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SOFT PHOTON THEOREMS

Consider the amplitude for n particles and a photon:

Aph
n+1(p1, · · · , pn, εps)

When the photon goes soft (ε→ 0), the amplitude approaches

Aph
n+1 =

[S(0)

ε
+ S(1)

]
An + O(ε)

where An is the amplitude without the photon and

S(0) =

n∑
k=1

Qk
εs · pk

ps · pk
, S(1) =

n∑
k=1

Qk
εµs pνs J(k)

µν

ps · pk

The subleading O(ε0) contribution is fixed by the leading contribution
and gauge invariance
[Low 1954, Gell-Mann and Goldberger 1954, Weinberg 1965, Burnett and Kroll 1968]



SOFT GRAVITON THEOREMS
Consider the amplitude for n particles and a graviton:

Agrav
n+1(p1, · · · , pn, εps)

When the graviton goes soft (ε→ 0), the amplitude approaches

Agrav
n+1 =

[S(0)

ε
+ S(1) + ε S(2)

]
An + O(ε2)

where An is the amplitude without the graviton and

S(0) = κ

n∑
k=1

εµνs (pk)µ(pk)ν
ps · pk

, S(1) = κ
n∑

k=1

εµνs (pk)µ(ps)
ρJ(k)
νρ

ps · pk
,

S(2) = κ

n∑
k=1

εµνs (ps)
ρ(ps)

σJ(k)
µρ J(k)

νσ

ps · pk

The leading O(1/ε) contribution is due to [Weinberg 1965] .
The subleading O(ε0) [Gross Jackiw 1968] and subsubleading O(ε)
[Cachazo Strominger 1404.4091, Broedel deLeeuw Plefka Rosso 1406.6574, Bern
Davies DiVecchia Nohle 1406.6987] contributions are fixed by the leading
contribution and general coordinate invariance (tree level).



HOLOMORPHIC SOFT LIMIT: PHOTONS

Restrict to four dimensions and massless particles =⇒ pk = −|k〉[k|.

Introduce holomorphic soft limit [Cachazo and Strominger 1404.4091]

ps → εps |s〉 → ε|s〉, |s]→ |s], ε→ 0

Use BCFW to derive the soft limit for positive-helicity photons

Aph
n+1 =

[S(0)

ε2 +
S(1)

ε

]
An + O(ε0)

with all divergent terms coming from a small subset of diagrams.

The soft operators become, in spinor-helicity language,

S(0) =
∑

k

Qk
〈xk〉
〈xs〉〈sk〉

, S(1) =
∑

k

Qk
Dsk

〈sk〉

where Dsk ≡ |s]∂|k] and |x〉 = arbitrary reference spinor.



HOLOMORPHIC SOFT LIMIT: GRAVITONS

Similarly, for a positive-helicity graviton,

Agrav
n+1 =

[S(0)

ε3 +
S(1)

ε2 +
S(2)

ε

]
An + O(ε0)

where all divergent terms come from a small subset of diagrams and

S(0) = κ
∑

k

[sk]〈xk〉〈yk〉
〈sk〉〈xs〉〈ys〉

,

S(1) =
κ

2

∑
k

[sk]
〈sk〉

(
〈xk〉
〈xs〉

+
〈yk〉
〈ys〉

)
Dsk ,

S(2) =
κ

2

∑
k

[sk]
〈sk〉

D2
sk

Cachazo and Strominger first identified the subsubleading term S(2).

Soft graviton theorem derived from Ward identities associated with
asymptotic (BMS) symmetries [Strominger lectures 1703.05448] .



SOFT THEOREMS IN EFFECTIVE FIELD THEORY

[Henriette Elvang, Callum R. T. Jones, SN,
1611.07534, PRL 118 (2017) 231601]

We address the effects of higher-dimension operators on the
structure of soft theorems for photons and gravitons in four
dimensions. These operators could arise in an effective field theory
by integrating out massive particles in loops.

We use on-shell methods and employ a two-parameter holomorphic
shift of the momenta.

