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Motivations:

  Theoretical:   Does the BCJ double copy (or something like it) relate classical solutions in YM 
and GR?   This was first raised by:

Monteiro, O’Connell, White (2014)

Luna, Monteiro, O’Connell, White (2015)

Luna, Monteiro, Nicholson, O’Connell, White (2016)

Phenomenological:   If so, applications to gravitational radiation from binary black holes 
(LIGO physics)?  (speculative).

who provided non-perturbative examples.



Binary Black Hole Inspirals
Gravitational dynamics of radiating classical BH (or NS) binary systems in the non-relativistic limit
 are experimentally relevant (LIGO/VIRGO, LISA,…)

Experiments will be sensitive to at least         corrections beyond Newtonian gravity (Thorne et al 
1994).   Numerical GR results also motivate computing higher order corrections.
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(GW150914, GW151226, GW170104 BH mergers entirely in the strong field regime…)



For this system, the radiation field measured by observers at infinity

encodes all the relevant physical info about this system (masses,spins, multipole moments,QNM 
frequencies,…).   In perturbation theory, it is most conveniently computed by recasting Einstein’s 
equations in the form (eg Weinberg 1972)
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The radiation field at infinity has a simple relation to the pseudo-tensor evaluated on-shell
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In practice computing higher order terms in perturbation theory                      is difficult for two 
reasons: 

(v ⌧ 1)

Many terms in the expansion of                      at high orders in 
T̃

µ⌫(x) hµ⌫

Many physically relevant scales

rg = 2GNM
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Gravitational radius:   
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Orbital scale:

Radiation wavelength
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all correlated to the perturbative expansion parameter



We (WG+I. Rothstein, 2005) found that these challenges can be ameliorated by employing some 
20th century tools from QFT:

Many terms in the expansion of                      at high orders in 
T̃

µ⌫(x) hµ⌫

Organize the expansion in terms of Feynman diagrams

Many physically relevant scales

Treat each scale separately, by constructing 
a tower of gravity Effective Field Theories

h
µ⌫

= hpotential

µ⌫

+ hrad

µ⌫

The focus of this talk is the Feynman diagram expansion.



The types of Feynman diagrams that are relevant are of the same type as in Duff’s (1973) 
perturbative construction of the Schwarzschild solution:

hµ⌫ = + ++ + · · ·

(NOT A
PROPAGATOR!)



The same sort of diagrams can be used to construct two-body solutions, by attaching another 
particle source.   In the NR limit, these can be used to read off a point-particle Lagrangian:

These are tree diagrams coupled to classical (particle sources).  Despite being tree, they have the 
same structure as loop Feynman integrals in QFT.   E.g.,
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Next-to-leading (1PN):   Einstein-Infeld 
Hoffman Lagrangian (1938)
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2PN  (1981-2002):     Diagram topologies (Gilmore+Ross, PRD 2008)

(simplification of PT via field redefs:  
B. Kol+M. Smolkin, 2007-2008. )

reducible to one-loop integrals via 
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1
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Current state of the art is 4PN order (Foffa, Mastrolia,Sturani,Sturm;2016) (Damour et al; Blanchet 
et al 2015)

2-body graviton exchange diagrams Equivalent 2-pt fns.

Reduces to 5 master integrals via IBP identities:

Static 2-body Lagrangian:



Radiation sector:  Feynman diagrams with one external graviton
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In the radiation sector, also get Feynman integrals corresponding to QFT 2-point functions (one 
external momentum).  E.g., at two-loops, get integrals of the form

These contain interesting IR and UV log divergences, encoded as            poles in dim. reg.1/✏
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  IR   :    Interaction of outgoing graviton with Newton potential

  UV  :    Short distance singularities in multipole expansion.                    RG evolution 

(Reduction to master integrals + Mellin-Barnes)



At yet higher orders, encounter five-pt graviton vertex and beyond (see eg 1612.00482) .   Do 
modern amplitude methods help?

Q:           Can one use the color kinematics (BCJ?) to streamline 
gravity wave calculations?



Classical radiation from a double copy

Does the BCJ double copy relate other observables, not just the S-matrix?   Can it be used to 
obtain classical perturbative solutions in gravity from (computationally simpler) solutions in YM?

Will now provide evidence at lowest non-trivial order in perturbation theory, by explicit 
calculation on both sides of the color-kinematics correspondence.

