

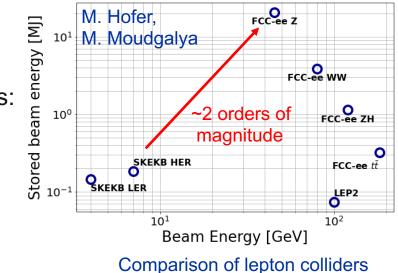
Development of Collimation Simulations for the FCC-ee

A. Abramov, G. Broggi, R. Bruce, M. Hofer, G. ladarola, L. Nevay, S. Redaelli

CEPC European Workshop 2023, Edinburgh, United Kingdom – 04/07/2023

Many thanks to:

M. Boscolo, H. Burkhardt, F. Carlier, A. Ciarma, Y. Dutheil, P. Hunchak, A. Lechner, G. Lerner, M. Moudgalya, K. Oide, A. Perillo Marcone, T. Pieloni, R. Ramjiawan, T. Raubenheimer, F. Van Der Veken, S. White, F. Zimmermann


Collimation for the FCC-ee

The FCC-ee is the FCC first stage e+e- collider

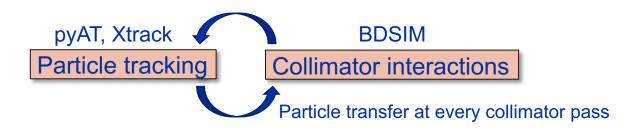
- 90.7 km circumference, tunnel compatible with the FCC-hh

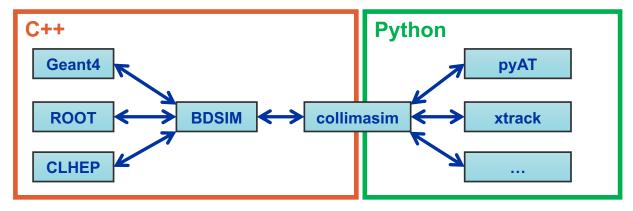
The FCC-ee presents unique challenges

- The stored beam energy reaches **17.8 MJ** for the **45.6 GeV (***Z***)** mode, which is comparable to heavy-ion operation at the LHC
- Such beams are highly destructive: a collimation system is required
- The main roles of the collimation system are:
 - Protect the equipment from unavoidable losses
 - Reduce the backgrounds in the experiments
- Two types of collimation foreseen for the FCC-ee:
 - The beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation near the IPs

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (<u>talk</u>)

Beam collimation simulation tools

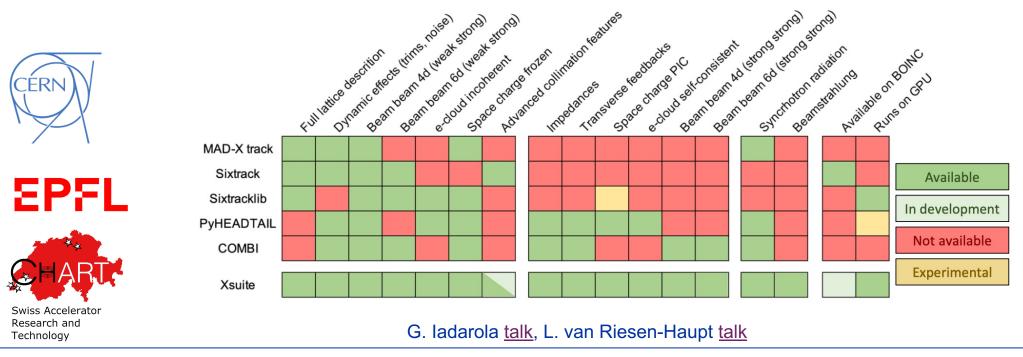

- Tracking studies are essential for designing the collimation system
- Effects such as synchrotron radiation and optics tapering make the tracking studies more challenging for the FCC-ee
 *Ontics tapering: modulating the magnetic
- The requirements for collimation simulation tools are:
 - Tracking of beam electrons (and positrons) in the magnetic lattice
 - Particle-matter interactions inside the collimators
 - Synchrotron radiation and optics tapering
 - Aperture modelling and loss recording
 - Accurate and efficient tracking over many turns
 - Beam-beam effects (beam-beam kick, Beamstrahlung, radiative Bhabha scattering)
- Studied several different simulation tools:
 - MAD-X, SixTrack-FLUKA coupling, BDSIM, Merlin++, pyAT, Xsuite
 - No established frameworks fit all the requirements
 - Implement a coupling between a particle tracking engine and a particle-matter interaction engine



