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Introduction: Muon Collider

Muon Collider

CLIC
FCC-hh

LHC

HE-LHC

Nature Physics 17 289–292Muon Collider  allows to combine in a single facility  
 high precision  of e+e- colliders  +   high energy reach  of pp colliders


• muons are elementary particles, like e+/e-, creating "clean" collisions

• ⨉ 200 higher mass  →  ⨉ 104 less synchrotron radiation losses


At √s ≥ 3 TeV Muon Collider is the  most energy efficient  machine  


Distinctive feature of the Muon Collider  
↳  Beam Induced Background  (BIB) 
	  4.1 ⨉ 105 muon decays per meter of lattice  at √s = 1.5 TeV


BIB is simulated in two steps:

• muon decays + interaction with accelerator lattice 

using FLUKA  ▶

• interaction of particles with the detector 

using GEANT4
neutrons    photons    electrons    positrons FLUKA simulation

https://doi.org/10.1038/s41567-020-01130-x
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Legacy software: ILCSoft

Main steps of a full-simulation study:

1. generation of stable input particles:    ME + PS  Pythia/Madgraph/Whizard    +   BIB  FLUKA + FlukaLineBuilder 


2. simulation of the detector response  
to the incoming particles


3. simulation of detector effects 
efficiency, electronics noise + thresholds, ...


4. reconstruction of higher-level objects 
photons, tracks, jets, particle identification


5. higher-level analysis                   can be performed externally


Most of custom packages specific to the Muon Collider  
maintained under the public Muon Collider Software repository

ILCSoft

geometry GEANT4 SimHits> >

digitisation<

Track reco.

Jet clustering

RecHits

PFlow obj.

Particle Flow

Matrix Element + Parton Shower Beam Induced Background

DD4hep

The whole simulation chain is fully working  
with a dozen of physics-analyses and detector-design studies

https://github.com/MuonColliderSoft
https://github.com/iLCSoft
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
https://dd4hep.web.cern.ch/dd4hep/
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Simulation workflow

Full simulated event obtained via three distinct stages: geometry GEANT4 SimHits> > > SIM_sig.slcio

SIGNAL

geometry GEANT4 SimHits> > > SIM_bib_1.slcio

BIB
parallel jobs

SIM_bib_2.slcio
SIM_bib_8.slcio

digitisation<

Jet clustering

Track reco.

RecHits

PFlow obj.

Particle Flow

Overlay

1 event

1 event SIGNAL

BIB

Signal + BIB

GEANT4 simulation of BIB:   ~108 particles/BX

↳  extremely slow  →  need a pool of reusable events

Overlay of BIB:   performed in each event before digitisation

↳  sensitive to the # of BIB SimHits and merging logics

Reconstruction speed of higher-level objects strongly depends  
on the amount of input RecHits from BIB


• especially relevant for track reconstruction  (combinatorics)

• BIB contribution has to be suppressed as early as possible

BIB contribution creates tremendous amount of data  →  every step requires careful treatment of computing resources

GEANT4 simulation of Signal:  straightforward and fast

DISK STORAGE DISK I/O CPU TIME RAM USAGE DISTRIBUTION

⨉ 1

⨉ N events

⨉ N events

Baseline workflow  
from CLIC
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Muon Colider software: current stack

The main components of our current software stack:


1. 	 	 	   	 →  	event-data model [LCIO::SimCalorimeterHit, ...  stored in *.slcio files]


2. 	 	  	   	 →  	flexible geometry-description language  +  interface with Geant4


3.  	 	 	 	 →  	framework for simulation components  +  chaining them together via *.xml files


4.  	 	 	 	 →  	collection of scripts for putting all the software together  + all the dependencies 
	 	 	 	 	 


The two main methods for distributing our software:


1. Local install	 	 →  	a set of instructions to install the software on a specific machine 
	 	 	 	 	 	 with full control over each component's code  →  best for development


2. Container		 	 →  	download and run on any machine via Docker/Singularity/Apptainer 
	 	 	 	 	 	 with limited possibility to modify the code  →  best for analysis


Transition to  Key4hep        started a few months ago


LCIO

DD4hep

Marlin

Local install

Container

ILCSoft

Key4hep
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DONE
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Transition step: DD4hep

ILCSoft software stack:


1. 	 	 	   	 


2. 	 	  	   	 


3.  	 	 	 	 


4.  	 	 	

LCIO

DD4hep

Marlin

We both use DD4hep for detector-geometry description

↳	 no changes needed on our side

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi
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DONE
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Transition step: Spack

ILCSoft software stack:


1. 	 	 	   	 


2. 	 	  	   	 


3.  	 	 	 	 


4.  	 	 	

LCIO

DD4hep

Marlin

The latest release 2.8 can now be installed with two recipes:   for ILCSoft   and   for Spack 
↳  includes specific versions for the main dependencies:  ROOT, GEANT4, Marlin packages, etc.


