
Status of CEPCSW

Wenxing Fang, Xingtao Huang, Teng Li, Weidong Li,
Tao Lin, Shengyi Wang, Jiaheng Zou

 July 5, 2023

The 2023 International Workshop on CEPC (EU Edition)

1

Contents

 Introduction

 Overview of CEPCSW

 Status and new development of CEPCSW

 Summary

2

Introduction

 The CEPC software development first started with the iLCSoft
 Reused most software modules: Marlin, LCIO, MokkaC, Gear

 Developed CEPC’s software components for simulation and reconstruction

 Massive M.C. data produced for detector and physics potential studies

 CDR was released in Nov, 2018, based on results from the iLCSoft

 New CEPC software (CEPCSW) prototype was proposed at the Oxford
workshop in April 2019

 The consensus among CEPC, CLIC, FCC, ILC and other future
experiments was reached at the Bologna workshop in June 2019
 Develop a Common Turnkey Software Stack (Key4hep) for future collider

experiments

 Maximize the sharing of software components among different experiments

3

Overview of CEPCSW

 CEPCSW software structure
 Core software

 Applications: simulation, reconstruction and
analysis

 External libraries

 Core software
 Gaudi/Gaudi Hive: defines interfaces to all

software components and controls their
execution

 EDM4hep: generic event data model

 K4FWCore: manages the event data

 DD4hep: geometry description

 CEPC-specific framework software: generator,
Geant4 simulation, beam background mixing,
fast simulation, machine learning interface, etc. 4

https://github.com/cepc/CEPCSW

Status of CEPCSW

 CEPCSW is under rapid development, and its latest version is v0.2.6

 Well supported detector simulation and reconstruction studies on the
4th conceptual detector

 Lots of progress has been made on core software of CEPCSW since last
workshop

 Optimization on key components according to application requirements
 Event Data Model
 Detector Description
 Simulation Framework

 Developments on adopting new technologies to boost CEPCSW
performance
 Multi-threaded Detector simulation
 Heterogeneous Computing
 Machine Learning Integration based on ONNX
 Analysis framework based on RDataframe
 Automated Validation System

5

Event Data Model

 EDM of CEPCSW is adopted from EDM4hep
 In different data processing stages and for different sub-detectors

 Extension of EDM4hep is developed to accommodate the drift
chamber dN/dx study
 Based on the upstream mechanism of podio

 Can also be used for TPC detector

 Adopted by EDM4hep (PR)

6

https://github.com/key4hep/EDM4hep/pull/179

Detector Description

 DD4hep is adopted to provide a full detector description with a single
source of information

 Different detector design options are managed in git repository and
easily to be changed in CEPCSW

 The non-uniform magnetic field has been implemented

7

Detector Simulation (1)

 The Geant4-based full detector simulation framework has been
developed in CEPCSW and supported sub-detectors simulations and
their performances study

 Silicon detector, time projection chamber, drift chamber and calorimeters

 The region-based fast simulation interface is also developed to integrate
different fast simulation models into Geant4

 CEPCSW provides an unified solution for different backgrounds’
simulation and event mixing at the hit level

8

Detector Simulation (2)

 CEPC is working with Key4hep project members re-implementing the
detector simulation software based on Gaussino

 Gauss->Gaussino: evolution of the simulation framework from LHCb

 Better support for multi-threading, machine learning and fast simulation models

 Gauss-on-Gaussino is a new version of LHCb simulation framework

 Gaussino is being added to Key4hep by extracting experiment-independent
parts from Gauss

9

Detector Simulation (3)

 Now Gaussino still depends on LHCb software and can not be used by
other experiments directly

 Development of CEPC-on-Gaussino was planned with the following
three steps
 Using the original version having the dependency on the LHCb software

 Creating the modified version in which the LHCb dependency is removed

 Directly using the Key4hep version (not available at the moment)

10

Heterogeneous Computing (1)

11(Talk at ICHEP2022)

Heterogeneous Computing (2)

 TRACCC: one of ACTS R&D projects

 Full chain demonstrator for track
reconstruction on CPU/GPU

12
https://github.com/acts-project/traccc

https://github.com/acts-project/traccc

Heterogeneous Computing (3)

 Activities in CEPCSW
 We are able to run TRACCC in a standalone environment and

managed to build/run TRACCC on both CPU/GPU.

 Now the TRACCC seeding algorithm has been integrated within
CEPCSW by developing middleware between Gaudi algorithm
and SYCL based algorithm

13

Config Hardware OS Compiler SYCL
backend

Bulid
traccc

Run
traccc

1 Intel CPU
(IHEP login node)

CentOS 7.8 LCG 101 (GCC 10.3 + clang 12)
+ oneAPI DPC++

CPU OK OK

2 Intel CPU + NVIDIA
RTX 8000 (workstation)

CentOS 7.9 LCG 101 (GCC 11.1) +
intel/llvm (2021-12)

CUDA
11.2

OK OK

CEPCSW + GCC Intel oneAPI + DPC++

Gaudi
Algorithm

SYCL based
Algorithm

A shared libraryA component library

Heterogeneous Computing (4)

