V,l—\‘L"V -J L

i TET ~—_
. r ~—

]H_l‘ ] L“ : 4]

i J.JT\:\ ] I
e 15 o VM TN g ’
I e .
Byt

Status of CEPCSW

Wenxing Fang, Xingtao Huang, Teng L1, Weidong Li,
Tao Lin, Shengyi Wang, Jiaheng Zou

July 5, 2023
The 2023 International Workshop on CEPC (EU Edition)



Contents

< Introduction
<+ Overview of CEPCSW
+ Status and new development of CEPCSW

<+ Summary



L X4

Introduction

The CEPC software development first started with the iLCSoft
e Reused most software modules: Marlin, LCIO, MokkaC, Gear
e Developed CEPC’s software components for simulation and reconstruction
e Massive M.C. data produced for detector and physics potential studies
e CDR was released in Nov, 2018, based on results from the iLCSoft

New CEPC software (CEPCSW) prototype was proposed at the Oxford
workshop in April 2019

The consensus among CEPC, CLIC, FCC, ILC and other future
experiments was reached at the Bologna workshop in June 2019

e Develop a Common Turnkey Software Stack (Key4hep) for future collider
experiments

e Maximize the sharing of software components among different experiments



Overview of CEPCSW

<+~ CEPCSW software structure

Core software

Applications: simulation, reconstruction and
analysis

External libraries

% Core software

Gaudi/Gaudi Hive: defines interfaces to all
software components and controls their
execution

EDM4hep: generic event data model
K4FWCore: manages the event data
DD4hep: geometry description

CEPC-specific framework software: generator,
Geant4 simulation, beam background mixing,
fast simulation, machine learning interface, etc.

https://github.com/cepc/CEPCSW

______________________________________________

Generator CEPC
Applications
Simulation RP
Reconstruction Analysis
GeomSvc FWCore EDM4hep
Gaudi framework
LCIO PODIO DD4hep
ROOT Geant4 CLHEP
Boost Python Cmake

External Libraries & Tools



Status of CEPCSW

>

« GEPCSW is under rapid development, and its latest version is v0.2.6

e Well supported detector simulation and reconstruction studies on the
4th conceptual detector

« Lots of progress has been made on core software of CEPCSW since last
workshop

e Optimization on key components according to application requirements

Event Data Model
Detector Description
Simulation Framework

e Developments on adopting new technologies to boost CEPCSW

performance
Multi-threaded Detector simulation

Heterogeneous Computing
Machine Learning Integration based on ONNX

Analysis framework based on RDataframe
Automated Validation System



Event Data Model

« EDM of CEPCSW is adopted from EDM4hep
e In different data processing stages and for different sub-detectors

<+ Extension of EDM4hep is developed to accommodate the drift
chamber dN/dx study

e Based on the upstream mechanism of podio
e Can also be used for TPC detector

e Adopted by EDM4hep (PR)

| EDM4hep DataModel Overview (v0.9) \
A e Monte Carlo Digitization Reconstruction
. I N "
s TN Calorimeten-iif%\\CI o EDMdhep: TrackerPuls EDM4hep:ReclonizationCluster
CaloHitContribution i us ° . Rec Pelse Rec ionization cluster
/ / o EDM4hep:MCParticle Y )
MCPartche < MCRecoParticlgAssociation » ReconstructedPartlcle [ e | Pulse reconstruction Cluster reconstruction EDM4hep'TraCk B\
\
\
\ o v \ dN/dx reconstruction
\ . ‘/\‘ Track Vertex EDM4hep'S|mPr|mary EDM4hepTImESGI'IeS
O HTTraCL‘e’HH.‘:PI‘/ - lonizationCluster Waveform EDM4hep:RecDqd
- ; rackerHitPlane e fanl o B T > ’IN/
Monte Carl RawTimeSeres | TrackerPuse | Reconstruction & SlioniaatioflandiPUIsE: N sveom sinus ecHlvdy
DIC R allo Raw Data | Digitization Analysis '



https://github.com/key4hep/EDM4hep/pull/179

Detector Description

« DD4hep is adopted to provide a full detector description with a single
source of information

« Different detector design options are managed in git repository and
easily to be changed in CEPCSW

< The non-uniform magnetic field has been implemented

(xuyz)  (xzy2)
o o
Coordinators CRD_o1_v1.xml
DetCRD - .(x,y) | Calculate B-Field according to the data from provider |
c RD—O 1 —V1 ECaIBarreI_o Z—VO1 xml - —) (xfy;) (ch,)yn) | Base class of the data provider |
of o[ e +
H
InnerTracker 02 v02.xml —- e o +o . | A data provider which load map from DB |
CoREatt CRD_02 v1 = bilinear interpolation
—— | A data provider which load map from file |7
CRD—OX—VYY CartesianField —— Canegll)gnFleld::
ject
ECalBarrel_o1_v01.cpp _AFieldMapFileProvider
. ! — - I T /
calorimeter OverlayField GenericBFieldVapBrBz >{IFieldMapProvider|