Our findings:
I a very small subset of effective operators can modify the soft

theorems, and they do so in a well-defined universal way
I a new derivation of the subleading soft theorems
I obtain constraints on allowed three-particle interactions involving

massless particles



MODIFIED SOFT PHOTON THEOREM
In particular, we find that higher-dimension operators modify the soft
photon theorem to

Aph
n+1 =

[S(0)

ε2 +
S(1)

ε

]
An +

S̃(1)

ε
Ãn + O(ε0)

where the universal subleading correction is

S̃(1)Ãn =
∑

k

gk
[sk]
〈sk〉

Ã(k)
n

and the coupling gk of the higher-dimension operator has mass
dimension −1. The dimension-five operators that give rise to this
modification are

χγµνFµνχ , φFµνFµν , φFµν F̃µν , ψµFνργµνρχ , hF2

The tilde signifies that the kth particle of Ã(k)
n differs from the kth

particle of Aph
n+1.



MODIFIED SOFT GRAVITON THEOREM
We find that higher-dimension operators modify the soft graviton
theorem to

Agrav
n+1 =

[S(0)

ε3 +
S(1)

ε2 +
S(2)

ε

]
An +

S̃(2)

ε
Ãn + O(ε0)

There is no modification at subleading O(1/ε2) order.

The universal subsubleading O(1/ε) modification is

S̃(2)Ãn =
∑

k

gk
[sk]3

〈sk〉
Ã(k)

n

The coupling gk of the higher-dimension operator has mass
dimension −3. The dimension-seven operators that give rise to this
modification are

φRµνρσRµνρσ , Rµνρσψργµν∂σχ , RµνρσFµνFρσ

The modification due to the operator φR2 was previously noted by
[Bianchi He Huang Wen 1406.5155, Di Vecchia Marotta Mojaza 1604.03355]
Recent generalization to massive particles and arbitrary number of
dimensions by [Laddha Sen 1706.00759]



ON-SHELL METHODS

Complexify the momenta

p̂k = pk + zqk

while preserving momentum conservation (
∑

k qk = 0) and
on-shellness of external momenta (qk · pk = q2

k = 0).

Tree-level amplitude becomes a meromorphic function Â(z) whose
poles arise from diagrams in which intermediate momenta P̂I go
on-shell.

Complex analysis =⇒ amplitude is a sum over poles

Â(z) =
∑ RI

z− zI
+ A∞

Residues of the poles RI are given by products of on-shell
subamplitudes.



SOFT SHIFT
In the soft theorems, the divergent (in ε) behavior arises from the
diagrams in which the soft particle is attached to an external leg

ŝ

k̂

...An

This can seen by performing a soft shift [Cheung Shen Trnka 1502.05057]

|̂s〉 = ε|s〉, |̂i] = |i]− ε 〈js〉
〈ji〉
|s] , |̂j] = |j]− ε 〈is〉

〈ij〉
|s]

The momentum in the propagator satisfies

P̂2
sk = (p̂k + p̂s)

2 = ε[sk]〈sk〉

and goes on-shell as ε→ 0. This gives rise to degenerate poles at
ε = 0 in Ân+1.

Solution: resolve these poles by introducing a second parameter z.



TWO-PARAMETER SHIFT

Combine a soft shift with BCFW shifts [i, s〉 and [j, s〉 (with parameters
z1 and z2) to obtain (letting z|X〉 = z1|i〉+ z2|j〉)

|̂s〉 = ε|s〉−z|X〉 , |̂i] = |i]−ε 〈js〉
〈ji〉
|s]+z

〈jX〉
〈ji〉
|s] , |̂j] = |j]−ε 〈is〉

〈ij〉
|s]+z

〈iX〉
〈ij〉
|s]

with no other spinors shifted. Then

ŝ

k̂

...An

has intermediate momentum

P̂2
sk = (p̂k + p̂s)

2 = (ε− εk)[sk]〈sk〉 , εk = z
〈Xk〉
〈sk〉



For fixed z, write amplitude as a sum over poles in the ε plane:

Ân+1(z, ε) =
n∑

k=1

Rk(z)
ε− εk

+other poles+A∞

ε1

ε2

ε3

ε

As z→ 0, the simple poles at ε = εk = z 〈Xk〉
〈sk〉 coalesce to give

higher-order poles at ε = 0:

n∑
k=1

Rk(z)
ε− εk

−→ c0

εa
+

c1

εa−1 + · · ·+O(ε0)

The other poles are O(ε0) as z→ 0, so the unshifted amplitude is

An+1 = lim
z→0

n∑
k=1

Rk(z)
ε− εk

+O(ε0)



CONSTRAINTS

The coalescence of simple poles into higher-order poles in ε

n∑
k=1

Rk(z)
ε− εk

−→ c0

εa
+

c1

εa−1 + · · ·+O(ε0)

requires individual residues Rk(z) to have poles in z. Simple example:

1
ε2 − z2 =

[
(1/2z)
ε− z

− (1/2z)
ε+ z

]
But the absence of z poles in the full amplitude imposes constraints
on the residues, e.g.

n∑
k=1

Rk(z)
∣∣∣∣
1/za−1

= 0

We will use these constraints to prove that a ≤ 3 for soft gravitons and
a ≤ 2 for soft photons. This restricts possible three-point couplings.



