Feynman integrals, beyond polylogs, up to 22 loops

David Broadhurst, Open University, UK Amplitudes, Higgs Centre, Edinburgh, 12 July 2017

The L-series of a modular form of weight 4 appears in the 4-loop QED contributions to the magnetic moment of the electron. I shall report on L-series that similarly result from Feynman diagrams with up to $\mathbf{2 2}$ loops. A salient feature is the existence of intricate quadratic relations between Feynman integrals, encoded by Betti and de Rham matrices.

1. QED beyond polylogs: the 4-loop Laporta frontier
2. Modular forms, up to 6 loops [!]
3. Betti and de Rham matrices, for all loops [*]
4. L-series, up to 22 loops [*]
[!] With very recent proofs by Yajun Zhou, Princeton and Beijing.
[*] Joint work with David P. Roberts, University of Minnesota Morris.

1 QED beyond polylogs: the 4-loop Laporta frontier

The magnetic moment of the electron, in Bohr magnetons, has quantum electrodynamic contributions $\sum_{L \geq 0} a_{L}(\alpha / \pi)^{L}$ given up to $L=4$ loops by

$$
\begin{aligned}
& a_{0}=1 \quad[\text { Genesis : Dirac, 1928] } \\
& a_{1}=0.5 \quad \text { [Exodus : Schwinger, 1947] } \\
& a_{2}=-0.32847896557919378458217281696489239241111929867962 \ldots \\
& a_{3}=1.18124145658720000627475398221287785336878939093213 \ldots \\
& a_{4}=-1.91224576492644557415264716743983005406087339065872 \ldots
\end{aligned}
$$

Leviticus: in 1957, Petermann and Sommerfield obtained

$$
a_{2}=\frac{197}{144}+\frac{\zeta(2)}{2}+\frac{3 \zeta(3)-2 \pi^{2} \log 2}{4} .
$$

Numbers: in 1996, Laporta and Remiddi encountered the multiple polylog $U_{3,1}:=\sum_{m>n>0}(-1)^{m+n} /\left(m^{3} n\right)$ in

$$
\begin{aligned}
a_{3}= & \frac{28259}{5184}+\frac{17101 \zeta(2)}{135}+\frac{139 \zeta(3)-596 \pi^{2} \log 2}{18} \\
& -\frac{39 \zeta(4)+400 U_{3,1}}{24}-\frac{215 \zeta(5)-166 \zeta(3) \zeta(2)}{24} .
\end{aligned}
$$

Deuteronomy: the first non-polylog

A Bessel moment $B:=\sqrt{3} E_{4 a}$ occurs at weight 4 in the breath-taking evaluation by Stefano Laporta [arXiv:1704.06996] of 4800 digits of $a_{4}=P+B+E+U \approx 2650.565-1483.685-1036.765-132.027 \approx-1.912$
where P comprises polylogs and E comprises integrals, with weights 5, 6 and 7 , whose integrands contain logs and products of elliptic integrals. U comes from 6 light-by-light master integrals, still under investigation.

The weight-4 non-polylogarithm at 4 loops has $N=6$ Bessel functions:

$$
\begin{aligned}
B & =-\int_{0}^{\infty} \frac{27550138 t+35725423 t^{3}}{48600} I_{0}(t) K_{0}^{5}(t) \mathrm{d} t \\
& =-1483.68505914882529459059985184510836700500152630607810 \ldots
\end{aligned}
$$

with 5 instances of $K_{0}(t)$, from 5 -fermion intermediate states. The sibling of $K_{0}(t)$ is $I_{0}(t)=\sum_{k \geq 0}\left((t / 2)^{k} / k!\right)^{2}$, resulting from Fourier transformation. The powers of t in B are easy to interpret in $D=2$ spacetime dimensions.

2 Modular forms up to 6 loops

With $N=a+b$ Bessel functions and $c \geq 0$, I define moments

$$
M(a, b, c):=\int_{0}^{\infty} I_{0}^{a}(t) K_{0}^{b}(t) t^{c} \mathrm{~d} t
$$

that converge for $b>a \geq 0$. For $b=a=N / 2$, we have convergence for $b>c+1$. The L-loop on-shell sunrise diagram in $D=2$ dimensions gives

$$
2^{L} M(1, L+1,1)=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{k=1}^{L} \mathrm{~d} x_{k} / x_{k}}{\left(1+\sum_{i=1}^{L} x_{i}\right)\left(1+\sum_{j=1}^{L} 1 / x_{j}\right)-1}
$$

as an integral over Schwinger parameters. $M(2, L, 1)$ is obtained by cutting an internal line. To obtain $M(1, L+1,3)$ and $M(2, L, 3)$, we differentiate w.r.t. an external momentum, before taking the on-shell limit.