(WG+A. Ridgway, 1611.03493)



Gauge Theory Solutions

Solve the classical Yang-Mills equations coupled to classical point color charges.   
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The particle equations of motion follow from conservation laws.  Color conservation:
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The orbital motion is fixed by energy-momentum and gives the non-Abelian Lorentz force law:



We find it convenient to solve the coupled equations in Lorentz gauge, in the form 
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The classical solution is an off shell one-point function in the presence of (self-consistent) sources:
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Our focus in this talk is on the radiation field measured by observers at                   and fixed 
retarded time     (i.e. “asymptotic null future infinity”).   This is related to the on-shell momentum 
space current
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This determines all observables measured by detectors at r ! 1



For concreteness, we consider a bunch of color charges coming in from                as              r ! 1 t ! �1
These particles then scatter and emit classical radiation out to               ,r ! 1 t ! 1

↵,� = 1, · · ·N

!b ⇠ O(1)

E/m ⇠ O(1)

Formally, the perturbative solution for the radiation field can be constructed as an expansion in 
powers of the gauge coupling       .g



Less formally, for generic             and        , in the classical limit,E/m !b
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perturbation theory is controlled by two independent expansion parameters.     Non-linear 
corrections due to YM interactions are small as long as
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E.g.,  corrections to the two-body potential:

2nd diagram is a quantum effect (one-loop beta fn.) which is suppressed as long as the color 
charges are sufficiently large                      .    As we’ll see, double copy works in the regime
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The other small expansion is in the corrections to the particle orbital and color deflections.    The 
classical equations of motion

are perturbative in the kinematic regime 
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But note, for                   ca ⇠ Eb

g2c2/Ebd�3 ⇠ g2cb4�d
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Perturbative solution:
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Perturbative corrections and radiation:
The time dependent particle deflections source radiation.   The off-shell current at order       
beyond LO:
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µ
a (k).
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Formally, Eq. (9) can be solved iteratively. Once the solution at given order in g is found, it is fed back in to get
the field at the next order in perturbation theory. Equivalently, it is useful to to adopt a diagrammatic approach,
where the classical solution hA

µ

i(x) to Eq. (9) is calculated as a sum of Feynman diagrams of the form shown in
Fig 1. These diagrams are computed using standard momentum space Feynman rules, with insertions of the (Fourier
transformed) current Eq. (3). At the classical level, in order to preserve causality, it is necessary to use a retarded,
or “in-in” i✏ prescription for the gluon propagator5. This is in contrast to the standard Feynman boundary condition
that must be used to compute S-matrix elements between asymptotic in/out states. In this paper, it is implicit that

propagators obey retarded boundary conditions, i.e. 1/k2 = 1/[(k0 + i✏)2 � ~k2].
Once the classical solution hA

µ

i(x) is known to a given order in perturbation theory, it can be used to compute all
the physical observables of this system. Here, we focus on observables measured by asymptotic observers at spatial
infinity, r = |~x| ! 1, which are directly related to the momentum space current J̃µ
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B. Perturbative solutions

We consider a setup consisting of several particles ↵ = 1, . . . , N coming in from infinity at ⌧ ! �1, with initial
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µ
a (k).
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As a check, the current obeys the Ward identity                        , but only after self-consistent 
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Gravitating Sources and Radiation:

We now consider the analogous classical problem in the graviton/dilaton system defined by:

S = Sg + Spp

Sg = �2md�2
Pl

Z
d

d
x

p
g [R� (d� 2)gµ⌫@µ�@⌫�]

with point particle sources that couple to the dilaton
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Inclusion of dilaton motivated by BCJ: Pure YM
Choice of worldline interactions motivated by Bern+Grant, PLB (1999).   Necessary in order to 
cancel explicit dependence on the dimensionality in the gravity Feynman rules:
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FIG. 2: Leading order Feynman diagrams in the perturbative expansion of T̃µ⌫(k).
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k

µ

T̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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The strategy for finding perturbative solutions is the same as in gauge theory.    Write the full 
non-linear Einstein eqns. as 
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Perturbative corrections and radiation in the graviton channel:
The time dependent particle deflections source radiation.   The off-shell EM tensor at order       
beyond LO:

✏
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k
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focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k

µ

T̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to

A
g

(k) = � 1

2m(d�2)/2
Pl

✏⇤
µ⌫

(k)T̃µ⌫(k) = �
✏⇤
µ⌫

(k)

