images

• running release validation workflows

http://muoncollider.cern.ch/
https://gitlab.cern.ch/muon-collider
https://gitlab.cern.ch/muon-collider/mucoll-deploy

Nazar Bartosik Muon Collider Software 12

Release validation: work in progress

Adopting more frequent release-deployment cycle  
requires a reliable validation workflow  
to minimise probability of unintented changes

All relevant code organised 
under a single repository: 	 mucoll-benchmarks

Each stage from generation to plotting has baseline 
configuration files and scripts

↳	 referenced and overriden by workflow-specific 
	 scripts → chained in mucoll-deploy pipelines

List of workflows will expand over time 
adding generation of signal and BIB samples

Will serve as a practial example of using our software

|-- generation/

| |-- bib/

| | |-- fluka_to_slcio.py

| | |-- mars_to_slcio.py

| |-- pgun/

| | |-- pgun_to_lcio.py

| `-- signal/

| `-- mumu_H_bb_3TeV.sin

|-- simulation/

| `-- steer_sim.py

|-- reconstruction/

| |-- steer_reco.xml

| `-- subconfigs/

| |-- overlay.xml

| |-- digi_trk.xml

| |-- digi_cal.xml

| |-- reco_trk.xml

|-- analysis/

| |-- lctuple_drawer.py

| |-- mcp/

| | `-- lctuple.xml

| |-- sim/

| | |-- lctuple.xml

| | |-- trk_hit_mcp.py

| | `-- cal_hit_mcp.py

|-- plotting/

| `-- histo_drawer.py

`-- workflows/

 |-- relval/

 | |-- pgun_reco.sh

 | |-- Hbb_reco.sh

 | `-- pgun_bib_reco.sh

 `-- bib_production/

 |-- fluka_3TeV.sh

 `-- fluka_10TeV.sh

reference configurations 
for individual stages

release validation 
workflow

BIB production 
workflow

https://github.com/MuonColliderSoft/mucoll-benchmarks
https://gitlab.cern.ch/muon-collider/mucoll-deploy

Nazar Bartosik Muon Collider Software 13

Ongoing activities

A more practical introduction to our software available in the training Wiki page

↳	 created for a series of software tutorial sessions: the latest starts today at CERN

First steps towards adopting the EDM4hep data model have been made

↳	 using EDM4hep for storing MCParticles from BIB and particle-gun samples

Next step in EDM4hep adoption: implement BIB overlay natively in Gaudi

↳	 exact schema to use is not clear yet: support for intra-event parallelisation is important

Expecting more Key4hep-oriented developments in the near future 
interface to ACTS tracking, Gaudi-native digitisers, etc.

↳	 all must be thread-safe for intra-event parallelisation

https://mcdwiki.docs.cern.ch/
https://indico.cern.ch/event/1277924/overview

Nazar Bartosik Muon Collider Software 14

Summary

Key4hep has a number of advantages for out simulation workflow 
better performance and usability, larger developer community, more future proof

The easy part of Key4hep migration is done: Spack package management

We use CERN computing infrastructure to improve usability and stability of our software 
building and validating on CERN machines + deployment to CVMFS

Started the 1st stage of migration to EDM4hep data model 
generation → BIB overlay → digitisation → reconstruction

Several custom developments for Marlin to be migrated to Gaudi 
↳	 realistic digitisation of pixel detectors (timing, clustering); interface to ACTS;

Synergies with CEPC and other Key4hep contributors are highly appreciated 
↳	 reconstruction algorithms, analysis tools, etc. + documentation

Nazar Bartosik Muon Collider Software 15

Backup

BACKUP

Nazar Bartosik Muon Collider Software 16

Event data model: transition plan

The general workflow for Release Validation

INPUT and/or CONFIG PROCESS OUTPUT
RelVal repo. release RelVal machine

*.root ← TH1

ANALYSIS
RelVal repo.

RelVal machine
PLOTTING

RelVal repo.

*.pdf ← plots
RelVal machineRELEASE  

REPOSITORY

step 1
INPUT and/or CONFIG PROCESS

RelVal repo. release

step 2

VALIDATION  
REPOSITORY

Versions synchronised with the release repository

Nazar Bartosik Muon Collider Software 17

Data-model optimisation: CAL hits

SimCalorimeterHit in EDM4hep 
identical to LCIO implemenation

• SimHit: 32 bytes

• Contribution: 32 bytes

#------------- CaloHitContribution

edm4hep::CaloHitContribution:

 Members:

 - int32_t PDG // PDG code of the particle contributing to the shower

 - float energy // energy in [GeV] of the this contribution

 - float time // time in [ns] of this contribution

 - edm4hep::Vector3f stepPosition // position of this energy deposition (step) [mm]

 OneToOneRelations:

 - edm4hep::MCParticle particle // primary MCParticle that caused the shower

#------------- SimCalorimeterHit

edm4hep::SimCalorimeterHit:

 Members:

 - uint64_t cellID // ID of the sensor that created this hit

 - float energy // energy of the hit in [GeV]

 - edm4hep::Vector3f position // position of the hit in world coordinates in [mm]

 OneToManyRelations:

 - edm4hep::CaloHitContribution contributions // MC step contribution - parallel to particle

100M objects stored on disk + read into RAM + processed by CPU in every event during Overlay

↳	 on average 10 contributions / SimCalorimeterHit → 354 B/hit

We can save a lot of memory by removing redundant and non-critical information: 88 B/hit (25%)

• SimCalorimeterHit::position → we already know it from cellID

• CaloHitContribution::stepPosition → exact position within a cell is irrelevant for digitization

Nazar Bartosik Muon Collider Software 18

Tracking optimisation: ϕ slicing

The power of splitting Tracker hits in smaller subsets has been demonstrated by Massimo long ago

↳	 less input hits in a single subset → much less combinatoriscs for track reconstruction

Splitting in polar angle might not be optimal 
BIB density is not uniform in Θ

CMS Phase-II Tracker will be split into 8 octants  
for fast tigger-level track reconstruction

We should integrate this approach in our workflow 
making it a default taking advantage of parallelization in Gaudi

• Overlay: adding BIB hits to every Tracker hit collection as we do now

• Splitting: split each Tracker hit collection in ϕ sectors

• Digitization: run digitization of each ϕ sector in parallel [lin. speed-up]

• Filtering:	 stub matching in each ϕ sector in parallel [lin. speed-up]

• Track reconstruction: 	 run ACTS tracking in each sector independently [exp. speed-up] 

	 	 	 	 	 	 	 + maybe apply splitting in Θ internally at the level of a processor