Very recently, in [arXiv:1706.08308], Yajun Zhou gave a complete proof, indicated by $\stackrel{!}{=}$, of my 10 -year-old conjecture on the 5 -Bessel matrix:

$$
\mathcal{M}_{5}:=\left[\begin{array}{ll}
M(1,4,1) & M(1,4,3) \\
M(2,3,1) & M(2,3,3)
\end{array}\right] \stackrel{!}{=}\left[\begin{array}{cc}
\pi^{2} C & \pi^{2}\left(\frac{2}{15}\right)^{2}\left(13 C-\frac{1}{10 C}\right) \\
\frac{\sqrt{15 \pi} C}{2} C & \frac{\sqrt{15 \pi}}{2}\left(\frac{2}{15}\right)^{2}\left(13 C+\frac{1}{10 C}\right)
\end{array}\right] .
$$

The determinant $\operatorname{det} \mathcal{M}_{5}=2 \pi^{3} / \sqrt{3^{3} 5^{5}}$ is free of the 3-loop constant

$$
C:=\frac{\pi}{16}\left(1-\frac{1}{\sqrt{5}}\right)\left(\sum_{n=-\infty}^{\infty} e^{-n^{2} \pi \sqrt{15}}\right)^{4}=\frac{1}{240 \sqrt{5} \pi^{2}} \prod_{k=0}^{3} \Gamma\left(\frac{2^{k}}{15}\right)
$$

with Γ values from the square of an elliptic integral [arXiv:0801.0891] at the 15th singular value. The L-series for $N=5$ Bessel functions comes from a modular form of weight 3 and level 15 [arXiv:1604.03057]:

$$
\begin{aligned}
\eta_{n} & :=q^{n / 24} \prod_{k>0}\left(1-q^{n k}\right) \\
f_{3,15} & :=\left(\eta_{3} \eta_{5}\right)^{3}+\left(\eta_{1} \eta_{15}\right)^{3}=\sum_{n>0} A_{5}(n) q^{n} \\
L_{5}(s) & :=\sum_{n>0} \frac{A_{5}(n)}{n^{s}} \text { for } s>2 \\
\Lambda_{5}(s) & :=\left(\frac{15}{\pi^{2}}\right)^{s / 2} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L_{5}(s)=\Lambda_{5}(3-s) \\
L_{5}(1) & =\sum_{n>0} \frac{A_{5}(n)}{n}\left(2+\frac{\sqrt{15}}{2 \pi n}\right) \exp \left(-\frac{2 \pi n}{\sqrt{15}}\right) \\
& \stackrel{!}{=} 5 C \stackrel{!}{=} \frac{5}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{4}(t) t \mathrm{~d} t .
\end{aligned}
$$

2.1 The Laporta frontier at $N=6$

Here the modular form, found with Francis Brown in 2010, is

$$
f_{4,6}:=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}
$$

with weight 4 and level 6. I discovered and Yajun Zhou proved that

$$
2 M(3,3,1) \stackrel{!}{=} 3 L_{6}(2), \quad 2 M(2,4,1) \stackrel{!}{=} 3 L_{6}(3), \quad 2 M(1,5,1) \stackrel{!}{=} \pi^{2} L_{6}(2) .
$$

It is notable that the hypergeometric series in

$$
L_{6}(3)=\frac{\pi^{2}}{15}{ }^{4} F_{3}\left(\begin{array}{ccc|c}
\frac{1}{3}, & \frac{1}{2}, & \frac{1}{2}, & \frac{2}{3} \\
\frac{5}{6}, & 1, & \frac{7}{6} & 1
\end{array}\right)
$$

does not appear in Laporta's final result, though $A_{3}:=20 L_{6}(3) / 3$ appeared at intermediate stages of his calculation. Thus 4-loop QED engages only the first row of the determinant [arXiv:1604.03057]

$$
\operatorname{det}\left[\begin{array}{ll}
M(1,5,1) & M(1,5,3) \\
M(2,4,1) & M(2,4,3)
\end{array}\right]=\frac{5 \zeta(4)}{32} .
$$

