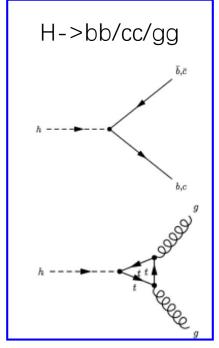
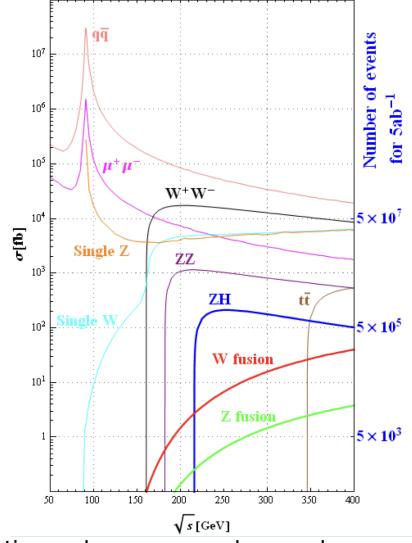
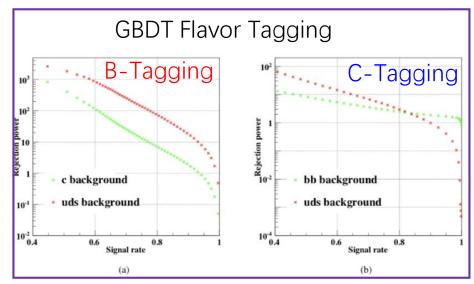

H→bb/cc/gg measurement in CEPC with modified PFN


Yu Bai $^{(1)}$, Gang Li $^{(2)}$, JianPeng Deng $^{(1)}$, JianYu Huang $^{(1)}$, WeiHan Tan $^{(1)}$, HeYu Meng $^{(1)}$, Ke Wang $^{(1)}$, NengXuan Xu $^{(1)}$ July 4, 2023

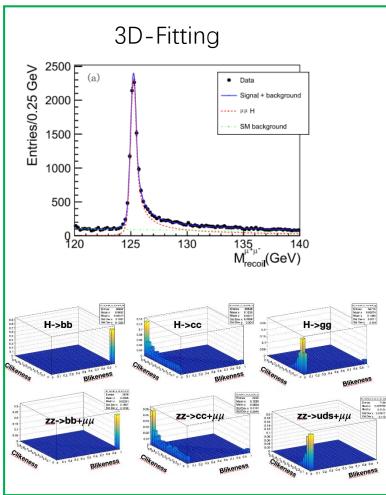

- (1) Southeast University
- (2) Institute of high energy physics

H->bb/cc/gg in CEPC


- Understanding Yukawa coupling between Higgs boson and quarks
- CEPC is an ideal place to precisely measure Higgs decay
- An important benchmark measurement of CEPC

Previous measurement

Chinese Physic C, 043002, 2019 Chinese Physic C, 013001, 2020


$$y_{ij} = \min\{E_i^2, E_j^2\}(1 - \cos\theta_{ij})/E_{vis}^2$$

Merge Jets according to 'distance'

- BDT Flavor tag
- Mrecoil × Flavor Tagging template fit

Key performance to be improved

- Jet algorithm
 - Separation between with different parton multiplicity
 - H->bb/cc/gg and H->ww/zz->4q/2q+2l
- Flavor tagging
 - B/L separation is good
 - Improve c-tag performance(especially contaminations from B)
 - Gluon/quark jet separation

Particle flow network (PFN)