8m3(d�2)/2
Pl

X

↵,�
↵ 6=�

m
↵

m
�

Z

`↵,`�

µ
↵,�

(k)
⇥
(v

↵

· v
�

)2`µ

↵

`⌫

↵

+(v
↵

· v
�

)⌘µ⌫

⇢
1

2
(v

↵

· v
�

)2`2
↵

+ (k · v
↵

)(k · v
�

)

�

�2(v
↵

· v
�

)

✓
(v

↵

· v
�

)
`2
↵

k · v
↵

+ 2k · v
�

◆
`µ

↵

v⌫

↵

� 2
�
(k · v

↵

)(k · v
�

) + (v
↵

· v
�

)`2
↵

�
vµ

↵

v⌫

�

+

⇢
(v

↵

· v
�

)
`2
↵

(k · v
↵

)2
((v

↵

· v
�

)k · `
↵

+ 2(k · v
↵

)(k · v
�

)) + 2(k · v
�

)2
�

vµ

↵

v⌫

↵

�
, (50)

Pure gravity contributions:

Includes NLO correction to 
particle deflections

Zero deflection

⇠ ✏0 + ✏1 + · · ·
⇠ ✏1 + · · ·

d=4:   Thorne+Kovacs (1970s); D’Eath (1970’s-1980’s)
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k
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T̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k
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T̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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Combining terms and taking 

⇠ ✏1 + · · · ⇠ ✏1 + · · ·

k2 = 0

all explicit dependence on spacetime dimension has cancelled.
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and

Fig. 2(d) =
1

4md�2
Pl

X

↵,�
↵ 6=�

m
↵

m
�

Z

`↵,`�

µ
↵,�

(k)

✓
(v

↵

· v
�

)2 � 1

d � 2

◆�
2`µ

↵

`⌫

↵

+ `µ

↵

`⌫

�

�

+⌘µ⌫

⇢
v

↵

· v
�

(k · v
↵

)(k · v
�

) � 2(k · v
↵

)2

d � 2
� 1

2

✓
(v

↵

· v
�

)2 � 1

d � 2

◆
`2
↵

�

+2

✓
k · v

↵

d � 2
� (v

↵

· v
�

)k · v
�

◆
(vµ

↵

`⌫

↵

+ v⌫

↵

`µ

↵

) +
2k · v

�

d � 2

⇣
`µ

↵

v⌫

�

+ `⌫

↵

vµ

�

⌘

+2

✓
(k · v

�

)2 � `2
↵

d � 2

◆
vµ

↵

v⌫

↵

+
�
`2
↵

v
↵

· v
�

� k · v
↵

k · v
�

 ⇣
vµ

↵

v⌫

�

+ v⌫

↵

vµ

�

⌘�
. (48)

To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose
explicit form can be found, e.g., in [5]. The remaining contribution to T̃µ⌫(k) at this order in the interactions is
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In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r ! 1. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward
identity k

µ

T̃µ⌫(k) = 0 even for kµ o↵-shell. In order to compare to the analogous Yang-Mills results, we will only
focus on the components of T̃µ⌫(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to
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FIG. 3: Leading order Feynman diagrams in the perturbative expansion of the scalar emission amplitude As(k).

where we have only assumed that the polarization tensor obeys the deDonder gauge condition kµ✏
µ⌫

(k) = 1
2k

⌫

✏�

�

(k).
Note in particular that, by construction, all explicit dependence on the spacetime dimensionality cancels in this on-
shell quantity. This would not be true for the non-radiative components of the solution at this order, and it would
not be true of the radiation amplitude in pure gravity (diagrams (a), (b), (d) in Fig. 2). This cancellation is what
dictates the choice of scalar interactions, and is going to be important later when we discuss double copy relations
between the Yang-Mills solution and the result in Eq. (50).