2.2 Kloosterman sums over finite fields

For $a \in \mathbf{F}_{q}$, with $q=p^{k}$, we define Kloosterman sums

$$
K(a):=\sum_{x \in \mathbf{F}_{q}^{*}} \exp \left(\frac{2 \pi \mathrm{i}}{p} \operatorname{Trace}\left(x+\frac{a}{x}\right)\right)
$$

with a trace of Frobenius in \mathbf{F}_{q} over \mathbf{F}_{p}. Then we obtain integers

$$
c_{N}(q):=-\frac{1+S_{N}(q)}{q^{2}}, \quad S_{N}(q):=\sum_{a \in \mathbf{F}_{q}^{*}} \sum_{k=0}^{N}[g(a)]^{k}[h(a)]^{N-k}
$$

with $K(a)=-g(a)-h(a)$ and $g(a) h(a)=q$. Then

$$
Z_{N}(p, T)=\exp \left(-\sum_{k>0} \frac{c_{N}\left(p^{k}\right)}{k} T^{k}\right)
$$

is a polynomial in T. For $N<8$ and $s>(N-1) / 2$, the L-series is

$$
L_{N}(s)=\prod_{p} \frac{1}{Z_{N}\left(p, p^{-s}\right)} .
$$

With $N=7$ Bessel functions, the local factors at the primes in

$$
L_{7}(s)=\prod_{p} \frac{1}{Z_{7}\left(p, p^{-s}\right)} \quad \text { for } s>3
$$

are given, for the good primes p coprime to 105 , by the cubic

$$
Z_{7}(p, T)=\left(1-\left(\frac{p}{105}\right) p^{2} T\right)\left(1+\left(\frac{p}{105}\right)\left(2 p^{2}-\left|\lambda_{p}\right|^{2}\right) T+p^{4} T^{2}\right)
$$

where $\left(\frac{p}{105}\right)= \pm 1$ is a Kronecker symbol and λ_{p} is a Hecke eigenvalue of a weight-3 newform with level 525 . For the primes of bad reduction, I obtained quadratics from Kloosterman moments in finite fields:
$Z_{7}(3, T)=1-10 T+3^{4} T^{2}, Z_{7}(5, T)=1-5^{4} T^{2}, Z_{7}(7, T)=1+70 T+7^{4} T^{2}$.
Then Anton Mellit suggested a functional equation

$$
\Lambda_{7}(s):=\left(\frac{105}{\pi^{3}}\right)^{s / 2} \Gamma\left(\frac{s-1}{2}\right) \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right) L_{7}(s)=\Lambda_{7}(5-s)
$$

that was validated at high precision and gave us the empirical result

$$
24 M(2,5,1)=5 \pi^{2} L_{7}(2) .
$$

2.3 Subtleties at $N=8$

With $N=8$ Bessel functions, the L-series comes from the modular form

$$
f_{6,6}:=\left(\frac{\eta_{2}^{3} \eta_{3}^{3}}{\eta_{1} \eta_{6}}\right)^{3}+\left(\frac{\eta_{1}^{3} \eta_{6}^{3}}{\eta_{2} \eta_{3}}\right)^{3}
$$

with weight 6 and level 6. I discovered and Yajun Zhou proved that

$$
M(4,4,1) \stackrel{!}{=} L_{8}(3), \quad 4 M(3,5,1) \stackrel{!}{=} 9 L_{8}(4), \quad 4 M(2,6,1) \stackrel{!}{=} 27 L_{8}(5)
$$

and $4 M(1,7,1) \stackrel{!}{=} 9 \pi^{2} L_{8}(4)$ for the $\mathbf{6}$-loop sunrise integral.
There are two subtleties. Kloosterman moments at $N=8$ do not deliver the local factors directly: in $L_{8}(s)=\Pi_{p} Z_{4}\left(p, p^{2-s}\right) / Z_{8}\left(p, p^{-s}\right)$ we remove factors from $N=4$. Secondly, there is an infinite family of sum rules:

$$
a(n):=\left(\frac{2}{\pi}\right)^{4} \int_{0}^{\infty}\left(\pi^{2} I_{0}^{2}(t)-K_{0}^{2}(t)\right) I_{0}(t) K_{0}^{5}(t)(2 t)^{2 n-1} \mathrm{~d} t
$$

delivers the integers of http://oeis.org/A262961 as was recently proved by Yajun Zhou in [arXiv:1706.01068].

