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Motivations:

o Theoretical: Does the BC|] double copy (or something like it) relate classical solutions in YM
and GR? This was first raised by:

Monteiro, O’Connell, White (2014)
Luna, Monteiro, O’Connell, White (2015)
Luna, Monteiro, Nicholson, O’Connell,White (2016)

who provided non-perturbative examples.

o Phenomenological: If so, applications to gravitational radiation from binary black holes
(LIGO physics)? (speculative).



Binary Black Hole Inspirals

Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
are experimentally relevant (LIGO/VIRGO, LISA,...)
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Experiments will be sensitive to at least 2}6 corrections beyond Newtonian gravity (Thorne et al
1994). Numerical GR results also motivate computing higher order corrections.

(GW150914, GW 151226, GW 170104 BH mergers entirely in the strong field regime...)



For this system, the radiation field measured by observers at infinity
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encodes all the relevant physical info about this system (masses,spins, multipole moments,QNM
frequencies,...). In perturbation theory, it is most conveniently computed by recasting Einstein’s

equations in the form (eg VWeinberg 1972)
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The radiation field at infinity has a simple relation to the pseudo-tensor evaluated on-shell

(Weinberg 1972)
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In practice computing higher order terms in perturbation theory (U << 1) is difficult for two
reasons:

Many terms in the expansion of T'LW (x) at high orders in h'u,/

Many physically relevant scales

Gravitational radius: 7" = QGNM
Physical radius: TS(: g for BH)
Tg~Tg >T 3> A
Orbital scale: T
v Radiation wavelength A

all correlated to the perturbative expansion parameter

ro~ Ty v A~r/v~r, /v



We (WG, Rothstein, 2005) found that these challenges can be ameliorated by employing some
20th century tools from QFT:

Many terms in the expansion of T'LW (m) at high orders in h’u,/

===l  Organize the expansion in terms of Feynman diagrams

Many physically relevant scales

—~ Treat each scale separately, by constructing
a tower of gravity Effective Field Theories

__ 1.potential rad
R = hW + huv

The focus of this talk is the Feynman diagram expansion.



The types of Feynman diagrams that are relevant are of the same type as in Duff’s (I973)

perturbative construction of the Schwarzschild solution:
(NOTA

PROPAGATO R!)
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These are tree diagrams coupled to classical (particle sources). Despite being tree, they have the
same structure as loop Feynman integrals in QFT. E.g,
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The same sort of diagrams can be used to construct two-body solutions, by attaching another
particle source. In the NR limit, these can be used to read off a point-particle Lagrangian:

Leading order:
Newton
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Next-to-leading (IPN): Einstein-Infeld
Hoffman Lagrangian (1938)
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2PN (1981-2002):  Diagram topologies (Gilmore+Ross, PRD 2008)
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Current state of the art is 4PN order (Foffa, Mastrolia,Sturani,Sturm;2016) (Damour et al; Blanchet
et al 2015)

Reduces to 5 master integrals via IBP identities:
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Radiation sector: Feynman diagrams with one external graviton (WG+Ross,2010)
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In the radiation sector, also get Feynman integrals corresponding to QFT 2-point functions (one
external momentum). E.g., at two-loops, get integrals of the form
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(Reduction to master integrals + Mellin-Barnes)
These contain interesting IR and UV log divergences, encoded as ]./6 poles in dim. reg.

© IR : Interaction of outgoing graviton with Newton potential

o UV : Short distance singularities in multipole expansion. =====je= RG evolution



At yet higher orders, encounter five-pt graviton vertex and beyond (see eg 1612.00482) . Do
modern amplitude methods help!?

. Can one use the color kinematics (BCJ?) to streamline
gravity wave calculations?



Classical radiation from a double COPY (WG+A Ridgway, 1611.03493)

Does the BCJ double copy relate other observables, not just the S-matrix? Can it be used to
obtain classical perturbative solutions in gravity from (computationally simpler) solutions in YM?

Will now provide evidence at lowest non-trivial order in perturbation theory, by explicit
calculation on both sides of the color-kinematics correspondence.



Gauge Theory Solutions

Solve the classical Yang-Mills equations coupled to classical point color charges.