Spack installation also available under CVMFS:  /cvmfs/muoncollider.cern.ch/release/2.8-patch2/


Using key4hep-spack as a downstream repository  →  only 11 mucoll-spack packages on top 
↳	 need to use specific commits from  spack  and  key4hep-spack  repositories to ensure stable builds

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep

Gaudi

https://github.com/key4hep/key4hep-spack/tree/release
https://github.com/MuonColliderSoft/mucoll-spack
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IN PROGRESS
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Transition step: Gaudi

ILCSoft software stack:


1. 	 	 	   	 


2. 	 	  	   	 


3.  	 	 	 	 


4.  	 	 	

LCIO

Marlin

Gaudi has a Marlin-wrapper package  →  only configuration files have to be adapted  (no code changes)

ILCSoft Spack

Key4hep software stack:

EDM4hep

Gaudi

DD4hep DD4hep

XML config Bash script+ Python config

configured via XML

NO multithreading support

configured via Python

built with multithreading in mind

→  short term
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TO BE DONE
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Transition step: EDM4hep

ILCSoft software stack:


1. 	 	 	   	 


2. 	 	  	   	 


3.  	 	 	 	 


4.  	 	 	

LCIO

All EDM4hep data classes defined in a single YAML file:   edm4hep.yaml  →  generates actual C++ code


Switching from LCIO → EDM4hep will change input for all our simulation code

↳	 each processor has to be adapted to the new data format  →   substantial amount of work 

ILCSoft Spack

Key4hep software stack:

EDM4hep

DD4hep DD4hep

→  long term

Marlin Gaudi

used only by us  →  no other maintainers

NO multithreading support

used and maintained by other experiments

built with multithreading in mind

https://github.com/key4hep/EDM4hep/blob/master/edm4hep.yaml
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Event data model: transition plan

On-the-fly EDM4hep ↔ LCIO conversion is available 
using EDM4hep2LCIO module developed for CLIC


Beam Induced Background in a single event    ▶ 
simulated in GEANT4   →   120M SimHits 

↳	 enormous amount of data to be processed 
	 ~25 GB (SimHits)  +  ~10 GB (RecHits)  of RAM


We can't afford in-memory conversion of all SimHits 
but can be feasible for filtered digitized RecHits 

↳	 transition to EDM4hep must happen in one step 
	 for all the code taking SimHits as input:  BIB overlay + digitisers

Collection name # of elements
ECalBarrelCollection 52.219.721

ECalEndcapCollection 11.489.880

HCalBarrelCollection 20.657.110

HCalEndcapCollection 15.296.598

HCalRingCollection 1.858.377

InnerTrackerBarrelCollection 2.839.607

InnerTrackerEndcapCollection 2.553.195

OuterTrackerBarrelCollection 5.111.755

OuterTrackerEndcapCollection 3.386.256

VertexBarrelCollection 2.816.752

VertexEndcapCollection 2.135.425

YokeBarrelCollection 273

YokeEndcapCollection 35.267

TOTAL 120.400.216
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Release automation: using CERN resources

Several  computing resources  at CERN have been recently established for Muon Collider 
to automate our software-related tasks


1. CVMFS repository:		 /cvmfs/muoncollider.cern.ch/

• to store our software for use by the whole collaboration


2. GitLab group: 	 	 	 https://gitlab.cern.ch/muon-collider

• Docker image registry with web GUI

• repository with deployment pipelines:  mucoll-deploy 
↳		 running on the dedicated GitLab Runner machines


3. OpenStack project:  	 Muon Collider Software

• dedicated Virtual Machines to run the lengthy automation tasks  set up as GitLab Runners


• deployment of releases to CVMFS  (stable + nightly builds)

• building of Docker images  + conversion to Singularity/Apptainer images

• running release validation workflows

http://muoncollider.cern.ch/
https://gitlab.cern.ch/muon-collider
https://gitlab.cern.ch/muon-collider/mucoll-deploy
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Release validation: work in progress

Adopting more frequent release-deployment cycle  
requires a  reliable validation workflow  
to minimise probability of unintented changes


All relevant code organised 
under a single repository: 	 mucoll-benchmarks


Each stage from generation to plotting has baseline 
configuration files and scripts

↳	 referenced and overriden by workflow-specific 
	 scripts  →  chained in mucoll-deploy pipelines


List of workflows will expand over time 
adding generation of signal and BIB samples


Will serve as a practial example of using our software

|-- generation/

|   |-- bib/

|   |   |-- fluka_to_slcio.py

|   |   |-- mars_to_slcio.py

|   |-- pgun/

|   |   |-- pgun_to_lcio.py

|   `-- signal/

|       `-- mumu_H_bb_3TeV.sin

|-- simulation/

|   `-- steer_sim.py

|-- reconstruction/

|   |-- steer_reco.xml

|   `-- subconfigs/

|       |-- overlay.xml

|       |-- digi_trk.xml

|       |-- digi_cal.xml

|       |-- reco_trk.xml

|-- analysis/

|   |-- lctuple_drawer.py

|   |-- mcp/

|   |   `-- lctuple.xml

|   |-- sim/

|   |   |-- lctuple.xml

|   |   |-- trk_hit_mcp.py

|   |   `-- cal_hit_mcp.py

|-- plotting/

|   `-- histo_drawer.py

`-- workflows/

    |-- relval/

    |   |-- pgun_reco.sh

    |   |-- Hbb_reco.sh

    |   `-- pgun_bib_reco.sh

    `-- bib_production/

        |-- fluka_3TeV.sh

        `-- fluka_10TeV.sh

reference configurations 
for individual stages

release validation 
workflow

BIB production 
workflow

https://github.com/MuonColliderSoft/mucoll-benchmarks
https://gitlab.cern.ch/muon-collider/mucoll-deploy
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Ongoing activities