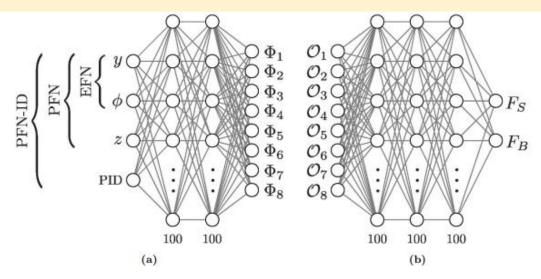
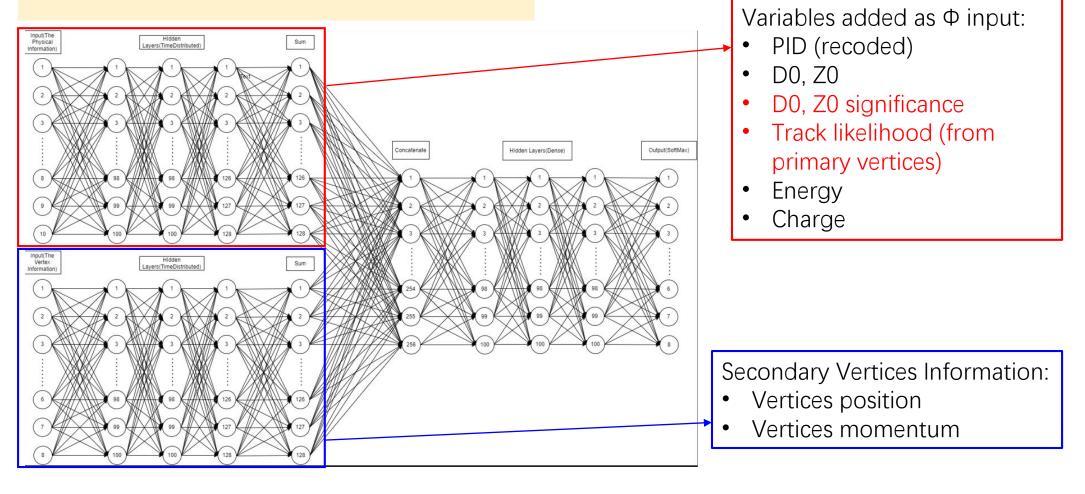


Figure 4. The particular dense networks used here to parametrize (a) the per-particle mapping Φ and (b) the function F, shown for the case of a latent space of dimension $\ell = 8$. For the EFN, the latent observable is $\mathcal{O}_a = \sum_i z_i \, \Phi_a(y_i, \phi_i)$. For the PFN family, the latent observable is $\mathcal{O}_a = \sum_i \, \Phi_a(y_i, \phi_i, z_i, \text{PID}_i)$, with different levels of particle-ID (PID) information. The output of F is a softmaxed signal (S) versus background (B) discriminant.


JHEP01, 2019, 121

z : Particle momentum Variables added as Φ input:

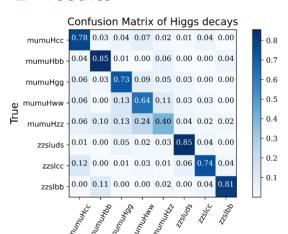
- PID (recoded)
- D0, Z0
- D0, Z0 significance
- Track likelihood (from primary vertices)
- Energy
- Charge

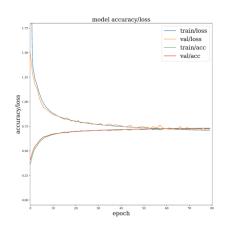
- Ф-Layer: DNN layer for each particle
- O-Layer: A summation over particles (dot production between z and Φ)

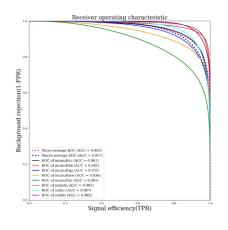
Modification of PFN

z : Particle momentum

Adding Φ-Layers for vertices to improve tagging performance

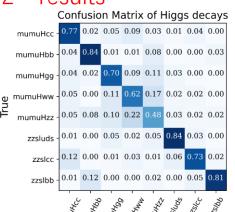

Datasets and Pre-selection

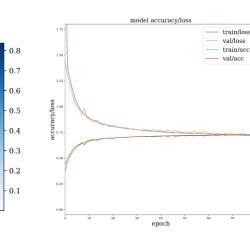

- Event selection are the same as in <u>previous work</u>
- High statistic samples are necessary for model training
 - 400k-700k events for μμH, H->bb/cc/gg/ww/zz each
 - High statistics ZZ-> $\mu\mu$ +qq background, generated with event filter