We can use the same methods to calculate the amplitude for dilaton emission from the classical system. Inserting
the solution to Eq. (42) into Fig 3(a), we obtain the following contribution to A

s

(k) (defined in Eq. (37)),
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and working at zero deflection,
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The sum of these diagrams then gives the scalar radiation amplitude
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canonically normalized radiation field at future null infinity
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FIG. 3: Leading order Feynman diagrams in the perturbative expansion of the scalar emission amplitude As(k).

where we have only assumed that the polarization tensor obeys the deDonder gauge condition kµ✏
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Note in particular that, by construction, all explicit dependence on the spacetime dimensionality cancels in this on-
shell quantity. This would not be true for the non-radiative components of the solution at this order, and it would
not be true of the radiation amplitude in pure gravity (diagrams (a), (b), (d) in Fig. 2). This cancellation is what
dictates the choice of scalar interactions, and is going to be important later when we discuss double copy relations
between the Yang-Mills solution and the result in Eq. (50).

We can use the same methods to calculate the amplitude for dilaton emission from the classical system. Inserting
the solution to Eq. (42) into Fig 3(a), we obtain the following contribution to A
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(k) (defined in Eq. (37)),
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and working at zero deflection,
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The sum of these diagrams then gives the scalar radiation amplitude
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Double copy relations between solutions
Following BCJ, make the following double copy substitutions on the gauge theory side, at the level 
of the integrand

ca↵ ! pµ↵

ifa1a2a3 ! �⌫1⌫2⌫3(q1, q2, q3) = �1

2
[⌘⌫1⌫3(q1 � q3)

⌫2 + ⌘⌫1⌫2(q2 � q1)
⌫3 + ⌘⌫2⌫3(q3 � q2)

⌫1 ] ,

✏aµ(k) ! ✏µ(k)✏̃⌫(k)

g ! 1

2md/2�1
Pl



applying these substitutions to the YM radiation field yields an on-shell amplitude

✏aµ(k)
h
gJ̃a

µ(k)
i
! ✏µ(k)✏̃⌫(k)Âµ⌫(k)

RHS is defined up to terms that that vanish on-shell.    Using this freedom we obtain

which has been defined such that 

kµÂµ⌫(k) = k⌫Âµ⌫(k) = 0

11

IV. COLOR-KINEMATICS CORRESPONDENCE

We now show that there is a color-kinematics relation between the perturbative Yang-Mills observables in sec. II and
the corresponding ones in the scalar-gravity theory constructed in sec. III. The possibility of such a correspondence is
well motivated by work on scattering amplitudes, going back to the KLT relations and more recently the BCJ double
copy of gauge theory.

As in the BCJ case, the connection between gauge and gravity observables consists of making certain color-to-
kinematics substitutions. To recover gravity from our Yang-Mills results, we first replace the initial color charge of
each particle with a second copy of its initial momentum

ca ! pµ. (56)

This substitution is motivated by the structural similarity between the respective classical equations of motion: in
gauge theory, charge ca(⌧) is parallel transported in color space, while in gravity pµ(⌧) also obeys a parallel transport
equation, Eq. (30), generated by the a�ne connection associated with the Weyl re-scaled metric g̃

µ⌫

= e2�g
µ⌫

. The
replacement Eq. (56) is also similar to the identification ca ! m in the Kerr-Schild double copy proposal of [7].
Note that under the replacement in Eq. (56), the trivial (order ✏0) gluon field in Eq. (18) does not map onto the
gravitational solution in Eq. (40), except in the case of highly boosted sources. The fact that the massless limit double
copies in this way is consistent with observations made in ref. [32], which constructed these solutions indirectly, by
resumming the eikonal limit of QCD and using the BCJ relations to make contact with classical gravity. The special
case of massless sources and their classical double copy is discussed in more detail below in sec. IV B.

Even though the (gauge dependent) leading order solutions in Eq. (18) and Eq. (40) are only related for m = 0
particles, we find that gauge-invariant classical observables, in particular the transverse radiation field at r ! 1,
does obey a double copy relation even in the more general case of massive sources. In order to see this relation,
we have to compare the solutions at the next order in perturbation theory, where radiation first shows up. At this
order in the expansion, it becomes necessary to introduce a substitution rule for the color structure fabc on the gauge
theory side. In our gauge theory results, every term containing a factor of fabc can be associated with an expression
involving incoming momenta q1,2,3. As in BCJ, it is natural to replace the structure constants with a second copy of
the kinematic factor appearing in the 3-gluon Feynman vertex,

ifa1a2a3 ! �⌫1⌫2⌫3(q1, q2, q3) = �1

2
[⌘⌫1⌫3(q1 � q3)

⌫2 + ⌘⌫1⌫2(q2 � q1)
⌫3 + ⌘⌫2⌫3(q3 � q2)