MASTER FORMULA
Let’s calculate the residues

Ân+1(z, ε) =
∑
k,hP

Â3
(
ŝ, k̂, P̂sk

) 1
(ε− εk)[sk]〈sk〉

Â(k)
n (z) + O(ε0)

The three-point amplitude Â3[hs, hk, hP] is fixed by little-group scaling

Â3 ∝ [sk̂]hs+hk−hP [k̂P̂sk]
hk+hP−hs [P̂sks]hP+hs−hk

Evaluating the shifted spinors at the poles ε = εk, we obtain

Â3 = gk,a [sk]2hs+1−a
(
〈sk〉

z〈Xs〉

)a−1

, a ≡ hs − hk − hP + 1

Thus we obtain our master formula

Ân+1(z, ε) =
∑
k,a

gk,a
[sk]2hs−a〈sk〉a−2〈Xs〉1−a

za−1
(
ε− z 〈Xk〉

〈sk〉
) Â(k)

n (z) + O(ε0)

Sum over all external legs k and all possible three-point couplings
gk,a. The dimension of the effective coupling gk is [gk,a] = a− 2hs.



CONSTRAINTS FROM ABSENCE OF z POLES
Note that individual terms in the expression

Ân+1(z, ε) =
∑
k,a

gk,a
[sk]2hs−a〈sk〉a−2〈Xs〉1−a

za−1
(
ε− z 〈Xk〉

〈sk〉
) Â(k)

n (z) + O(ε0)

have z poles. In a Laurent expansion in z, the coefficients of 1/za−1,
1/za−2, etc. must vanish. This condition leads to constraints on
allowed three-particle effective operators. Specifically:

I There are no allowed couplings with a > 3. This prohibits
gravitational couplings to particles with |h| > 2.

I Photons can only have couplings with a = 2 (standard soft
photon theorem) or a = 1 (subleading modification).

I Gravitons can only have couplings with a = 3 (standard soft
graviton theoreom) or a = 1 (subsubleading modification).
Absence of a = 2 couplings implies no subleading modifications.

I Couplings with a ≤ 0 may also be allowed but do not contribute
to the soft theorems (all terms vanish as z→ 0).



a = 2 FOR hs = 1 =⇒ SOFT PHOTON THEOREM
For photons (hs = 1), three-point couplings with a = 2 are of the form

A3[1, hk,−hk] with [gk,2] = 0

Minimal coupling of a photon to a field of helicity hk with coupling gk,2
given by the electric charge Qk.

The master formula specializes to

Âph
n+1(z, ε) =

[∑
k

Qk
〈Xs〉−1

z
(
ε− z 〈Xk〉

〈sk〉
)]Ân(z) + O(ε0) .

Observe that Â(k)
n (0) is independent of k, so the amplitude factorizes.

The coefficient of the 1/z pole vanishes by charge conservation.

Laurent expanding in z and setting z = 0 gives

Aph
n+1 =

1
ε2

∑
k

Qk
〈Xk〉
〈Xs〉〈sk〉

An +
1
ε

∑
k

Qk
1
〈Xs〉

∂zÂn(z)
∣∣
z=0 + O(ε0) .

which is precisely the standard subleading soft photon theorem.



a = 1 FOR hs = 1 =⇒ MODIFIED SOFT THEOREM
For photons (hs = 1), three-point couplings with a = 1 are of the form

A3[1, hk, 1− hk] with [gk,1] = −1

These arise from the dimension-five operators

χγµνFµνχ , φFµνFµν , φFµν F̃µν , ψµFνργµνρχ , hF2

The master formula specializes to

Âph
n+1(z, ε) =

∑
k

gk
[sk]〈sk〉−1(
ε− z 〈Xk〉

〈sk〉
) Â(k)

n (z) + O(ε0) .

There are no z poles, so no constraints.