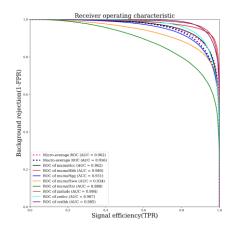

sample	ZZ->μμbb	ZZ->μμcc	ZZ->μμss	ZZ->μμυυ/dd
Cross section(fb)	45.45	43.73	45.48	89.20
Events in 5 ab ⁻¹	227.3k	218.7k	227.4ka	446.0k
Generated events	100M	100M	100M	100M
Filtered Events	4.807M	218.7k 100M 4.492 Kiter Eff 98% 4.378 M	4.812M	4.649M
Simulated and reconstructed	4.684M	4.378M	4.687M	454.2M
Passing cut	1.778M	1.633M	1.712M	1.644M
Selection Eff	1.825%	1.676%	1.758%	1.630%

Training Results

1st results







- 400k events per-sample (3.2M all)
- Training:Validation:Test = 8:1:1

2nd results

80 epochs, 72%-73% overall accuracy no over training is found

Results of H->bb/cc/gg with Modified PFN

Observed Process Event Yields $\begin{bmatrix} N_{s1}^o \\ N_{s2}^o \\ \dots \\ N_{b1}^o \\ N_{b2}^o \end{bmatrix} = \begin{pmatrix} \text{Selection Eff} & N_{s1}^p \\ M_{s2}^p \\ \dots \\ N_{b1}^p \\ M_{b2}^p \end{pmatrix} \times \begin{bmatrix} N_{s1}^p \\ N_{s2}^p \\ \dots \\ N_{b1}^p \\ N_{b2}^p \end{bmatrix}$

Denoting
$$M = M^{cnf}M^s$$

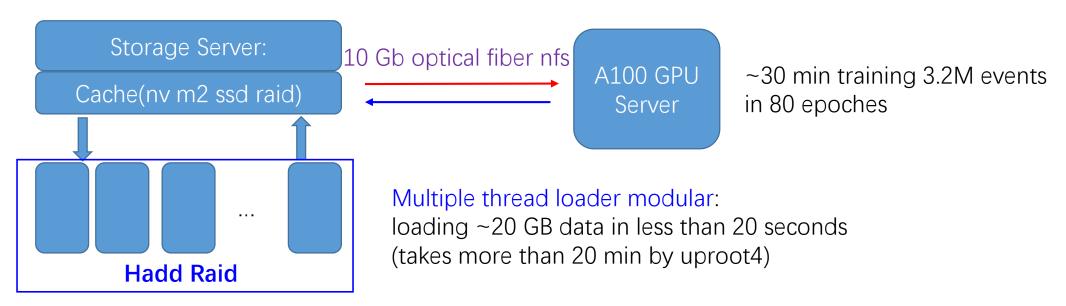
$$\begin{array}{rcl} N^p & = & M^{-1}N^o \\ \Sigma(N^p) & = & M^{-1}\Sigma(N^o)(\underline{M}^T)^{-1} \end{array}$$

Uncertainty of N^o

process	μμΗ- >μμbb	μμΗ- >μμcc	μμΗ- >μμgg	μμΗ- >μμww	μμΗ- >μμzz
1 st results	1.0%	9.1%	3.5%	3.1%	29.%
2 nd results	1.0%	8.9%	3.5%	3.2%	31.5%

1 TC VIOUS TCSUILS				
Higgs boson production		$\mu^+\mu^-H$		
Higgs boson decay	$H \to b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$	
statistic uncertainty	1.1%	10.5%	5.4%	
fixed background	-0.2%	+4.1%	7.6%	
	+0.1%	-4.2%		
event selection	+0.7%	+0.4%	+0.7%	
	-0.2%	-1.1%	-1.7%	
flavor tagging	-0.4%	+3.7%	+0.2%	
	+0.2%	-5.0%	-0.7%	
combined systematic uncertainty	+0.7%	+5.5%	+7.6%	
	-0.5%	-6.6%	-7.8%	