⌫1 ] , (57)

with q1 + q2 + q3 = 0. Finally, to compare to gravity, we introduce the replacement rule

g ! 1

2md/2�1
Pl

. (58)

Given these rules, we can now determine the gravitational double copy of the emission amplitude A(k) =

✏a

µ

(k)
h
gJ̃a

µ

(k)
i
. We replace the gluon polarization vector,
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(k)✏̃
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(k), (59)

with independent photon polarizations ✏
µ

(k), ✏̃
µ

(k). Making these substitutions, the double copy Â
µ⌫

(k) of the
Yang-Mills amplitude is given by
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(k)Â
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(k), (60)

which is only well-defined up to terms that vanish when dotted into the external on-shell polarizations. Using this
gauge freedom, the double copy amplitude with k2 = 0 can be taken to be, from Eq. (27),

Âµ⌫(k) = �
X

↵,�
↵ 6=�

m
↵

m
�

8m3(d�2)/2
Pl

Z

`↵,`�

µ
↵,�

(k)


(v

↵

· v
�

)`2
↵

k · v
↵

v⌫

↵

⇢
(v

↵

· v
�

)

✓
1

2
(`

�

� `
↵

)µ � k · `
�

k · v
↵

vµ

↵

◆
+ (k · v

�

)vµ

↵

� (k · v
↵

)vµ

�

�

+
1

2

�
2(k · v

�

)v⌫

↵

� 2(k · v
↵

)v⌫

�

+ (v
↵

· v
�

)(`
�

� `
↵

)⌫

 ⇢
2(k · v

�

)vµ

↵

� (v
↵

· v
�

)`µ

↵

+
(v

↵

· v
�

)`2
↵

k · v
↵

vµ

↵

��
.

(61)



By decomposing the (unitary gauge) polarization into little group irreps

✏i(k)✏̃j(k) = ✏ij(k) + aij(k)�
✏(k) · ✏̃(k)
d� 2

hij(k),

TT graviton mode✏ij(k) = ✏ji(k) =

aij(k) = �aji(k) = Transverse antisymmetric mode

hij(k) = �ij �
kikj
~k2

= Scalar mode

we are able to reproduce the results in gravity from the double copy  YM radiation field              :Âµ⌫

/ rh±(!,~n)

(in 4D)

� hij(k)Âij(k)p
hmnhmn(k)

=
⌘µ⌫Âµ⌫(k)

(d� 2)1/2
= As(k)

aij(k)Âij(k) = 0

✏ij(k)Âij(k) = � 1

2m(d�2)/2
Pl

✏µ⌫(k)T̃
µ⌫(k)



Bi-adjoint double copy and classical solutions

Same methods as above can be used to construct radiating solutions in scalar bi-adjoint theory.   
This is a theory with  global internal symmetries

(WG, Prabhu, Thompson arXiv:1705.09263)

G⇥ G̃

�aã = bi-adjoint scalar

field content

Lint = �yfabcf̃ãb̃c̃�
aã�bb̃�cc̃

restricted to purely cubic interactions

 Color-kinematics relates all tree-level amplitudes in this theory to gluon scattering in pure Yang-
Mills (Cachazo, He,  Yuan (2013))



We find that the color-kinematics also relates classical solutions of this theory coupled to bi-color 
charges

Spp =

Z
d⌧cac̃ã�

aã + · · ·

to the corresponding classical gauge theory solutions discussed earlier:

6

yields the color equations of motion quoted above. At the classical level, it is su�cient to work directly in terms of the
classical equations of motion for the charges, so our results are independent of any choice of Lagrangian description.

To compare to Yang-Mills radiation, we will construct the radiation field �

aã measured by observers at r ! 1.
The formal solution is expressible as

�

aã(x) = �y

Z

k

e

�ik·x
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2
J aã(k) (31)

where the bi-adjoint source J aã receives contributions from a collection of color charges, each coupled to �

aã through
the interaction in Eq. (24), as well as the scalar field configuration itself,
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(s)). (32)