The z = 0 limit gives the universal form for the modification of the
subleading soft photon theorem

1
ε

∑
k

gk
[sk]
〈sk〉

A(k)
n



MODIFIED SOFT PHOTON THEOREM

To summarize, the modified soft photon theorem is

Aph
n+1 =

[S(0)

ε2 +
S(1)

ε

]
An +

S̃(1)

ε
Ãn + O(ε0)

where a = 2 (minimal) couplings give

S(0) =
∑

k

Qk
〈xk〉
〈xs〉〈sk〉

, S(1) =
∑

k

Qk
Dsk

〈sk〉

and a = 1 (dimension-five) couplings give the modification

S̃(1)Ãn =
∑

k

gk
[sk]
〈sk〉

Ã(k)
n



a = 3 FOR hs = 2 =⇒ SOFT GRAVITON THEOREM

For gravitons (hs = 2), three-point couplings with a = 3 are of the form

A3[2, hk,−hk] with [gk,3] = −1

GR coupling of a graviton to a field of helicity hk with coupling gk,3
given universally by Newton’s constant κ (equivalence principle).

The master formula specializes to

Âgrav
n+1(z, ε) =

[∑
k

κ
[sk]〈sk〉〈Xs〉−2

z2
(
ε− z 〈Xk〉

〈sk〉
) ]Ân(z) + O(ε0) .

Observe that Â(k)
n (0) is independent of k, so the amplitude factorizes.

The coefficient of the 1/z2 pole is proportional to
∑

k[sk]〈sk〉 and
vanishes by momentum conservation. Equivalently, the absence of
the 1/z2 pole implies the equivalence principle.

In the Laurent expansion in z, it can shown that the 1/z pole also
vanishes.



SOFT GRAVITON THEOREM

Laurent expanding the master formula

Âgrav
n+1(z, ε) =

[∑
k

κ
[sk]〈sk〉〈Xs〉−2

z2
(
ε− z 〈Xk〉

〈sk〉
) ]Ân(z) + O(ε0)

and setting z = 0 gives

Âgrav
n+1(z, ε) =

1
ε3

∑
k

κ
[sk]〈Xk〉2

〈sk〉〈Xs〉2
An +

1
ε2

∑
k

κ
[sk]〈Xk〉
〈Xs〉2

∂zÂn(z)
∣∣
z=0

+
1
ε

∑
k

κ

2
[sk]〈sk〉
〈Xs〉2

∂2
z Ân(z)

∣∣
z=0 + O(ε0) .

With some algebra, one may show that this is precisely the soft
graviton theorem derived in [Cachazo and Strominger 1404.4091] .

Since a = 2 couplings are forbidden for hs = 2 by the constraint that
the 1/z pole be absent, there are no modifications to this theorem
through subleading (1/ε2) order.



a = 1 FOR hs = 2 =⇒ MODIFIED SOFT THEOREM
For gravitons (hs = 2), three-point couplings with a = 1 are of the form

A3[2, hk, 2− hk] with [gk,1] = −3

These arise from the dimension-seven operators

φRµνρσRµνρσ , Rµνρσψργµν∂σχ , RµνρσFµνFρσ

The master formula specializes to

Âgrav
n+1(z, ε) =

∑
k,hP

gk
[sk]3〈sk〉−1(
ε− z 〈Xk〉

〈sk〉
) Â(k)

n (z) + O(ε0) .

There are no z poles, so no constraints.

The z = 0 limit gives the universal form for the modification of the
subleading soft graviton theorem

1
ε

∑
k,hP

gk
[sk]3

〈sk〉
A(k)

n



MODIFIED SOFT GRAVITON THEOREM
To summarize, the modified soft graviton theorem is

Agrav
n+1 =

[S(0)

ε3 +
S(1)

ε2 +
S(2)

ε

]
An +

S̃(2)

ε
Ãn + O(ε0)

where a = 3 (GR) couplings give

S(0) = κ
∑

k

[sk]〈xk〉〈yk〉
〈sk〉〈xs〉〈ys〉

,

S(1) =
κ

2

∑
k

[sk]
〈sk〉

(
〈xk〉
〈xs〉

+
〈yk〉
〈ys〉

)
Dsk ,

S(2) =
κ

2

∑
k

[sk]
〈sk〉

D2
sk

and a = 1 (dimension-seven) couplings give the modification

S̃(2)Ãn =
∑

k

gk
[sk]3

〈sk〉
Ã(k)

n



CONCLUSIONS

To summarize:

I We have used a two-complex-parameter holomorphic shift of the
momenta to obtain a new derivation of the soft photon and
graviton theorems (for massless particles in four dimensions).