D, F;"(x) = gJ& ()

By classical color charge we mean an object whose degrees of freedom are

xH (T) =wordline coordinate c (7') =color d.o.f in adjoint at LE(T)

(Sikivie and Weiss, 1978)
Current for a collection of charges

(finite size terms
and other color
moments)

JH () = Z / drc? (7)o" (1)6%x — 2o(T)) + - -



The particle equations of motion follow from conservation laws. Color conservation:

D,J'=0=v-Dc" =0

or in terms of adjoint rep.Wilson line Cg (7‘) — o~ b(T)Cb (—OO)

Wo (1) = | Pexp { —ig/ dxt A, - T, p.
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The orbital motion is fixed by energy-momentum and gives the non-Abelian Lorentz force law:

dp* d2 H
0, T"" =0 = CZ = de = gc" F! v”




We find it convenient to solve the coupled equations in Lorentz gauge, in the form

~S ~

Aq = gJ4 Y= T A (O AL — FIY)
0, J" =0

The classical solution is an off shell one-point function in the presence of (self-consistent) sources:
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Our focus in this talk is on the radiation field measured by observers at 7 — o0 and fixed
retarded time ¢ (i.e.“asymptotic null future infinity”’). This is related to the on-shell momentum
space current

~

JH (k) = /ddxeik'xjg(x)

Qa

w/ k* = 0. E.g,in four dimensions, the asymptotic gauge field is

lim (A%)(z) = du

r— 00 A7r 2T

e—iwtjc,lj(k)
P — (w,E) = w(1,Z/r)

This determines all observables measured by detectorsat r — oo



For concreteness, we consider a bunch of color charges coming in from 7 — 00 as ¢ — —00
These particles then scatter and emit classical radiation outto r — 00 , t =

MJJJWA wb ~ O(1)

Lmbe

Formally, the perturbative solution for the radiation field can be constructed as an expansion in
powers of the gauge coupling ( .



Less formally, for generic E/m and wb,in the classical limit,

L~ FEb>h

perturbation theory is controlled by two independent expansion parameters. Non-linear
corrections due to YM interactions are small as long as

( géebt i <« 1 )

E.g., corrections to the two-body potential:
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2nd diagram is a quantum effect (one-loop beta fn.) which is suppressed as long as the color
charges are sufficiently large ¢ S>> ]. Aswe'll see, double copy works in the regime

(cawEb>>1 j




The other small expansion is in the corrections to the particle orbital and color deflections. The
classical equations of motion

dplu a 14 dca aocC C
P g Flv o= fab v“AZ(a:(T))c (7)

are perturbative in the kinematic regime

[gQCQ/Ebd_3 < 1]

where deflections away from straight line motion are small.

But note, for ¢% ~ Eb

G2 JEbi3 ~ g2cht—

the two expansion coincide, and perturbation theory is equivalent to an expansion in powers of
the YM gauge coupling.



Perturbative solution: Leading order

L=2s¢

Superposition of static Coulomb fields
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Perturbative corrections and radiation:

The time dependent particle deflections source radiation.
beyond LO:
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The off-shell current at order €
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As a check, the current obeys the Ward identity kﬂjﬂa(k—) — (), but only after self-consistent
particle egns. of motion are plugged in to the diagrams.
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Gravitating Sources and Radiation:

We now consider the analogous classical problem in the graviton/dilaton system defined by:

S =S, + Sy,

S, = —om-? / d2\/G R — (d — 2)g"" 0,60, 8

with point particle sources that couple to the dilaton

Spp:—m/d76¢+--- ,
\_“€¢:1—|—¢—|—%§b2—|—"°”

Inclusion of dilaton motivated by BCJ: Pure YM — hyuw, &, By
Choice of worldline interactions motivated by Bern+Grant, PLB (1999). Necessary in order to
cancel explicit dependence on the dimensionality in the gravity Feynman rules:
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The strategy for finding perturbative solutions is the same as in gauge theory. Write the full
non-linear Einstein eqgns. as

(hy) (2) = — / T )~ (R)
p )\ L) = 1 1 o
H 2m61i372 L k2 p d—QW

(deDonder gauge)

The source on the LHS is a conserved energy-momentum pseudo-tensor that depends on all the
field and particle d.o.fs

THY :T(/;V—FT“V—I—T#V ~ hO*h + h*0*h + - - -
pp T

(see Weinberg,
1972)

0,T" =0

On-shell, it directly measures the radiation field seen by detectorsat 77 — OCQ. Eg
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in four dimensions.