*Optics tapering: modulating the magnetic strengths around the ring to account for SR energy loss

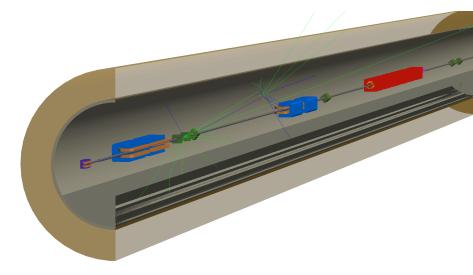
FCC-ee collimation simulation setup

- The first collimation simulation tools developed for the FCC-ee
 - Xsuite-BDSIM coupling, pyAT-BDSIM coupling (ICFA newsetter paper submitted)
 - Xsuite-BDSIM currently used in production, further developments ongoing
- Xsuite-BDSIM (Geant4)
 - Benchmarked against other codes for FCC-ee MAD-X, pyAT, SixTrack-FLUKA coupling (IPAC'22 paper)
 - Used for for the latest FCC-ee collimation studies
 - Tests / benchmarks in other machines:
 - LHC G. Broggi
 - PS T. Pugnat



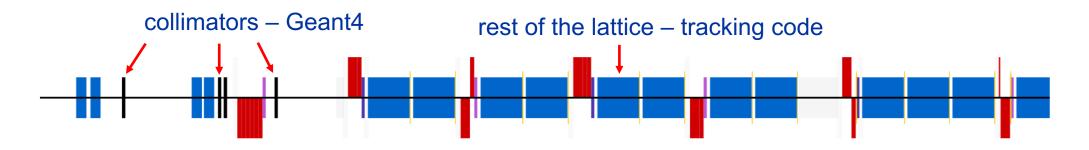
Xsuite

- New tracking tool, part of the Xsuite toolkit https://xsuite.readthedocs.io/en/latest/
 - Core development at CERN, extensive collaboration with EPFL
 - Designed to consolidate a range of studies for different machines in one modern toolkit
 - Python on the top level, auto-generated C and extensions for performance-critical tasks
 - Multi-platform, compatible with CPU and GPU
 - A range of features relevant for the FCC-ee developed under an EPFL-CERN collaborative project


BDSIM

- Beam Delivery Simulation (BDSIM) http://www.pp.rhul.ac.uk/bdsim/manual/
 - Software package for simulating energy deposition and charged particle backgrounds in accelerator beamlines, developed at RHUL
 - C++ program, based on the Geant4 library (geometry, materials, physics lists)
 - Currently used for SR collimation simulations for the FCC-ee, also used previously for collimation studies in the LHC with proton and heavy-ion beams
 - Originally designed to simulate entire beamlines, but has flexible and modular features
 - Selected as a starting point for a collimator scattering routine for FCC-ee tracking studies

Exaggerated example of automatic bend geometry


CLIC PCL intermediate dump (R. Bodenstein, <u>IPAC'19 paper</u>)

Part of IR7 in the BDSIM LHC model

Coupling to BDSIM for collimation – general principle

 Only collimators in the Geant4 world, with particle transfer mechanisms (like the SixTrack-FLUKA coupling)

- Same general workflow, regardless of the tracking code connected:
 - 1. Define all collimators
 - 2. Select a collimator and add particles
 - 3. Run the physical interaction simulation
 - 4. Return eligible particles
 - Interfaces developed for communication between the codes

every collimator pass

Steps 2 – 4

repeated for

example lattice section

collimators

isolated cells

particle interacting

plane for


back-transfer

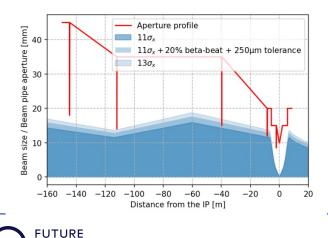
(green disk)