I We have shown that corrections to the standard soft theorems
can only arise from a small subset of higher-dimension
three-point operators of massless fields, and that these
corrections have a universal form.

I The soft photon theorem can receive corrections at subleading
order, but the soft graviton theorem can only receive corrections
at subsubleading order.

Thanks for listening!



EXTRA SLIDES



a > 3 COUPLINGS ARE FORBIDDEN

Recall the master formula

Ân+1(z, ε) =
∑
k,a

gk,a
[sk]2hs−a〈sk〉a−2〈Xs〉1−a

za−1
(
ε− z 〈Xk〉

〈sk〉
) Â(k)

n (z) + O(ε0)

The coefficient of the leading pole 1/za−1 is

n∑
k=1

gk,a[sk]2hs−a〈sk〉a−2 A(k)
n (1)

Applying the operator |p〉∂|s〉 gives (for a > 2)

n∑
k=1

gk,a[sk]2hs−a〈sk〉a−3〈pk〉 A(k)
n (2)

This sum must vanish for the amplitude not to have a 1/za pole.



The constraint is thus
n∑

k=1

gk,a[sk]2hs−a〈sk〉a−3〈pk〉 A(k)
n = 0 (3)

Suppose that a > 3. Since |s〉 and |p〉 are arbitrary, we can use them
to remove two of the terms in the sum. E.g. if |s〉 = |1〉 and |p〉 = |2〉

n∑
k=3

gk,a[sk]2hs−a〈1k〉a−3〈2k〉 A(k)
n = 0 (4)

Now consider the four-point amplitude

A4(shs , 1−h3 , 2−hs , 3h3).

for which the equation above has only one term, from

shs

3h3

1−h3

2−hs

−Phs−h3+1−a Ph3−hs−1+a

proportional to |gk,a|2. The constraint thus implies gk,a = 0. Thus, any
non-vanishing three-point coupling must obey a ≤ 3.



a = 3 COUPLINGS ARE FORBIDDEN FOR hs = 1

For a = 3, the constraint from the absence of z poles is

n∑
k=1

gk,a[sk]2hs−3〈pk〉 A(k)
n = 0 (5)

Set |p〉 = |1〉 to remove one of the terms in the sum

n∑
k=2

gk,a[sk]2hs−3〈1k〉 A(k)
n = 0 (6)

For photons (hs = 1), three-point couplings with a = 3 are of the form

A3[1, hk,−1− hk] with [gk,3] = 1

The only possibilities are

A3[1, 1,−2], A3[1, 1/2,−3/2], A3[1, 0,−1], A3[1,−1/2,−1/2]



To show that the coupling for A3[1, 1,−2] vanishes, consider the
four-point amplitude

A4(s1, 1−1, 2−2, 32).

The two channels still appearing in the constraint sum are

s1

2−2

1−1

32

−P−1 P1
s1

32

1−1

2−2

−P−3 P3

but a state of helicity 3 cannot appear in an intermediate channel, so
only the first term contributes to the constraint. Since that term is
proportional to |gk,a|2, the coupling must vanish.

The other hs = 1, a = 3 couplings can similarly be shown to vanish.



a = 2 COUPLINGS ARE FORBIDDEN FOR hs = 2

For a = 2, the constraint from the absence of z poles is

n∑
k=1

gk,a[sk]2hs−2 A(k)
n = 0 (7)

For gravitons (hs = 2), three-point couplings with a = 2 are of the form

A3[2, hk, 1− hk] with [gk,2] = −2

The only possibilities are

A3[2, 2,−1], A3[2, 3/2,−1/2], A3[2, 1, 0], A3[2, 1/2, 1/2]



To show that the coupling for A3[2, 2,−1] vanishes, consider the
four-point amplitude

A4(s2, 12, 2−2, 3−2).

One of the channels is

s2

12

2−2

3−2

−P−1 P1

while the other two involve the exchange of a helicity 3 particle and
thus vanish. Thus the constraint requires the channel shown to
vanish as well, implying the vanishing of the coupling for A3[2, 2,−1].

The other hs = 2, a = 2 couplings can similarly be shown to vanish.