ECalBarrel_o2_v01.cpp <+ " FieldMapDBProvider

DD4hep

InnerTracker_o2_v01.cpp
src = tracker GeantdField DBService |« FieldMapDBService

InnerTracker_o2_v02.cpp «+

DDG4 Gaudi

driftchamber Developers



Detector Simulation (1)

)

<+ The Geant4-based full detector simulation framework has been

developed in CEPCSW and supported sub-detectors simulations and
their performances study

e Silicon detector, time projection chamber, drift chamber and calorimeters

+ The region-based fast simulation interface is also developed to integrate
different fast simulation models into Geant4

«+ CEPCSW provides an unified solution for different backgrounds’

simulation and event mixing at the hit level

Beam
background
Generator

MC Detector
Particles Simulation

Physics simulation and event mixing:

Physics MC Detector
Generator Particles Simulation

G4Region
G4Fast
Simulation .G4FQS.T G.4VF0.5T IFastSimG4
0 Simulation Simulation Tool
drages Manager Model 0o
Process
s
1
i | G4Fast/Param Fast/Param
Simulation SimG4
Model Tool
1
User Defined |

.....................................

MC Hits

MC Hits

Simulated
background
event data

Event Mixing




Detector Simulation (2)

<« GCEPC is working with Key4hep project members re-implementing the
detector simulation software based on Gaussino

« Gauss->Gaussino: evolution of the simulation framework from LHCDb
e Better support for multi-threading, machine learning and fast simulation models

e (Gauss-on-Gaussino is a new version of LHCb simulation framework

E Gauss E Gauss
LHCb :> . Gaussino LHCb

Pythia| Geant4 Gaudi

Pythia Geant4

EvtGen
EvtGen

Gaudi

<« Gaussino is being added to Key4hep by extracting experiment-independent
parts from Gauss



Detector Simulation (3)

«+ Now Gaussino still depends on LHCb software and can not be used by
other experiments directly

« Development of CEPC-on-Gaussino was planned with the following
three steps

e Using the original version having the dependency on the LHCb software
e Creating the modified version in which the LHCb dependency is removed

e Directly using the Key4hep version (not available at the moment)

© ©

Gaussino GaussinoExtLibs Gaussino | ‘
LHCb Detector | P
Run2Support DBASE LHCb @ @ ,
DD4he EDM4he ( >
- 2 Key4hep ‘ ‘ m
Gaudi Geant4 ©
Note: define USE_DD4HEP 10



Heterogeneous Computing (1)

GPU-based demonstrator ATLAS

EXPERIMENT

. Pﬁovided a summary of GPU results in TDAC TDR that demonstrate the potential of
GPUs

- Uses current ID system and u=46 samples

» The most computationally intensive data preparation and track-seeding stages

- Overheads for data conversion, communication between processes and not having
every stage moved to GPU limits potential gains.

- TDR found that using GPUs would provide the same cost/benefit as adding more CPUs,
but this is already a demonstration of feasibility

Inner Detector Track Seeding on GPU

Minimizing data GPU
format conversions Track Seeding \ Conversion CPU-»GPU 5.1%

critical 86.7% , .
Other Conversion GPU->CPU 0.9%

 13.3% Data Transfer 1.3%

IPC5.9%

 Brookhaven ool 88ms (Talk at ICHEP2022)

4 Matinnal | ahnratare



Heterogeneous Computing (2)

TRACCC: one of ACTS R&D projects

e Full chain demonstrator for track
reconstruction on CPU/GPU

[ Data ’

‘ Hit clusterization

2%

Ny
o&o%@ Category Algorithms CPU CUDA SYCL Futhark
7 S
L Seedmg 05 “On
O/','%) G‘,oo Clusterization =~ CCL
Measurement creation
Combinatorial : .
( ) Spacepoint formation
Kalman ﬂ]terlng
Track finding ~ Spacepoint binning
Seed finding
[ Ambiguity resolution ] o
Track param estimation
j Combinatorial KF
[ Physics analysis ’ Track fitting ~ KF
M : exists, © :work started, (_J: work not started yet

https://github.com/acts-project/traccc

12


https://github.com/acts-project/traccc

Heterogeneous Computing (3)

< Activities in CEPCSW

e \We are able to run TRACCC in a standalone environment and
managed to build/run TRACCC on both CPU/GPU.