2.4 Vacuum integrals and non-critical modular L-series

In the modular cases $N=5,6,8$, L-series outside the critical strip are empirically related to determinants that contain vacuum integrals:

$$
\begin{aligned}
\operatorname{det} \int_{0}^{\infty} K_{0}^{3}(t)\left[\begin{array}{cr}
K_{0}^{2}(t) & t^{2} K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2} I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{45}{8 \pi^{2}} L_{5}(4) \\
\operatorname{det} \int_{0}^{\infty} K_{0}^{4}(t)\left[\begin{array}{lr}
K_{0}^{2}(t) & t^{2} K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2} I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{27}{4 \pi^{2}} L_{6}(5) \\
\operatorname{det} \int_{0}^{\infty} K_{0}^{6}(t)\left[\begin{array}{rr}
K_{0}^{2}(t) & t^{2}\left(1-2 t^{2}\right) K_{0}^{2}(t) \\
I_{0}^{2}(t) & t^{2}\left(1-2 t^{2}\right) I_{0}^{2}(t)
\end{array}\right] t \mathrm{~d} t & =\frac{6075}{128 \pi^{2}} L_{8}(7) .
\end{aligned}
$$

2.5 Signpost

In work at $N>8$ with David Roberts these features are notable: local factors from Kloosterman moments, sometimes with adjustment; guesses of Γ factors, signs and conductors in functional equations; empirical fits of L-series to determinants of Feynman integrals; quadratic relations between Bessel moments; sum rules when $4 \mid N$.

3 Betti and de Rham matrices for all loops

Construction: Let v_{k} and w_{k} be the rational numbers generated by

$$
\begin{aligned}
\frac{J_{0}^{2}(t)}{C(t)} & =\sum_{k \geq 0} \frac{v_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{17 t^{2}}{54}+\frac{3781 t^{4}}{186624}+\ldots \\
\frac{2 J_{0}(t) J_{1}(t)}{t C(t)} & =\sum_{k \geq 0} \frac{w_{k}}{k!}\left(\frac{t}{2}\right)^{2 k}=1-\frac{41 t^{2}}{216}+\frac{325 t^{4}}{186624}+\ldots
\end{aligned}
$$

where $J_{0}(t)=I_{0}(\mathrm{i} t), J_{1}(t)=-J_{0}^{\prime}(t)$ and

$$
C(t):=\frac{32\left(1-J_{0}^{2}(t)-t J_{0}(t) J_{1}(t)\right)}{3 t^{4}}=1-\frac{5 t^{2}}{27}+\frac{35 t^{4}}{2304}-\frac{7 t^{6}}{9600}+\ldots
$$

We construct rational bivariate polynomials by the recursion

$$
\begin{aligned}
H_{s}(y, z) & =z H_{s-1}(y, z)-(s-1) y H_{s-2}(y, z) \\
& -\sum_{k=1}^{s-1}\binom{s-1}{k}\left(v_{k} H_{s-k}(y, z)-w_{k} z H_{s-k-1}(y, z)\right)
\end{aligned}
$$

for $s>0$, with $H_{0}(y, z)=1$. We use these to define

$$
d_{s}(N, c):=\frac{H_{s}(3 c / 2, N+2-2 c)}{4^{s} s!} .
$$

Matrices: We construct rational de Rham matrices, with elements

$$
D_{N}(a, b):=\sum_{c=-b}^{a} d_{a-c}(N,-c) d_{b+c}(N, c) c^{N+1}
$$

and a and b running from 1 to $k=\lceil N / 2-1\rceil$.
We act on those, on the left, with period matrices whose elements are

$$
\begin{aligned}
P_{2 k+1}(u, a) & :=\frac{(-1)^{a-1}}{\pi^{u}} M(k+1-u, k+u, 2 a-1) \\
P_{2 k+2}(u, a) & :=\frac{(-1)^{a-1}}{\pi^{u+1 / 2}} M(k+1-u, k+1+u, 2 a-1)
\end{aligned}
$$

and on the right with their transposes, to define Betti matrices

$$
B_{N}:=P_{N} D_{N} P_{N}^{\mathrm{tr}} .
$$

Conjecture: The Betti matrices have rational elements given by

$$
\begin{aligned}
B_{2 k+1}(u, v) & =(-1)^{u+k} 2^{-2 k-2}(k+u)!(k+v)!Z(u+v) \\
B_{2 k+2}(u, v) & =(-1)^{u+k} 2^{-2 k-3}(k+u+1)!(k+v+1)!Z(u+v+1) \\
Z(m) & =\frac{1+(-1)^{m}}{(2 \pi)^{m}} \zeta(m) .
\end{aligned}
$$

