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Introduction

 The CEPC software development first started with the iLCSoft 
 Reused most software modules: Marlin, LCIO, MokkaC, Gear

 Developed CEPC’s software components for simulation and reconstruction

 Massive M.C. data produced for detector and physics potential studies

 CDR was released in Nov, 2018, based on results from the iLCSoft

 New CEPC software (CEPCSW) prototype was proposed at the Oxford 
workshop in April 2019

 The consensus among CEPC, CLIC, FCC, ILC and other future 
experiments was reached at the Bologna workshop in June 2019
 Develop a Common Turnkey Software Stack (Key4hep) for future collider 

experiments

 Maximize the sharing of software components among different experiments
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Overview of CEPCSW

 CEPCSW software structure
 Core software 

 Applications: simulation, reconstruction and 
analysis 

 External libraries 

 Core software 
 Gaudi/Gaudi Hive: defines interfaces to all 

software components and controls their 
execution

 EDM4hep: generic event data model 

 K4FWCore: manages the event data 

 DD4hep: geometry description

 CEPC-specific framework software: generator, 
Geant4 simulation, beam background mixing, 
fast simulation, machine learning interface, etc. 4

https://github.com/cepc/CEPCSW



Status of CEPCSW

 CEPCSW is under rapid development, and its latest version is v0.2.6

 Well supported detector simulation and reconstruction studies on the 
4th conceptual detector 

 Lots of progress has been made on core software of CEPCSW since last 
workshop

 Optimization on key components according to application requirements
 Event Data Model
 Detector Description
 Simulation Framework

 Developments on adopting new technologies to boost CEPCSW 
performance
 Multi-threaded Detector simulation
 Heterogeneous Computing 
 Machine Learning Integration based on ONNX
 Analysis framework based on RDataframe
 Automated Validation System
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Event Data Model

 EDM of CEPCSW is adopted from EDM4hep
 In different data processing stages and for different sub-detectors

 Extension of EDM4hep is developed to accommodate the drift 
chamber dN/dx study
 Based on the upstream mechanism of podio

 Can also be used for TPC detector

 Adopted by EDM4hep (PR)

6

https://github.com/key4hep/EDM4hep/pull/179


Detector Description

 DD4hep is adopted to provide a full detector description with a single 
source of information

 Different detector design options are managed in git repository and 
easily to be changed in CEPCSW  

 The non-uniform magnetic field has been implemented
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Detector Simulation (1)

 The Geant4-based full detector simulation framework has been 
developed in CEPCSW and supported sub-detectors simulations and 
their performances study

 Silicon detector, time projection chamber, drift chamber and calorimeters

 The region-based fast simulation interface is also developed to integrate 
different fast simulation models into Geant4

 CEPCSW provides an unified solution for different backgrounds’ 
simulation and event mixing at the hit level
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Detector Simulation (2)

 CEPC is working with Key4hep project members re-implementing the 
detector simulation software based on Gaussino

 Gauss->Gaussino: evolution of the simulation framework from LHCb

 Better support for multi-threading, machine learning and fast simulation models

 Gauss-on-Gaussino is a new version of LHCb simulation framework

 Gaussino is being added to Key4hep by extracting experiment-independent 
parts from Gauss
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Detector Simulation (3)

 Now Gaussino still depends on LHCb software and can not be used by 
other experiments directly

 Development of CEPC-on-Gaussino was planned with the following 
three steps
 Using the original version having the dependency on the LHCb software

 Creating the modified version in which the LHCb dependency is removed

 Directly using the Key4hep version (not available at the moment)
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Heterogeneous Computing (1)

11(Talk at ICHEP2022 )



Heterogeneous Computing (2)

 TRACCC: one of ACTS R&D projects 

 Full chain demonstrator for track 
reconstruction on CPU/GPU
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https://github.com/acts-project/traccc

https://github.com/acts-project/traccc


Heterogeneous Computing (3) 

 Activities in CEPCSW
 We are able to run TRACCC in a standalone environment and 

managed to build/run TRACCC on both CPU/GPU.

 Now the TRACCC seeding algorithm has been integrated within 
CEPCSW by developing middleware between Gaudi algorithm 
and SYCL based algorithm
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Config Hardware OS Compiler SYCL 
backend

Bulid 
traccc

Run 
traccc

1 Intel CPU 
(IHEP login node)

CentOS 7.8 LCG 101 (GCC 10.3 + clang 12) 
+ oneAPI DPC++

CPU OK OK

2 Intel CPU + NVIDIA 
RTX 8000 (workstation)

CentOS 7.9 LCG 101 (GCC 11.1) + 
intel/llvm (2021-12)

CUDA 
11.2

OK OK

CEPCSW + GCC Intel oneAPI + DPC++

Gaudi 
Algorithm

SYCL based 
Algorithm

A shared libraryA component library



Heterogeneous Computing (4)
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 Building a bridge between EDM4hep and TRACCC

 Common memory for both EDM4hep and TRACCC

 No data conversion is needed between them



Machine Learning Integration 

 ONNX/ONNX Runtime have been 
integrated with CEPCSW

 Provided an example, OrtInferenceAlg, 
 During initialization

 Create a session object of ONNX runtime

 Load and run an ONNX model 

 During execution
 Compute output for an input data

 Fast pulse simulation in the drift 
chamber provided as an example (MLP)
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Analysis toolkit based on RDataFrame