A more practical introduction to our software available in the training Wiki page

↳	 created for a series of software tutorial sessions:  the latest starts today at CERN


First steps towards adopting the EDM4hep data model have been made

↳	 using EDM4hep for storing MCParticles from BIB and particle-gun samples


Next step in EDM4hep adoption:  implement BIB overlay natively in Gaudi

↳	 exact schema to use is not clear yet:  support for intra-event  parallelisation is important


Expecting more Key4hep-oriented developments in the near future 
interface to ACTS tracking, Gaudi-native digitisers, etc.

↳	 all must be thread-safe for intra-event parallelisation

https://mcdwiki.docs.cern.ch/
https://indico.cern.ch/event/1277924/overview
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Summary

Key4hep has a number of advantages for out simulation workflow 
better performance and usability, larger developer community, more future proof


The easy part of Key4hep migration is done:  Spack package management


We use CERN computing infrastructure to improve usability and stability of our software 
building and validating on CERN machines  +  deployment to CVMFS


Started the 1st stage of migration to EDM4hep data model 
generation  →  BIB overlay  →  digitisation  →  reconstruction


Several custom developments for Marlin to be migrated to Gaudi 
↳	 realistic digitisation of pixel detectors (timing, clustering);  interface to ACTS;


Synergies with CEPC and other Key4hep contributors are highly appreciated 
↳	 reconstruction algorithms, analysis tools, etc.   +   documentation 
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Backup

BACKUP
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Event data model: transition plan

The general workflow for Release Validation

INPUT and/or CONFIG PROCESS OUTPUT
RelVal repo. release RelVal machine

*.root ← TH1

ANALYSIS
RelVal repo.

RelVal machine
PLOTTING

RelVal repo.

*.pdf ← plots
RelVal machineRELEASE  

REPOSITORY

step 1
INPUT and/or CONFIG PROCESS

RelVal repo. release

step 2

VALIDATION  
REPOSITORY

Versions synchronised with the release repository



Nazar Bartosik Muon Collider Software 17

Data-model optimisation: CAL hits

SimCalorimeterHit in EDM4hep 
identical to LCIO implemenation

• SimHit:   32 bytes

• Contribution:   32 bytes

#------------- CaloHitContribution

edm4hep::CaloHitContribution:

  Members:

    - int32_t           PDG            // PDG code of the particle contributing to the shower

    - float             energy         // energy in [GeV] of the this contribution

    - float             time           // time in [ns] of this contribution

    - edm4hep::Vector3f stepPosition   // position of this energy deposition (step) [mm]

  OneToOneRelations:

    - edm4hep::MCParticle particle     // primary MCParticle that caused the shower


#------------- SimCalorimeterHit

edm4hep::SimCalorimeterHit:

  Members:

    - uint64_t          cellID    // ID of the sensor that created this hit

    - float             energy    // energy of the hit in [GeV]

    - edm4hep::Vector3f position  // position of the hit in world coordinates in [mm]

  OneToManyRelations:

    - edm4hep::CaloHitContribution contributions  // MC step contribution - parallel to particle

100M objects stored on disk  +  read into RAM  +  processed by CPU in every event  during Overlay

↳	 on average 10 contributions / SimCalorimeterHit  →  354 B/hit


We can   save a lot of memory   by removing redundant and non-critical information:   88 B/hit   (25%) 

• SimCalorimeterHit::position  →  we already know it from cellID

• CaloHitContribution::stepPosition  →  exact position within a cell is irrelevant for digitization
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Tracking optimisation: ϕ slicing

The power of splitting Tracker hits in smaller subsets has been demonstrated by Massimo long ago

↳	 less input hits in a single subset  →  much less combinatoriscs for track reconstruction


Splitting in polar angle might not be optimal 
BIB density is not uniform in Θ

CMS Phase-II Tracker will be split into 8 octants  
for fast tigger-level track reconstruction


We should integrate this approach in our workflow 
making it a default  taking advantage of parallelization in Gaudi

• Overlay:  adding BIB hits to every Tracker hit collection as we do now

• Splitting:  split each Tracker hit collection in ϕ sectors

• Digitization:  run digitization of each ϕ sector in parallel  [lin. speed-up]

• Filtering:	  stub matching in each ϕ sector in parallel  [lin. speed-up]

• Track reconstruction:  	 run ACTS tracking in each sector independently  [exp. speed-up] 

	 	 	 	 	 	 	 + maybe apply splitting in Θ internally at the level of a processor