4 L-series up to 22 loops

Let $\Omega_{a, b}$ be the determinant of the $r \times r$ matrix with $M(a, b, 1)$ at top left, size $r=\lceil(a+b) / 4-1\rceil$, powers of t^{2} increasing to the right and powers of $I_{0}^{2}(t)$ increasing downwards. Thus $\Omega_{1,23}$ is a 5×5 determinant with the 22-loop sunrise integral $M(1,23,1)$ at top left and $M(9,15,9)$ at bottom right. With $N=4 r+4$ Bessel functions, we discovered that

$$
\begin{aligned}
L_{8}(4) & \stackrel{!}{=} \frac{2^{2} \Omega_{1,7}}{3^{2} \pi^{2}} \equiv \frac{4}{9 \pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{7}(t) t \mathrm{~d} t \\
L_{12}(6) & =\frac{2^{6} \Omega_{1,11}}{3^{4} \times 5 \pi^{6}} \\
L_{16}(8) & =\frac{2^{14} \Omega_{1,15}}{3^{7} \times 5^{2} \times 7 \pi^{12}} \\
L_{20}(10) & =\frac{2^{22} \times 11 \times \mathbf{1 3 1} \Omega_{1,19}}{3^{11} \times 5^{6} \times 7^{3} \pi^{20}} \quad \text { to } 44 \text { digits } \\
L_{24}(12) & =\frac{2^{29} \times \mathbf{1 2 5 5 8 8 7 7} \Omega_{1,23}}{3^{19} \times 5^{9} \times 7^{3} \times 11 \pi^{30}} \quad \text { to } 19 \text { digits },
\end{aligned}
$$

where boldface highlights primes greater than N. We used Kloosterman sums over finite fields \mathbf{F}_{q} with $q<280000$. 30 GHz -years of work, on 50 cores, gave 44-digit precision for $L_{20}(10) . L_{24}(12)$ agrees up to 19 digits.

With a cut of a line in the diagram at top left of the matrix, we found

$$
\begin{aligned}
L_{8}(5) & \stackrel{!}{=} \frac{2^{2} \Omega_{2,6}}{3^{3}} \equiv \frac{4}{27} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{6}(t) t \mathrm{~d} t \\
L_{12}(7) & =\frac{2^{5} \times 11 \Omega_{2,10}}{3^{6} \times 5^{2} \pi^{2}} \\
L_{16}(9) & =\frac{2^{14} \times 13 \Omega_{2,14}}{3^{9} \times 5^{3} \times 7^{2} \pi^{6}} \\
L_{20}(11) & =\frac{2^{19} \times 17 \times 19 \times \mathbf{2 3} \Omega_{2,18}}{3^{13} \times 5^{7} \times 7^{3} \pi^{12}} \\
L_{24}(13) & =\frac{2^{27} \times 17 \times 19^{2} \times 23^{2} \times 46681 \Omega_{2,22}}{3^{23} \times 5^{12} \times 7^{4} \times 11^{2} \pi^{20}} .
\end{aligned}
$$

At $N=12,16,20$, with an odd sign in the functional equation, we found

$$
\begin{aligned}
-L_{12}^{\prime}(5) & =\frac{2^{4}\left(2^{6} \times \mathbf{2 9} \widehat{\Omega}_{2,10}+3 \Omega_{2,10} \log 2\right)}{3^{2} \times 7 \pi^{6}} \\
-L_{16}^{\prime}(7) & =\frac{2^{9}\left(2^{7} \times \mathbf{8 3} \widehat{\Omega}_{2,14}+3 \times 11 \Omega_{2,14} \log 2\right)}{3^{5} \times 5 \pi^{12}} \\
-L_{20}^{\prime}(9) & =\frac{2^{17} \times 17 \times 19\left(2^{9} \times 7 \times \mathbf{1 0 1} \widehat{\Omega}_{2,18}+5 \times 13 \Omega_{2,18} \log 2\right)}{3^{8} \times 5^{4} \times 7^{2} \times 11 \pi^{20}}
\end{aligned}
$$

for central derivatives, using enlarged determinants $\widehat{\Omega}_{2,4 r+2}$ of size $r+1$ with regularization of $M(2 r+2,2 r+2,2 r+1)$ at bottom right.