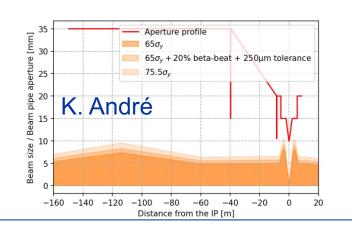
Workflow for FCC-ee collimation tracking studies

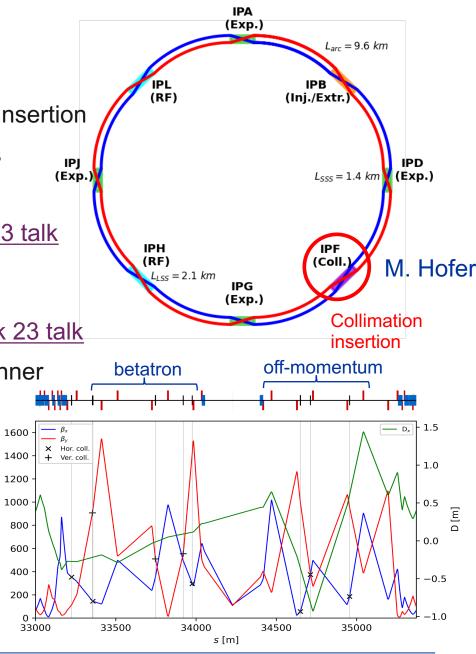
Lattice model

- Design, matching, tapering, etc. done in MAD-X
- Model exported to the tracking engine (Xtrack, pyAT)
- Aperture model
 - Base model comes from MAD-X
 - The aperture model is interpolated to a desired precision, to ensure a good resolution of the loss location
- Collimation configuration
 - Materials and settings for the collimators supplied (the geometry preparation is automatic)
 - Physics lists, interaction cuts and other settings given to BDSIM
- Beam generation
 - Generated online for simple cases or loaded from file
- Analysis
 - Loss maps: normalised distribution of losses around the ring
 - Detailed per-particle analysis loss coordinates, survival

Example of aperture loss interpolation in Xtrack

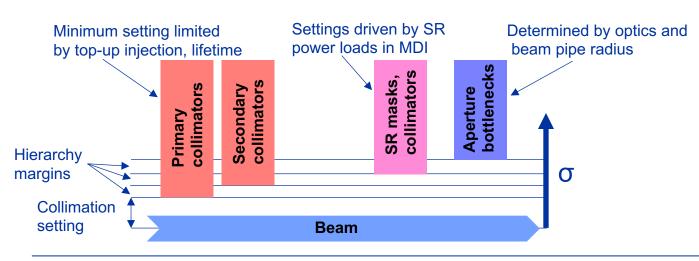

$$\eta(s) = \frac{E_{\rm loc}}{E_{\rm tot}\Delta s} [{\rm m}^{-1}]$$


 $\begin{array}{ll} \eta(s) & \text{Cleaning inefficiency} \\ E_{\mathrm{loc}} & \text{Energy lost in} & [s,s+\Delta s] \\ E_{\mathrm{tot}} & \text{Total energy lost} \end{array}$



FCC-ee collimation system

- Dedicated halo collimation system in PF
 - Two-stage betatron and off-momentum collimation systems in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Dedicated collimation optics (M. Hofer)
 - Collimator design for cleaning performance G. Broggi, FCC week 23 talk
- Synchrotron radiation collimators around the IPs
 - 6 collimators and 2 masks upstream of the IPs K. André, FCC week 23 talk
 - Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses



β [m]

FCC-ee aperture

- The aperture bottlenecks are in the experimental interaction regions (IRs)
- The bottlenecks must be protected
 - The final focus quadrupoles are superconducting and there is a risk of quenches
 - The detector is sensitive to backgrounds from beam losses
 - The SR collimators and masks are not robust to large direct beam impacts, can also produce backgrounds
 - The collimation margins are tight

Aperture bottlenecks for the different operating modes

0.00

0

20000

40000

s [m]