Like its Yang-Mills counterpart, this quantity has a simple relation to observables measured at asymptotic spatial
distances r = |~x| ! 1. In particular, the long distance radiation field is (taking d = 4 for illustration; similar results
hold in general dimension d)

lim
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aã(x) =
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Z
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�i!tAaã(k), (33)

where the amplitude Aaã(k) is the momentum space source J

aã(k) evaluated at the on-shell momentum k

µ = !(1, ~x/r),

Aaã(k) = y J aã(k)
��
k
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, (34)

so that, for instance, the energy-momentum radiated out to infinity in the color channel (a, ã) is given by
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(2⇡)✓(k0)�(k2)|Aaã(k)|2kµ

. (35)

In perturbation theory, as a formal expansion in the coupling y, J aã(x) can be calculated iteratively. This expansion
can be organized in terms of the Feynman diagrams shown in Fig. 1, where now the wavy internal lines correspond
to bi-adjoint scalar propagators. As in the Yang-Mills case we impose as initial conditions that the particles start out
widely separated in the far past, with constant initial momenta
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. Thus to leading order in perturbation theory the
particles generate the static field given in Eq. (23) summed over all the particle sources
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aã(x) = �y

X

↵

c

a

↵

c̃

ã
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and a radiation amplitude given by

Aaã(k) = y
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which is non-vanishing at a discrete set of momenta k

µ that point along the direction of the initial momentum of any
massless particle source involved in the scattering process.

At the next order in the perturbative expansion, we need to determine how the leading order field in Eq. (37)
backreacts on the trajectories in orbital and color space. We write
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(s), c̄a
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(s) vanishing as s ! �1, and feed the the static field Eq. (37) into the particle equations of
motion. This yields the orbital deflection
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µ
a (k).

For example, in four spacetime dimensions, the long distance radiation field is related to the on-shell current J̃

µ

a

(k) =R
d

d
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ik·x
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(x), k

2 = 0, by

lim
r!1hAa

µ

i(x) =
g

4⇡r

Z
d!

2⇡

e

�i!t

J̃

µ

a

(k) (8)

with k

µ = (!,

~

k) = !(1, ~x/r) . Similar expressions hold in general spacetime dimension d.
As long as these particles remain well separated, with su�ciently large impact parameters b
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= b

µ

↵

� b

µ

�

, the

on-shell current J̃

µ

a

(k) can be calculate in perturbation theory. Up to second order in the gauge coupling, it is given
by the Feynman diagrams shown in Fig. 1. These diagrams are computed using standard Yang-Mills Feynman rules,
with insertions of the classical particle current Eq. (4). The leading order result is from Fig. 1(a) evaluated using
static particle trajectories with constant color charge c

a and momentum p
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For on-shell k

2 = 0, this is only non-vanishing if k

µ is along one of the particle momenta p

µ

↵

, and consequently there
is no gluon radiation at this order in perturbation theory, g✏
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(k2 = 0) = 0. At order g

2, the deflection of the
orbits due to the Coulomb potential generated by each particle must be taken into account in Fig. 1(a), which yields
a contribution to J̃
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In addition, there is a contribution from the three-gluon vertex, which can be calculated using static paths,
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The total current J̃
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and momentum integrals3 are denoted by
R

`

=
R

d

d

`/(2⇡)d. This result is given only at the level of the integrand and
holds in any dimension d. We note in particular that the term proportional to f

abc receives contributions both from
the three-gluon interaction and from the time evolution of the color charges, ċ

a = gf

abc

v

µ

A

b

µ

(x(s))cc(s).

3 Here and in what follows, it is implicit that we use retarded boundary conditions 1/k2 = 1/((k0 + i✏)2 �~k2) and 1/k · p = 1/(k · p+ i✏)
as is appropriate for classical solutions.
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and similary for ¯̃
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(s). In these equations, we have defined Fourier transforms z
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a(s).
The O(y2) radiation field receives contributions from Fig. 1 evaluated using these time dependent deflections as

well as from the diagram with the cubic vertex. For the latter, it is su�cient to evaluate the diagram using the static
worldlines, and we find a contribution to J aã(k) which is given by

Fig. 1(b)|O(y2) = y

2
X

↵,�

Z

`↵,`�

µ

↵�

(k) [c
↵

, c

�

]a [c̃
↵

, c̃

�
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where µ

↵�
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becomes at O(y2)
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]ã
i
. (45)

Here, the first term is due to the shift in the orbital trajectory, Eq. (41) while the second and third terms are the
contributions of the color deflections c̄

a and ˜̄
c

a

respectively. The complete bi-adjoint curent J aã(k) at order y

2 is
then the sum of of Eqs. (43), (45).