In the cases with $N=4 r+2$, we obtained

$$
\begin{aligned}
L_{6}(2) & \left.\stackrel{!}{=} \frac{2 \Omega_{1,5}}{\pi^{2}} \equiv \frac{2}{\pi^{2}} \int_{0}^{\infty} I_{0}(t) K_{0}^{5}(t) t \mathrm{~d} t \quad \text { [present in } \mathrm{a}_{4}\right] \\
L_{6}(3) & \left.\stackrel{!}{=} \frac{2 \Omega_{2,4}}{3} \equiv \frac{2}{3} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{4}(t) t \mathrm{~d} t \quad \text { [absent from a }{ }_{4}\right] \\
L_{10}(4) & =\frac{2^{7} \Omega_{1,9}}{3^{2} \pi^{6}} \\
L_{10}(5) & =\frac{2^{4} \Omega_{2,8}}{3 \times 5 \pi^{2}} \\
L_{14}(6) & =0 \\
L_{14}(7) & =\frac{2^{10} \times 11 \times 13 \Omega_{2,12}}{3^{6} \times 5^{2} \times 7 \pi^{6}} \\
L_{18}(8) & =\frac{2^{21} \times 17 \times 19 \Omega_{1,17}}{3^{5} \times 5^{4} \times 7 \pi^{20}} \\
L_{18}(9) & =\frac{2^{12} \times 13 \times 17 \times \mathbf{4 1} \Omega_{2,16}}{3^{8} \times 5^{3} \times 7^{2} \pi^{12}} \\
L_{22}(10) & =0 \\
L_{22}(11) & =\frac{2^{23} \times 17 \times 19 \times 11621 \Omega_{2,20}}{3^{14} \times 5^{7} \times 7^{3} \pi^{20}}
\end{aligned}
$$

with central vanishing from an odd sign at $N=14$ and $N=22$.

For cases with odd N, we obtained

$$
\begin{aligned}
L_{5}(2) & \stackrel{!}{=} \frac{2^{2} \Omega_{2,3}}{3} \equiv \frac{4}{3} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{3}(t) t \mathrm{~d} t \\
L_{7}(2) & =\frac{2^{3} \times 3 \Omega_{2,5}}{5 \pi^{2}} \equiv \frac{24}{5 \pi^{2}} \int_{0}^{\infty} I_{0}^{2}(t) K_{0}^{5}(t) t \mathrm{~d} t \\
L_{9}(4) & =\frac{2^{6} \Omega_{2,7}}{3 \times 5 \pi^{2}} \\
L_{11}(4) & =\frac{2^{8} \times 5 \Omega_{2,9}}{3 \times 7 \pi^{6}} \\
L_{13}(6) & =\frac{2^{7} \times \mathbf{1 4 9} \Omega_{2,11}}{3^{3} \times 5 \times 7 \pi^{6}} \\
L_{15}(6)=\frac{2^{8} \times 7 \times 5 \mathbf{3} \Omega_{2,13}}{3^{2} \times 5 \pi^{12}} & \text { to } 43 \text { digits } \\
L_{17}(8)=\frac{2^{15} \times \mathbf{2 9} \Omega_{2,15}}{3^{5} \times 5^{2} \times 7 \pi^{12}} & \text { to } 23 \text { digits } \\
L_{19}(8)=\frac{2^{14} \times \mathbf{1 0 9 3} \times \mathbf{1 3 1 7 1} \Omega_{2,17}}{3^{4} \times 5^{4} \times 7 \times 11 \pi^{20}} & \text { to } 14 \text { digits. }
\end{aligned}
$$

Comment: We also have results relating Bessel moments $M(a, b, c)$ with even c to L-series from Kloosterman moments with a quadratic twist.

Summary

1. QED at 4 loops involves Bessel moments and a weight-4 L-series.
2. The L-series for 5,6 and 8 Bessel functions are modular. This seems to be necessary for relating vacuum integrals to non-critical L-series.
3. There are quadratic relations of the form $P_{N} D_{N} P_{N}^{\mathrm{tr}}=B_{N}$ with period, de Rham and Betti matrices that we have specified.
4. Relations between determinants of Feynman integrals and L-series have been discovered up to 22 loops and presumably go on for ever.

I thank kind colleagues and hosts at recent productive meetings in Creswick (Victoria), Newcastle (NSW), Mainz, Oxford, Paris, Marseille and Edinburgh.