60000

Ó

20000

40000 60000

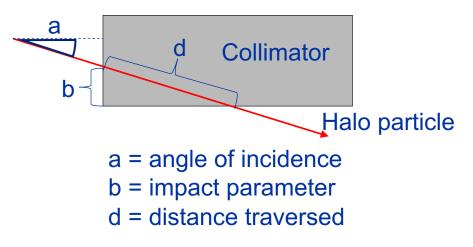
s [m]

80000

80000

FCC-ee beam losses

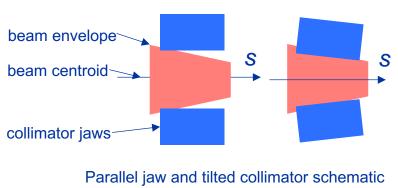
- The FCC-ee will operate in a unique regime
 - Electron / positron beam dynamics and beam-matter interactions
 - Stored beam energy exceeding material damage limits
 - Superconducting final focus quadrupoles, crab sextupoles, and RF cavities
 - Must study the beam loss processes and define the ones to protect against (H. Burkhardt, talk)
 - Must study the equipment loss tolerances, for both regular and accidental losses
- Important loss scenarios for particle tracking studies:
 - Beam halo Current studies
 - Top-up injection
 - Spent beam due to collision processes (Beamstrahlung, Bhabha scattering)
 - Beam tails from Touschek scattering and beam-gas interactions
 - Failure modes (injection failures, asynchronous dump, others)
 - The SuperKEKB fast beam losses should, if possible, be understood and modelled

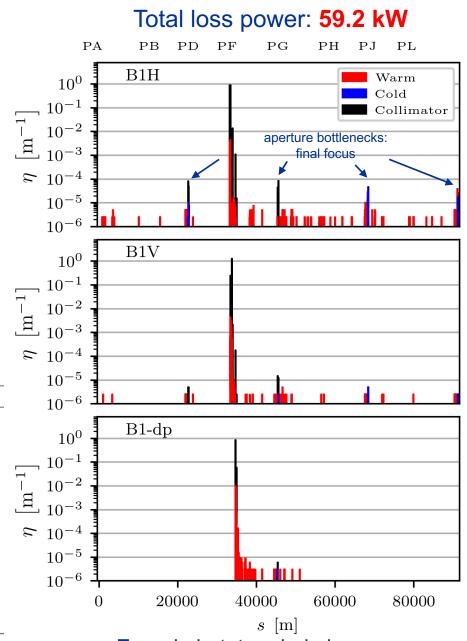

Input required

to set up models

Current study: beam halo losses

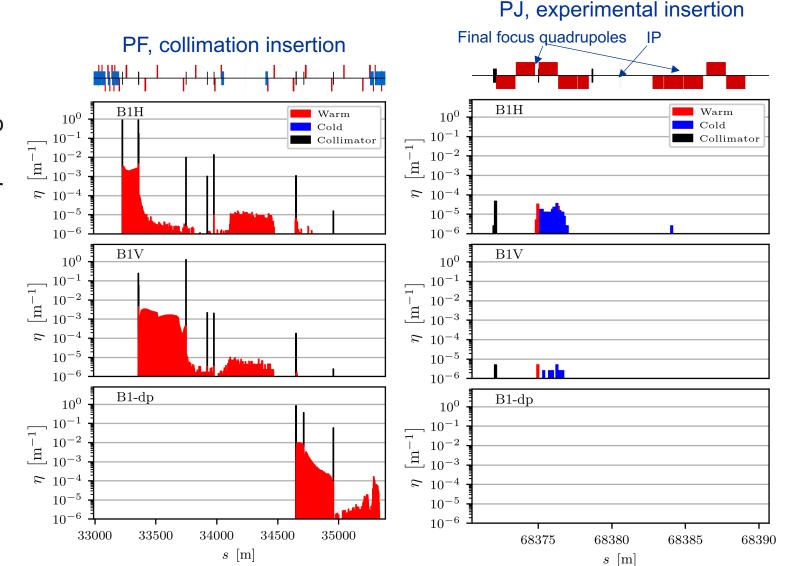
"Generic beam halo" beam loss scenario:


