

中國科學院為能物昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

Progress in CEPC Drift Chamber Software

<u>Mengyao Liu¹</u>, Tao Lin², Weidong Li², Wenxing Fang², Xingtao Huang¹, Xueyao Zhang¹, Yuan Ye², Yao Zhang²

1.Shandong University 2.Institute of High Energy Physics

CEPC workshop at Edinburgh

05-July-2023

Contents

- Introduction
- Detector simulation
- Track reconstruction
- Summary

Detector

- The CEPC experiment mainly aims to precisely measure the property of the Higgs boson.
- Physics requirements: high track efficiency (~100%), momentum resolution (<0.1%), PID (2σ p/K separation at P < ~ 20 GeV/c), etc.

- For the 4th conceptual detector, silicon detector and drift chamber (DC) are designed to provide both tracking and PID for charged particles.
- Both detector design and physics potential studies needs strong support of simulation and reconstruction software.

Drift Chamber

The baseline configuration of DC in CEPCSW

Half length	2980 mm
Inner and outer radius	800mm to 1800 <i>mm</i>
# of Layers	100/55
Cell size	~10mmx10mm/18mmx18mm
Gas	He:iC ₄ H ₁₀ =90:10
Single cell resolution	0.11 <i>mm</i>
Sense to field wire ratio	1:3
Total # of sense wire	81631/24931
Stereo angle	1.64~3.64 <i>deg</i>
Sense wire	Gold plated Tungsten ϕ =0.02 <i>mm</i>
Field wire	Silver plated Aluminum ϕ =0.04 <i>mm</i>
Walls	Carbon fiber 0.2 mm(inner) and 2.8 mm(outer)

Introduction

- Detector simulation
- Track reconstruction
- Summary

Simulation of Gaseous Detector

- TrackHeedSimTool (Gaudi tool) was implemented by combining Geant4 and Garfield++ to simulate the complete response of the gaseous detector
 - Input: G4Step information (particle type, initial position, momenta, and step length)
 - Using TrackHeed(from Garfield++) to create the ionization electron-ion pairs (for both primary and secondary ionizations), the deposited energy will be used to update the energy of the G4Particle
 - Using NN to simulate the time and amplitude of each pulse for each ionized electron (for fast waveform simulation)
 - Output: primary, total ionization, and pulse information, saved in EDM

ML-based Simulation Method (1)

- We studied learning the drift time distribution from Garfield++ to achieve precise drift time simulation
- Normalizing Flow network was adopted
 - A similar model to <u>CaloFlow</u> is used, RQS (for transformation)+<u>MADE</u> block (for learning the parameters of RQS)

- Training data is from Garfield++ simulation:
 - Gas: 90%H_e+10%C₄H₁₀
 - For each event, an ionized electron is uniformly generated in the DC cell (x_{local}, y_{local}) and the pulse is simulated. Then a peak finding algorithm (scipy.signal.find_peaks()) is used to get drift time value

ML-based Simulation Method (2)

Good agreement between the NN and Garfield++ simulation

Method Validation with BESIII Data (1)

- To investigate the possibility of applying ML to simulation, the real data from the BESIII experiment was used evaluate the performance of the chosen neural network.
- Radiative bhabha events were selected to study the simulation of drift time in the chamber cell
 - X-T relation:
 - doca(distance of closest approach) v.s. drift time

Method Validation with BESIII Data (2)

 Comparison of drift time distributions between real data and MLbased simulation

Good agreement was found

Method Validation with BESIII Data (3)

- Introduction
- Detector simulation
- Track reconstruction
- Summary

Track Reconstruction

- Tracking with Combinatorial Kalman
 Filter (CKF) method
 - Used by many high energy physics experiments
- Track finding with CKF in drift chamber
 - Migrate from Belle2
 - Track segments reconstructed in the silicon detector, called seeds, are extrapolated to the DC and all the DC hits belonging to the track are collected
- Track fitting tool: Genfit https://github.com/GenFit/GenFit/
 - Experiment-independent generic track fitting toolkit
 - Official track fitting for Bellell, also used by PANDA, COMET, GEM-TPC etc.
 - Using DAF kalman filter

Track Reconstruction

Quality of track fitting

- Data Sample: Single μ^- , $\theta = 50^\circ$, $p_T = 10 GeV/c$ with single cell resolution of $110 \mu m$
- Track pull distribution
 - posx , posy , posz , momx , momy , momz follows N~(0,1)
- Spatial resolution consistent with the simulation

Normalized parameter residual distributions

The estimation of the track parameter and error is reliable

Tracking Efficiency

- Data sample: Single particle μ^- , $\theta = 50^\circ$
- Track Efficiency = N_1/N_2
 - N₁ is the number of track satisfying:
 - *chi*² < 400
 - $N_{DC \ hits \ on \ track} > 50$
 - N₂ is the numbre of silicon track
- The efficiency is over 99% and closely aligns with the results using truth hits

Momentum Resolution

- Data Sample: Single particle μ^- , $\theta = 85^\circ$
- Combined measurement of Silicon and Drift Chamber
- Momentum resolution is reasonable and consistent with ILD tracking

Impact Parameter

- Data Sample: Single particle μ^- , $\theta = 85^\circ$
- Impact parameter
 - $\sigma_{d0} = 3.41 \mu m \text{ with } p_T = 10 GeV/c$
 - Consistent with fast simulation

Physics Event Reconstruction

- ♦ Higgs reconstruction for $H \rightarrow \mu^+ \mu^-$
- Can be used for physics simulation studies

Summary

- In CEPCSW, TrackHeedSimTool was implemented by combining Geant4 and Garfield++ to simulate the complete response of the gaseous detector
 - Machine learning based algorithm was developed for waveform generation
- Tracking algorithm was implemented by reusing the code of Belle II and its performance meets expectations.

Thank You I

Back up

Simulation of Gaseous Detector (1)

- Since Geant4 can not be used to simulate the ionization process properly (arXiv:2105.07064), Garfield++ becomes a common tool for precise ionization simulation.
- <u>"Interfacing Geant4, Garfield++ and Degrad for the Simulation of Gaseous</u> <u>Detectors"</u> studied how to combine Geant4 and Garfield++ to get correct energy deposition or total number of ionized electrons (adopted by COMET experiment)
- Method:
 - Geant4 PAI (Photo Absorption Ionization) model to simulate primary or secondary ionization
 - TrackHeed (from Garfield++) to simulate ionization from residual delta electron

Work Flow for Simulation and Reconstruction

Detector simulation

- Geant4 is employed to simulate particle' s propagation (including particle decay) in the detector, interaction with detector material, etc.
- TrackerHeed (from Garfield++) is used to simulate ionization process of charged particles (e, μ , π , K, p, ...) when they pass through the drift chamber.
- Garfield++ was integrated with the CEPCSW to simulate but its extreme computation intensiveness makes it impossible

Drift chamber simulation and reconstruction flow

 Machine learning (ML) based simulation: training data is created by Garfield++ and ML model is be executed to replace Garfield++ in the detector simulation.

Reconstruction

- Extrapolating the track segment found in the inner silicon detector to drift chamber, collecting the hits on the path, and applying a Kalman Fit to the found track.
- dN/dx reconstruction: waveform reconstruction + path length calculation 23