Now we look at a similar setup of interacting particles as in the YM case:
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The perturbative expansion parameter in the gravitational case is:
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which controls both non-linear and orbital corrections



Trivial leading order solution

l_—::l—ly

Superposition of boosted Newtonian potentials
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gets fed back into equations of motion to determine orbital deflections:
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Perturbative corrections and radiation in the graviton channel:
The time dependent particle deflections source radiation. The off-shell EM tensor at order €

beyond LO:

Pure gravity contributions:
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d=4: Thorne+Kovacs (1970s); D’Eath (1970’s-1980’s)



Scalar exchange terms
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Combining terms and taking k2
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1
Radiation in the scalar channel: / e’ =1+¢+ §</52 + -
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Double copy relations between solutions

Following BCJ, make the following double copy substitutions on the gauge theory side, at the level

of the integrand
a 0
r ~
\/\T/ O( : Y
1
g ferazes — T2 (qq, g2, q3) = 5 ("3 (1 —q3)"* + 1" (g2 — 1) + 17?2 (g3 — q2)"']
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applying these substitutions to the YM radiation field yields an on-shell amplitude

i (k) |95 (k)| — € (k)e (k) Ay (k)

RHS is defined up to terms that that vanish on-shell. Using this freedom we obtain
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which has been defined such that
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By decomposing the (unitary gauge) polarization into little group irreps

N e(k) - €(k)
e;(k)e;(k) = €ij(k) + aq; (k) T N (k),
€ (k’) — Ejz'(ki) — TT graviton mode
g 5 (k) — _aji(k) — Transverse antisymmetric mode
kik
hij (k) — 52’]’ _}2] — Scalar mode
we are able to reproduce the results in gravity frolrcn the double copy YM radiation field A,uu ;
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Bi-adjoint double copy and classical solutions

(WG, Prabhu, Thompson arXiv:1705.09263)

Same methods as above can be used to construct radiating solutions in scalar bi-adjoint theory.
This is a theory with global internal symmetries

~S

G xG

field content

¢a,a —  bi-adjoint scalar
restricted to purely cubic interactions

Eint — _yfabcfa55¢aa¢bb¢cc

Color-kinematics relates all tree-level amplitudes in this theory to gluon scattering in pure Yang-
Mills (Cachazo, He, Yuan (2013))



We find that the color-kinematics also relates classical solutions of this theory coupled to bi-color

charges
= 4 &°

Spp = /cha6a¢aa + - 72_2 %é
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to the corresponding classical gauge theory solutions discussed earlier
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Applying color-kinematics to (] :

( 62{ %pg J ( [6a76[3]aHFMVP(_kagavgﬁ)pvappﬂ J

and Y —> ( ,we reproduce the classical radiation gauge field

T e RTER)

A further color-kinematics transformation then yields the gravity solutions

[ ja&(k) — eZ(k)jc‘L‘(k) — Eﬂ(k)gu(k’)f“”(k)j

directly from the much simpler Feynman rules in a scalar field theory.



Conclusions:

Feynman integral + EFT methods are a powerful tool in gravitational wave calculations. Can they
be simplified using the double copy?

Color-kinematics relations between classical scalar,YM and gravity radiation solutions:
aaq a v
A — A — AP

Under color-kinematics:

Bi-adjoint charge === YM color charge === Spp = —M / dre? + - - ;

(at least to quadratic
order in the scalar)



Open questions:

Classical B/, radiation? Spin couplings

(Ridgway+Prabhu+WgG,
uyY _a a uv o
/dTS C F,uy # /dTS v HW/U in pr gress)

Higher orders in PT? Relation to BC)?

See D. O’Connell’s talk at KITP (6/2017)

Assuming it persists at higher orders in PT, is the classical double copy
useful for gravity wave calculations?

Dilaton decoupling at large boost: “burst pipeline” BH+BH mergers at LIGO
in pure gravity (also see Johansson, Ochirov (2015); Bern,Davies,Nohle, (2015);
Luna, Monteiro, Nicholson, Ochirov, O’Connell,Westerberg,White (201 6))

Possible simplification of Feynman rules (no need for vertices beyond 3
pt)

But only at the level of the integrand. Doing the integrals is still hard,
even in the relevant kinematic limits...