3.1. Double copy

We now apply the BCJ substitution rules in Eqs. (13), (14) to the bi-adjoint scalar amplitude determined above.
First, applying the color-kinematics relation c̃
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to the gauge group G̃, yields the Yang-Mills current
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at leading order in the couplings.
In Yang-Mills, radiation first appears at second order in the gauge coupling. By applying the replacement rule from
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at the level of the integrand (and using the constraints `
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= 0 from Eq. (12)) to the bi-adjoint solution at O(y2),
we arrive at
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which has precisely the same structure as the Yang-Mills three-gluon contribution quoted in Eq. (11).
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The O(y2) radiation field receives contributions from Fig. 1 evaluated using these time dependent deflections as

well as from the diagram with the cubic vertex. For the latter, it is su�cient to evaluate the diagram using the static
worldlines, and we find a contribution to J aã(k) which is given by
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becomes at O(y2)
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Here, the first term is due to the shift in the orbital trajectory, Eq. (41) while the second and third terms are the
contributions of the color deflections c̄

a and ˜̄
c

a

respectively. The complete bi-adjoint curent J aã(k) at order y

2 is
then the sum of of Eqs. (43), (45).

3.1. Double copy

We now apply the BCJ substitution rules in Eqs. (13), (14) to the bi-adjoint scalar amplitude determined above.
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a

↵

7! p

µ

↵

to the gauge group G̃, yields the Yang-Mills current
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at leading order in the couplings.
In Yang-Mills, radiation first appears at second order in the gauge coupling. By applying the replacement rule from
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at the level of the integrand (and using the constraints `
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which has precisely the same structure as the Yang-Mills three-gluon contribution quoted in Eq. (11).
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J aã(k) =



Applying color-kinematics to        :G̃

c̃a↵ ! pµ↵

and                  , we reproduce the classical radiation gauge field

J aã(k) ! ✏aµ(k)J̃
µ
a (k)

y ! g

A further color-kinematics transformation then yields the gravity solutions

directly from the much simpler Feynman rules in a scalar field theory.

J aã(k) ! ✏aµ(k)J̃
µ
a (k) ! ✏µ(k)✏̃⌫(k)T̃

µ⌫(k)
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The O(y2) radiation field receives contributions from Fig. 1 evaluated using these time dependent deflections as
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Here, the first term is due to the shift in the orbital trajectory, Eq. (41) while the second and third terms are the
contributions of the color deflections c̄

a and ˜̄
c
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respectively. The complete bi-adjoint curent J aã(k) at order y

2 is
then the sum of of Eqs. (43), (45).

3.1. Double copy

We now apply the BCJ substitution rules in Eqs. (13), (14) to the bi-adjoint scalar amplitude determined above.
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at leading order in the couplings.
In Yang-Mills, radiation first appears at second order in the gauge coupling. By applying the replacement rule from
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which has precisely the same structure as the Yang-Mills three-gluon contribution quoted in Eq. (11).
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Conclusions:

Color-kinematics relations between classical scalar, YM and gravity radiation solutions:

YM color charge Spp = �m

Z
d⌧e� + · · · ,

(at least to quadratic 
order in the scalar)

Under color-kinematics:

Aaã ! Aaµ ! Aµ⌫

Bi-adjoint charge

Feynman integral + EFT methods are a powerful tool in gravitational wave calculations.   Can they 
be simplified using the double copy?



Assuming it persists at higher orders in PT, is the classical double copy 
useful for gravity wave calculations?

Dilaton decoupling at large boost:   “burst pipeline” BH+BH mergers at LIGO 
in pure gravity (also see Johansson, Ochirov (2015); Bern,Davies,Nohle, (2015);

Possible simplification of Feynman rules (no need for vertices beyond 3 
pt)

But only at the level of the integrand.   Doing the integrals is still hard, 
even in the relevant kinematic limits…

Open questions:
Classical        radiation?   Spin couplingsBµ⌫

Z
d⌧Sµ⌫caF a

µ⌫

Z
d⌧Sµ⌫v�Hµ⌫�

(Ridgway+Prabhu+WG,
in progress)

Higher orders in PT?  Relation to BCJ?

See D. O’Connell’s talk at KITP (6/2017)

Luna, Monteiro, Nicholson, Ochirov, O’Connell, Westerberg,White (2016))