14

 Building a bridge between EDM4hep and TRACCC

 Common memory for both EDM4hep and TRACCC

 No data conversion is needed between them

Machine Learning Integration

 ONNX/ONNX Runtime have been
integrated with CEPCSW

 Provided an example, OrtInferenceAlg,
 During initialization

 Create a session object of ONNX runtime

 Load and run an ONNX model

 During execution
 Compute output for an input data

 Fast pulse simulation in the drift
chamber provided as an example (MLP)

15

Analysis toolkit based on RDataFrame

 Developing a new toolkit based on new technologies of software and
hardware is very crucial to rapidly analyze drastically increasing data

 RDataFrame provides powerful and flexible way analyzing data

 Declarative programming and parallel workflow

 Analysis in both Python and C++

 Already support reading EDM4hep format

 Actively used by FCC-ee for flavour, higgs and top physics

 Development and test of analysis tool for CEPCSW
 Develop and common components (functions) for analyzing EDM4hep data

 Analysis functions in C++: event selection, filtering, Jet clustering, vertex fitting ..
 Python for configuration: define analysis functions, input samples, output variables ..

 Test multithreading performance using analysis within CEPCSW

16

 Several packages are ported from FCC
analysis, more are being implemented
 FastJet, MarlinKinfit

 Vertex fit, jet tag, PID etc.

 Functionalities and performance test
performed on two analysis channels
 e+e- -> Z(mumu)H

 e+e- ->H(2jet) mumu

17
Identical results with Marlin performance test

Analysis toolkit based on RDataFrame

Automated Validation System
 An automated validation system is developed for software validation

at different levels
 Unit test, integrated test, performance profiling, physical validation etc.

 A toolkit is developed for building software validation workflow
 Provide interfaces to define and run unit tests

 Provide toolkit for performance profiling

 Support results validation based on statistical methods

 Automated physical validation system based on massive data
production (run via DIRAC resource) is being developed

18

Automated Validation System

 The validation system is integrated with the Github Action
system
 Full validation workflow can be triggered by commit/merge-request

 Developing running validation jobs on the grid

 ~ O(200) cores are now available for running validation jobs

19

GitHubPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)Web

Portal

GitHub
Actions

Build
Servers

Test
Servers

READY

TODO

Summary

 CEPCSW is being developed in collaboration with the
Key4hep project

 Key components of the CEPCSW core software are in
place and keeps optimized to well support detector
simulation and reconstruction studies

 Lots of efforts are devoted to adopt new technologies
to boost CEPCSW performance
 Multi-threaded detector simulation based on Gaussino

 Track reconstruction using heterogeneous resources

 Integration of ML models

 Parallel analysis framework based RDataFrame

 Automated validation system

20

Thanks for your attention!

Welcomed to joining CEPCSW and working together!

 https://github.com/cepc/cepcsw

https://github.com/cepc/cepcsw

Backup

Key4hep

 HEP software usually consist of lots of
applications
 Application layer of modules/algorithms /processors

performing physics task (PandoraPFA, FastJet, ACTS,...)

 Data access and representation layer including EDM

 Experiment core orchestration layer (Gaudi, Marlin, ...)

 Specific components reused by many experiments (DD4hep,
Delphes, Pythia,...)

 Commonly used HEP core libraries (ROOT, Geant4,
CLHEP, ...)

 Commonly used tools and libraries (Python, CMake,
boost,…)

23

Thomas Madlener,
 Epiphany Conference 2021

 CEPCSW is being fully integrated with Key4hep to share software with
other future experiments

 IHEP and SDU are also involved in Key4hep development as non-EU
members

ONNX Introduction

 Machine Learning becomes more and more important in HEP data processing
 Different tasks may use different Machine learning libraries and produce different models

 We need an unified way to integrate different models in CEPCSW and run inference easily

 ONNX is an open format built to represent machine learning models.
 Support to convert from other models to ONNX, such as Tensorflow, PyTorch etc.

 Easy to run inference on different platforms, such as ONNX Runtime, ONNX MLIR etc.

 Some applications of ONNX in HEP

 Fast simulation in Geant4 using ONNX inference interface [1]

 Fast Inference for Machine Learning in ROOT TMVA [2]

 ONNX Runtime is a cross-platform inference and training accelerator
 Accelerate inference on different hardware platform (CPUs/GPU/FPGA)

24

[1] Anna Zaborowska et al., Fast Simulation : from Classical to Machine Learning Models
[2] Sitong An et al., Fast Inference for Machine Learning in ROOT/TMVA

https://indico.cern.ch/event/1052654/contributions/4525299/attachments/2310881/3932468/Geant4_Collaboration_16_09_2021.pdf
https://indico.cern.ch/event/773049/contributions/3476168/attachments/1937600/3211545/TMVA_Fast_Inference_Poster.pdf

Detector Simulation

 Reusing GenEvent and MCEvent
from the LHCb project
 Minimum number of packages are

selected

 Non-required dependencies were
removed

25

 Source code of CEPC-on-Gaussino
 LHCb: https://gitlab.cern.ch/talin/LHCb/-/tree/cepc-on-gaussino

 gaussinoextlibs: https://gitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino

 Gaussino: https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino

 Building script: https://gitlab.cern.ch/talin/build-cepc-on-gaussino

https://gitlab.cern.ch/talin/LHCb/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/build-cepc-on-gaussino