Previous results

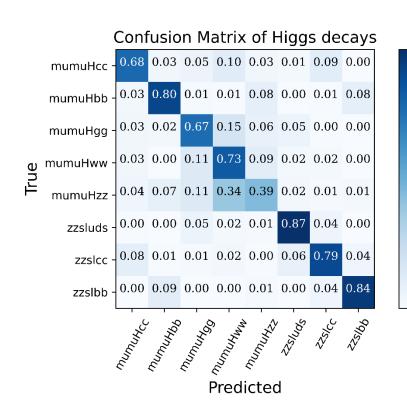

• Improvement performance in H->bb/cc/gg, especially for H->gg and H->cc

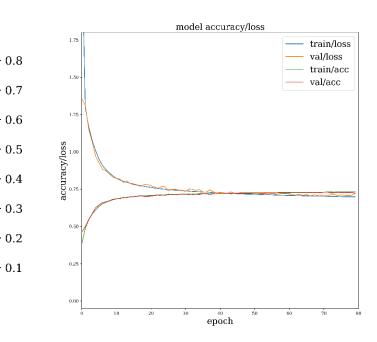
Some technical notes

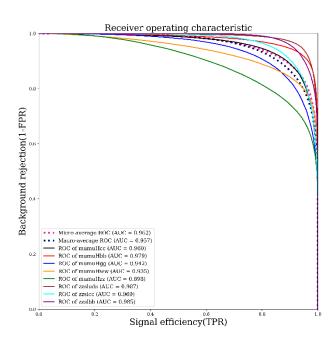
工欲善其事,必先利其器—孔子

To Do something well, sharpen your tools first -Confucius

- Model training requires computing power
- Solution: Storage server + fiber connection + GPU server + LoadingModular




Summary and Prospect


- PFN is demonstrated to be a powerful tool to identify multiple jets FS
 - Kinematics information: particle momentum/angular distribution, multiplicity etc.
 - Flavor information: D0/Z0 and their significance
- The PFN Φ-Layer can integrate other type of object to improve performance
 - E.g. vertices information for jet flavor identification
- Huge size of training sample are necessary
 - Event filter is a solution to the problem of huge computing resources required
- Fast loading tool is very helpful to cooperate with hardware
- Architecture improvement:
 - A vector of weight implemented in Φ-Layer summation? (1D weight->mult-Dim W)

Backups

Training results with full hadronic Hww/zz

Comparison between different configuration

	$\sigma^{c\bar{c}}_{\mu^+\mu^- H}$	$\sigma^{bb}_{\mu^+\mu^- H}$	$\sigma^{gg}_{\mu^+\mu^- H}$
Cut-based + Template fit	10.5%	1.1%	5.4%
PFN	9.8%	1.0%	4.1%
PFN-VTX	9.1%	0.9%	3.6%

Vertex information improve H->gg/cc precision significantly

Table 2. The statistical uncertainty of the signal cross section

Variables	Accuracy	AUC	$\sigma^{c\bar{c}}_{\mu^+\mu^- H}$	$\sigma^{b\bar{b}}_{\mu^+\mu^- H}$	$\sigma^{gg}_{\mu^{+}\mu^{-}H}$
Mom+THETA+PHI	0.45	0.87	36.66	1.99	9.32
$M\!+\!\operatorname{PDGID}\!+\!\operatorname{Energy}\!+\!\operatorname{IsPhoton}\!+\!\operatorname{Charge}$	0.53	0.90	24.76	1.47	6.56
M+F+D0+Z0+Prob	0.74	0.96	9.52	0.95	3.76
$M+F+\theta+Vertex$	0.75	0.96	9.11	0.94	3.61

D0/Z0 is essential to Flavor tagging

Table 3. The performance with changed variables