Config Hardware (0153 Compiler SYCL Bulid Run

backend traccc  traccc
1 Intel CPU CentOS 7.8 LCG 101 (GCC 10.3 +clang 12) CPU OK OK
(IHEP login node) + oneAPI DPC++
2 Intel CPU + NVIDIA CentOS 7.9 LCG101(GCC11.1)+ CUDA OK OK
RTX 8000 (workstation) intel/llvm (2021-12) 11.2

e Now the TRACCC seeding algorithm has been integrated within
CEPCSW by developing middleware between Gaudi algorithm
and SYCL based algorithm

Gaud| } ﬂ rﬁ\r SYCL based J
AIgorlthm J L L Algorithm

A component library A shared library

CEPCSW + GCC Intel oneAP| + DPC++ 13



Heterogeneous Computing (4)

< Building a bridge between EDM4hep and TRACCC
e Common memory for both EDM4hep and TRACCC

e No data conversion is needed between them

std: :pmr: :vector .
(TrackerHitData}_ S
TrackerHit

Data vecmem: :device vector

Al TrackerHit
o Data
vecmem: :vector Ve Collection

\  <{TrackerHitData> 4

Collection

std: :pmr::vector
{TrackData>

Track Data
Collection

N Track Data

T i vecmem: :device vector
Collection

vecmem: : vector
(TrackData>

CPU context




Machine Learning Integration

< ONNX/ONNX Runtime have been —— - ——

Ort::MemoryInfo info("Cpu", OrtDeviceAllocator,

integrated with CEPCSW o s s kvt

inputs.size()},
dims.data(),
dims.size());

< Provided an example, OrtinferenceAlg,  FeEeesssws

53
input_ s.push_back(st put_tensor));

. . mgs . . auto output tensors = m_session->Run{Ort::RunOptions{ nullptr },

e During initialization m_input_node_names.data(),
input_tensors._data(),
input_tensors.size(),

m_output_node_names.data(),

= Create a session object of ONNX runtime m_output_node_names .size());

for (int i = @; i < output tensors.size()}; ++i) {
LogInfe << "[" 1 o
= Load and run an ONNX model »
€< s
<< zendl;
const auto& output_tensor = output_tensors[i];

@ Durlng executlon const float* v_output = output_tensor.GetTensorData<float>();

= Compute output for an input data S
<< v_output[j]
<< std::endl;

<+ Fast pulse simulation in the drift
chamber provided as an example (MLP)

bool OrtInferenceAlg::initialize() {

m_env = std::make shared<Ort::Env>(ORT_LOGGING_ LEVEL WARNING, "ENV");
m_seesion_options std: :m: shared<Ort::SessionOptions>();
m_seesion_options->SetIntraOpNumThreads{m_intra op_ nthreads);
m_seesion options->SetInterOpNumThreads{m inter op nthreads);

m_session = std::make shared<Ort::Session>{*m env, m model file.c str(), *m seesion_options);
___ __ __ 2= e —

o R o - 15



Analysis toolkit based on RDataFrame

+ Developing a new toolkit based on new technologies of software and
hardware is very crucial to rapidly analyze drastically increasing data

<+ RDataFrame provides powerful and flexible way analyzing data
e Declarative programming and parallel workflow
e Analysis in both Python and C++
e Already support reading EDM4hep format

e Actively used by FCC-ee for flavour, higgs and top physics
« Development and test of analysis tool for CEPCSW

e Develop and common components (functions) for analyzing EDM4hep data
Analysis functions in C++: event selection, filtering, Jet clustering, vertex fitting ..
Python for configuration: define analysis functions, input samples, output variables ..

e Test multithreading performance using analysis within CEPCSW

16



Analysis toolkit based on RDataFrame

+ Several packages are ported from FCC RDAnalysis

analysis, more are being implemented S hen
e FastJet, MarlinKinfit
e Vertex fit, jet tag, PID etc. ROOT::RDataFrame
<+ Functionalities and performance test T T 1T 1 1
performed on two analysis channels i | wneee ol e |

e ete- ->Z(mumu)H \ /

e ete- ->H(2jet) mumu

T T T T T T T T :
I 1 ! 4] ~ — —stdline
—s— real
7

——D 2000
300 — Signal CEPC_ “7]
— Background Preliminary “] 1600 |
e ’ 1200 |
2 200 4 5. 2 5
; % =
5 &" L’ R 80
8- s % ’ 400
lﬂ[l T - 7z
6 - v z
2 1 200 H
- %
nHJ-I.LLI"-.n—‘V e I e e B e B TR I S S A | 100 T T T T T T
I] 12 4 6 8 10 12 14 16 18 20 22 24 1 2 4 8 12 16 20
104 120 140 160
50 e 6 Threads Threads
M recidl 1 7
performance test