- Specify a minimum beam lifetime that must be sustained during normal operation
 - Preliminary specification of a **5 minute** lifetime
- Assume a slow loss process halo particles always intercepted by the primary collimators
- The loss process is not simulated, all particles start impacting a collimator
 - Track the particles scattered out from the collimator and record losses on the aperture
- Currently using 1 µm impact parameter as standard
 - Selected to give a conservative performance estimate
 - Impact parameter scans ongoing G. Broggi, FCC week 23 talk



Beam halo losses for the Z mode

- The Z mode is the current focus (Beam 1, 45.6 GeV, e⁺),
 17.8 MJ stored beam energy
- The 5 minute beam lifetime \rightarrow total loss power 59.2 kW
- Radiation and tapering included
- 3 cases consiered:
 - Horizontal betatron losses (B1H)
 - Vertical betatron losses (B1V)
 - Off-momentum losses $\delta < 0$ (B1-dp)
- For the off-momentum case, using a tilted collimator, aligned to the beam divergence
 Type Plane Material Length [m] Gap [σ]


						_ 10 _					
	Туре	Plane	Material	Length [m]	Gap $[\sigma]$	10^{-6}	11 I I			1 1	
	β prim.	Н	MoGr	0.4	11.0	- 10					
	β sec.	Н	Mo	0.3	13.0	10^{0}	B1-dp				
	β prim.	v	MoGr	0.4	65.0	-10^{-1}					
	β sec.	V	Mo	0.3	75.5						
S	δ prim.	Н	MoGr	0.4	29.0	10^{-2}					
	δ sec.	Н	Mo	0.3	32.0	≞ ₁₀ −3					
	SR BWL	Н	W	0.1	18.6	$r 10^{-4}$					
	SR QC3	Н	W	0.1	16.7	10^{-5}					
	SR QT1	Н	W	0.1	14.6				1		
	SR QT1	V	W	0.1	196.4	10^{-6}	I I		• I	1	
:	SR QC2	Н	W	0.1	14.2	(20000	40000	60000	80000	
	SR QC2	V	W	0.1	154.2			s [m]]		
	Collimator parameter and settings for the Z mode					-	Z-mode betatron halo loss maps				
										-	

FUTURE CIRCULAR COLLIDER

Beam halo losses for the Z mode

- The beam collimation system shows significant loss suppression
 - More than 99.96% of losses contained within the collimation insertion PF, only up to 1.7 W reaching any IR
 - Tilted primary collimators are essential for the performance at the Z mode
 - Energy deposition studies and thermomechanical studies are required for the collimators and most exposed magnets
- Collaborative studies ongoing
 - Impedance and collective effects M. Migliorati
 - IR losses and collimator parameter optimization G. Broggi
 - Tracking of the collimation losses in the detector A. Ciarma
 - First collimator energy deposition and thermomechanical studies G. Lerner, R. Andrade

Z-mode betatron halo loss maps for selected regions

Planned simulation tool developments

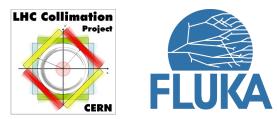
- Collimation simulations
 - Ongoing work in the CERN collimation team to further develop Xsuite for collimation studies
 - Xcoll dedicated package for collimation study management, integrated scattering routines for protons

A. Abramov | CEPC European Workshop 2023

• Integration with FLUKA as a collimation scattering routine, collaboration with the CERN FLUKA team

FCC-ee developments

- Include beam-beam effects in the simulations
 - Beam-beam kick, Beamstrahlung, radiative Bhabha scattering


04/07/2023

- Important effect of the beam dynamics, required for specific studies like spent beam
- Significant work on beam-beam effects as part of the EPFL–CERN software collaboration
- Include collimator imperfections, magnetic errors and alignment tolerances

14

Research and Technology

Summary

• Developed collimation simulation tools for the FCC-ee

- Based on a coupling between a particle tracking engine and a particle-matter interaction engine
- The **Xsuite-BDSIM** coupling framework is the current tool used for production collimation studies
 - Flexible modelling enables a variety of beam loss studies
- Applied the tools to betatron and off-momentum beam halo collimation in the FCC-ee lattice

Next steps

- Continue the development of the simulation tools
- Study other beam loss scenarios:
 - Spent beam
 - Top-up injection
 - Failure modes
- Obtain equipment loss tolerances, which are required to assess the collimation system performance

Thank you!

