Long Crystal Bar ECAL Software

Zhang Yang

On Behalf of the CEPC Calo-Software Working Group

The 2023 International Workshop on CEPC, July 4th, 2023, Edinburgh

Introduction

- \blacktriangleright CEPC, a high precision H/Z factory
 - Heavy bosons separation and precise Higgs measurements require excellent jet energy resolution 3~4%.
 - Fine γ/π^0 reconstruction for flavor physics.
- Particle flow Approach
 - Requires the reconstruction of the four-momentum of all visible particles
 - charged particle momentum measured in tracker
 - photon energies measured in ECAL
 - Neutral hadron energies measured in HCAL
 - "Confusion" is the limiting factor
 - Identification of energy deposits from each individual particle.

Hardware + Software

Natural Idea: High granularity & Compact EM shower

Introduction

- Long crystal bar electromagnetic calorimeter detector design
 - ✓ Optimal energy resolution $(\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%)$, better γ/π^0 reconstruction
 - Significant reduction of number of readout channels
 - Time measurement to determine shower position along the bar
 - Larger R_m Smaller λ_I / X_0

increase probability of shower overlap

- Challenges for reconstruction algorithm:
 - Identification of energy deposits from each individual particle.
 - Ambiguity caused by matching of horizontal and vertical bars.

Material	<i>X</i> ₀ /cm	R_M /cm	λ_I /cm	λ_I/X_0
W	0.35	0.93	9.6	27.4
BGO	1.12	2.23	22.8	20.3
Ratio	3.2	2.4	2.4	0.74

The Ambiguity Problem

Perpendicular arrangement of crystal bars \rightarrow ambiguity problem

The Ambiguity Problem

> Our main challenge is the ambiguity problem

ambiguity

Detector description and digitization

- > A BGO crystal barrel ECAL:
 - Crystal Bar: $1 \times 1 \times 40 \sim 60 \text{ cm}^3$
 - Super Cell: 2 layers of perpendicular crossing bars $\sim 40 \times \sim 60 \times 2 \text{ cm}^3$
 - Detector: R = 1.86 m, L = 6.6 m, H = 28 cm, 8 same trapezoidal staves, avoid gaps point to IP
- Focusing on software performance, ignoring dead area, supporting and cooling mechanics, etc
- Simulation is performed using GEANT4: electromagnetic and hadronic interactions
- Simplified digitization for one long crystal bar:
 - contribution of each G4step i:

$$Q_{\pm}^{i} = E_{0} \cdot e^{-\frac{L/2 \pm z_{i}}{L_{Atten}}} \qquad T_{\pm}^{i} = T_{0} + Gaus(z_{\pm}^{i}/\nu, \sigma_{T})$$

i mie + zz z.

Introduction on Algorithm

> A set of algorithms are developed to address the challenge.

Clustering

Global Clustering

- Cluster: a group of adjacent units whose energy is greater than noise threshold
- Vertical and horizontal units are clustered respectively

PFA needs an imaging calorimeter

Projection of vertical and horizontal units make it possible!

Local Max Finding

- Local Max Finding
 - In each layer / 1D-cluster : local maximum
 - Core of energy deposition → real cluster

Shower Recognition

- > Multiple algorithm for shower recognition:
 - Charged particle: track-matching.
 - EM shower: Hough transformation.
 - Fragment: cone-clustering.

Energy Splitting & Energy-Time Matching

> Larger R_M for crystal \rightarrow several shower overlap \rightarrow Energy splitting

Calculate the expected energy deposition from EM profile

• Expected energy :
$$E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i - x_c|)$$

• Assigned weight:
$$w_{i\mu} = \frac{E_{i\mu}^{exp}}{\sum_{\mu} E_{i\mu}^{exp}}$$

- - Define χ^2 with energy and time info to get the correct combination

x/mm

Single photon recognition

Recognition efficiency ~100% for γ with E > 1 GeV

 $\Box \frac{\sigma_E}{E} = \frac{4.03\%}{\sqrt{E}} + 0\%$

Separation efficiency ~95% with distance > 30mm

Distance / mm

350

300

- 2 PFOs

- Position

Position + Energy

250

Distance / mm

> Flavor physics in $B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$ channel

- Key for CKM α angle study.
- Can be complementary to B-factory in CEPC Tera-Z phase.
- Highly depending on the π^0 reconstruction.

\succ $H \rightarrow \gamma \gamma$ in CEPC:

- Low branching ratio but simple topology.
- Important channel for Higgs measurement and new physics search.
- Expected precision: $\Delta (\sigma_{ZH} \cdot BR(H \rightarrow \gamma \gamma)) = 7.9\% @ 5.6 ab^{-1}$
- Impact from ECAL resolution: $m_{\gamma\gamma}$ width
 - ~30% improvement from new ECAL.

Summary

Crystal bar ECAL is a novel and challenging ECAL design

- Better energy resolution; Less readout channel.
- Ambiguity is the main challenge

- Reconstruction algorithm development has reached an advanced stage
 - Preliminary performance has shown promising results.

Future optimization: ambiguity problem and BMR

Backup

> Design the reconstruction software as a proto-PFA:

- Follow the idea of PandoraSDK: flexible, reusable, modular. (Many thanks!)
- Develop within CEPCSW: based on the common HEP software stack Key4HEP.

Backup