Identical results with Marlin



Automated Validation System

< An automated validation system is developed for software validation
at different levels

e Unit test, integrated test, performance profiling, physical validation etc.
<+ A toolkit is developed for building software validation workflow
e Provide interfaces to define and run unit tests
e Provide toolkit for performance profiling
e Support results validation based on statistical methods

<+ Automated physical validation system based on massive data
production (run via DIRAC resource) is being developed

SimTest 10 Operations

2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200

UL A L A L L R N L A

>
i)
3
2

>

)

D ———




Automated Validation System

< The validation system is integrated with the Github Action

system

e Full validation workflow can be triggered by commit/merge-request

e Developing running validation jobs on the grid

< ~ O(200) cores are now available for running validation jobs

Build
installation

Pull .
Request GitHub
C"C"gg‘: GitHub
Actions
Build Test
Servers Servers

<
Central
Database

CVMFS

Docker

Web
Portal

DIRAC
(shared)

READY

TODO

Performance
Testing

Kubernetes
(dedicated)




Summary

« CEPCSW is being developed in collaboration with the
Key4dhep project

+ Key components of the CEPCSW core software are in
place and keeps optimized to well support detector
simulation and reconstruction studies

+ Lots of efforts are devoted to adopt new technologies
to boost CEPCSW performance

e Multi-threaded detector simulation based on Gaussino
e Track reconstruction using heterogeneous resources
e Integration of ML models

e Parallel analysis framework based RDataFrame

Automated validation system

20



Thanks for your attention!

Welcomed to joining CEPCSW and working together!

https://github.com/cepc/cepcsw



https://github.com/cepc/cepcsw

Backup



Key4dhep

<« HEP software usually consist of lots of
applications

e Application layer of modules/algorithms /processors
performing physics task (PandoraPFA, FastJet, ACTS,...)

e Data access and representation layer including EDM

e Experiment core orchestration layer (Gaudi, Marlin, ...)

e Specific components reused by many experiments (DD4het
Delphes, Pythia,...)

e Commonly used HEP core libraries (ROOT, Geant4,
CLHEP, ...) Thomas Madlener,

e Commonly used tools and libraries (Python, CMake, Epiphany Conference 2021
boost,...)

0S Kernel and Libraries

generic

(Non-HEP specific)

«+ CEPCSW is being fully integrated with Key4hep to share software with
other future experiments

>

- IHEP and SDU are also involved in Key4hep development as non-EU
members 23

D)

L)



ONNX Introduction

<+ Machine Learning becomes more and more important in HEP data processing
e Different tasks may use different Machine learning libraries and produce different models

e We need an unified way to integrate different models in CEPCSW and run inference easily

«+ ONNXis an open format built to represent machine learning models.
e Support to convert from other models to ONNX, such as Tensorflow, PyTorch etc.

e Easy to run inference on different platforms, such as ONNX Runtime, ONNX MLIR etc.

e Some applications of ONNX in HEP
Fast simulation in Geant4 using ONNX inference interface [1]
Fast Inference for Machine Learning in ROOT TMVA [2]
<« ONNX Runtime is a cross-platform inference and training accelerator

e Accelerate inference on different hardware platform (CPUs/GPU/FPGA)

[1]1 Anna Zaborowska et al., Fast Simulation : from Classical to Machine Learning Models
[2] Sitong An et al., Fast Inference for Machine Learning in ROOT/TMVA

24


https://indico.cern.ch/event/1052654/contributions/4525299/attachments/2310881/3932468/Geant4_Collaboration_16_09_2021.pdf
https://indico.cern.ch/event/773049/contributions/3476168/attachments/1937600/3211545/TMVA_Fast_Inference_Poster.pdf

Detector Simulation

+ Reusing GenEvent and MCEvent
from the LHCb project

e Minimum number of packages are
selected

LHCb::DetDescLib
©
(HCb::LbDD4hepLib
© 4
Note: define USE_DD4HEP ~ Qetector::Detectorli

< Source code of CEPC-on-Gaussino

e Non-required dependencies were
removed

e LHCb: https://qgitlab.cern.ch/talin/L HCb/-/tree/cepc-on-gaussino

e gaussinoextlibs: https://qgitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino

e (Gaussino: https://qgitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino

< Building script: https://qgitlab.cern.ch/talin/build-cepc-on-gaussino

25


https://gitlab.cern.ch/talin/LHCb/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/build-cepc-on-gaussino