 Developing a new toolkit based on new technologies of software and 
hardware is very crucial to rapidly analyze drastically increasing data 

 RDataFrame provides powerful and flexible way analyzing data

 Declarative programming and parallel workflow

 Analysis in both Python and C++

 Already support reading EDM4hep format 

 Actively used by FCC-ee for flavour, higgs and top physics 

 Development and test of analysis tool for CEPCSW
 Develop and common components (functions) for analyzing EDM4hep data 

 Analysis functions in C++: event selection, filtering, Jet clustering, vertex fitting ..
 Python for configuration: define analysis functions, input samples, output variables ..

 Test multithreading performance using analysis within CEPCSW
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 Several packages are ported from FCC 
analysis, more are being implemented
 FastJet, MarlinKinfit

 Vertex fit, jet tag, PID etc.

 Functionalities and performance test 
performed on two analysis channels
 e+e- -> Z(mumu)H

 e+e- ->H(2jet) mumu
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Identical results with Marlin performance test

Analysis toolkit based on RDataFrame



Automated Validation System
 An automated validation system is developed for software validation 

at different levels
 Unit test, integrated test, performance profiling, physical validation etc.

 A toolkit is developed for building software validation workflow
 Provide interfaces to define and run unit tests

 Provide toolkit for performance profiling

 Support results validation based on statistical methods

 Automated physical validation system based on massive data 
production (run via DIRAC resource) is being developed
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Automated Validation System

 The validation system is integrated with the Github Action 
system
 Full validation workflow can be triggered by commit/merge-request

 Developing running validation jobs on the grid

 ~ O(200) cores are now available for running validation jobs
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Summary

 CEPCSW is being developed in collaboration with the 
Key4hep project

 Key components of the CEPCSW core software are in 
place and keeps optimized to well support detector 
simulation and reconstruction studies

 Lots of efforts are devoted to adopt new technologies 
to boost CEPCSW performance
 Multi-threaded detector simulation based on Gaussino 

 Track reconstruction using heterogeneous resources

 Integration of ML models

 Parallel analysis framework based RDataFrame

 Automated validation system

20



Thanks for your attention!

Welcomed to joining CEPCSW and working  together!

 https://github.com/cepc/cepcsw 

https://github.com/cepc/cepcsw
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Key4hep

 HEP software usually consist of lots of 
applications
 Application layer of modules/algorithms /processors 

performing physics task (PandoraPFA, FastJet, ACTS,...)

 Data access and representation layer including EDM

 Experiment core orchestration layer (Gaudi, Marlin, ...)

 Specific components reused by many experiments (DD4hep, 
Delphes, Pythia,...)

 Commonly used HEP core libraries (ROOT, Geant4, 
CLHEP, ...)

 Commonly used tools and libraries (Python, CMake, 
boost,…)
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Thomas Madlener,
 Epiphany Conference 2021

 CEPCSW  is being fully integrated with Key4hep to share software with 
other future experiments

 IHEP and SDU are also  involved in Key4hep development as non-EU 
members



ONNX Introduction

 Machine Learning becomes more and more important in HEP data processing
 Different tasks may use different Machine learning libraries and produce different models

 We need an unified way to integrate different models in CEPCSW and run inference easily

 ONNX is an open format built to represent machine learning models. 
 Support to convert from other models to ONNX, such as Tensorflow, PyTorch etc. 

 Easy to run inference on different platforms, such as ONNX Runtime, ONNX MLIR etc. 

 Some applications of ONNX in HEP

 Fast simulation in Geant4 using ONNX inference interface [1] 

 Fast Inference for Machine Learning in ROOT TMVA [2] 

 ONNX Runtime is a cross-platform inference and training accelerator 
 Accelerate inference on different hardware platform (CPUs/GPU/FPGA)
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[1] Anna Zaborowska et al., Fast Simulation : from Classical to Machine Learning Models
[2] Sitong An et al., Fast Inference for Machine Learning in ROOT/TMVA

https://indico.cern.ch/event/1052654/contributions/4525299/attachments/2310881/3932468/Geant4_Collaboration_16_09_2021.pdf
https://indico.cern.ch/event/773049/contributions/3476168/attachments/1937600/3211545/TMVA_Fast_Inference_Poster.pdf


Detector Simulation

 Reusing GenEvent and MCEvent 
from the LHCb project
 Minimum number of packages are 

selected

 Non-required dependencies were 
removed
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 Source code of CEPC-on-Gaussino
 LHCb: https://gitlab.cern.ch/talin/LHCb/-/tree/cepc-on-gaussino 

 gaussinoextlibs: https://gitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino 

 Gaussino: https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino

 Building script: https://gitlab.cern.ch/talin/build-cepc-on-gaussino

https://gitlab.cern.ch/talin/LHCb/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/gaussinoextlibs/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/Gaussino/-/tree/cepc-on-gaussino
https://gitlab.cern.ch/talin/build-cepc-on-gaussino

