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A	plan	

•  An	outline	of	some	of	recent	successes	and	limita2ons	of	
				color/kinema2cs	duality	and	the	double-copy	





A	plan	

•  An	outline	of	some	of	recent	successes	and	limita2ons	of	
				color/kinema2cs	duality	and	the	double-copy	

•  Diff.	invariance,	double-copy	and	relaxa2on	of	color/kinema2cs	duality	

•  Higher-loop	scaAering	amplitudes,	contact	terms	and	novel	methods	
					for	their	determina2on	

•  An	applica2on	and	a	word	on	integra2on	
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A	duality	between	color	and	kinema2cs	
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•  For	qEs	with	certain	addi2onal	maAer	

Ci + Cj + Ck = 0

ni = ni(p↵ · p� , ✏ · p↵, . . . )

Bern,	Carrasco,	Johansson	

non-adjoint	rep:	Johansson,	Ochirov;	Chiodaroli,	Jin,	RR;		
Chiodaroli,	Gunaydin,	Johansson,	RR	

ni + nj + nk = 0

•  Present	in	many	theories:	YM+maAer,	QCD,	Coulomb	branch,						,	NLSM,	
					Z-theory,	BLG,	ABJM,	(DF),	…	as	well	as	certain	form	fcts	and	corr.	fcts.	
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Color/kinema2cs	
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ni = ni(p↵ · p� , ✏ · p↵, . . . )

Ci = . . . fa1bcf ca2d . . .

Ci + Cj + Ck = 0 $ ni + nj + nk = 0

Bern,	Carrasco,	Johansson	

							are	not	
gauge-invariants	
ni

-	5-point	2-loop	all-plus	amplitude		
						remarkably-complicated	expression;	remarkably	bad	powercoun2ng	

Mogull,	O’Connell	

-	Can	be	defined	for	form	factors	of	certain	operators;	
							first	5-loop	computa2on	–	the	form	factor	of	the	20’	operator	in	N=4	sYM	 Yang	

Boels,	Kniehl,	Tarasov,	Yang	

							Can	be	defined	for	correla2on	func2ons	of	certain	operators	 cf.	Engelund,	RR	

-	Sugges2on	for	a(nother)	symmetry	behind	BCJ	amplitudes	rela2ons	
						momentum-dependent	shiE	of	color	factors	

Brown,	Naculich	

-	Explicit	color/kinema2cs-sa2sfying	numerators	for	NLSM	 Du,	Fu;	Chen,	Du	
-	2-loop	4-point	amplitudes	in	N=2	SQCD	 Johansson,	Kaelin,	Mogull	

-	Color/kinema2cs-sa2sfying	Feynman	rules	from	a	NLSM	ac2on	 Cheung,	Shen	

-	Generaliza2on	of	BCJ	amp.	rel’s	at	higher	loops	 Vanhove,	Tourkine;	also	He,	SchloAerer;		
S2eberger,		Hohenegger;	Chiodaroli,	Gunaydin,	Johansson,	RR;	earlier	Boels,	Isermann		

-	(DF)   	theory	 Johansson,	Nohle	2	



and	the	double	copy	
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Bern,	Carrasco,	Johansson	

-	5-loop	double	copy	of	N=4	sYM	Sudakov	form	factor	
								-	physical	interpreta2on	is	under	debate;	not	necessarily	a	form	factor	of	local	op.		

Gang	Yang	

-	Progress	in	the	iden2fica2on	of	SG	symmetries	i.t.o.	YM	opera2ons	 Anastasiou,		
Borsten,		Duff,		Hughes,	Marrani,	Nagy,		Zoccali	

-	Property	of	many	pure	&	YM/Maxwell-Einstein	SGs	w/	further	maAer,	open	string		
			theory,	self-dual	gravity,																,	EYM+SSB,	Conformal	SG,	…	R+R3

-	1-	&	2-loop	4-point	amp’s	in	N=2	SG	+	maAer	 Johansson,	Kaelin,	Mogull,	Ochirov	

-	New	perspec2ve	on	“enhanced	cancella2ons”	 Bern,	Enciso,	Para-Mar2nez,	Zeng	

-	New	techniques	for	SG	amplitudes	when	c/k	is	expected	but	not	manifest	
Bern,	Carrasco,	Chen,	Johansson,	RR	

-	First	example	of	3-point	scaAering	amplitude	in	curved	space	from	double-copy	
Adamo,	Casali,	Mason,	Nekovar	

-	double-copy	for	Conformal	SG	 Johansson,	Nohle	

-	EYM	amp’s	from	gauge	inv.	w/o	manifest	c/k	 Chiodaroli,	Gunaydin,	Johansson,	RR	
Feng,	Teng	

-	YM	classical	solu2ons											(S)G	classical	solu2ons		 O’Connell	et	al	
Goldberger,	Ridgeway	

-	KLT	at	1	loop	 He,	SchloAerer	



-	Kerr-Schild-type	solu2ons	 Monteiro,	O'Connell,	White	

gµ⌫ = ḡµ⌫ + hµ⌫ hµ⌫ = �

2
�kµk⌫ ḡµ⌫k

µk⌫ = 0 (k ·D)k = 0

Aµ = g
1

4⇡r
kµ �! hµ⌫ = �M

2

1

4⇡r
kµk⌫

A	word	on	classical	gravity	solu2ons	from	YM	classical	solu2ons		

Schwarzschild																					(Coulomb	field	of	point	charge)	2	

-	Other	solu2ons:		

Kerr	black	hole,	some	higher	dimensional	black	holes,	supersymmetric	black	holes,		
Taub-NUT	spaces,	spaces	w/	cosmological	constant,	radia2on	from	accelera2ng	b.h.	

Luna,	Monteiro,	Nicholson,	O’Connell,	White;	Goldberger,	Ridgway;		
Cardoso,	Nagy,	Nampuri;	Ridgway,	Wise	

-	Algorithm	for	perturba2ve	construc2on	of	gravity	sol/s	i.t.o.	gauge	theory	sol’s	
Luna,	Monteiro,	Nicholson,	O'Connell,	Ochirov,	Westerberg,	White	

+	 +	…	 +	 +	…	

-	Perturba2ve	gravita2onal	radia2on	for	colliding	masses/b.h.	from	gluon	radia2on				
Goldberger,	Ridgway	

possible	applica2ons	to	LIGO	(in	the	early	stages	of	a	merger)	



A	word	on	enhanced	cancella2ons	
Extensive	work	on	understanding	the	UV	behavior	of	(super)gravity	

-	Supersymmetry	constraints	

-	Duality	constraints	 Beisert,	Elvang,	Freedman,		
Kiermaier,	Morales,	S2eberger;	Kallosh,		etc	

Green,	Bjornsson,	Bossard,	Howe,	Stelle,	Nicolai	
Elvang,	Kiermaier,	Ramond,	Kallosh,	Vanhove,	Bern,	Davies,	Dennen,	etc					

Consensus:	poor	UV	behavior	unless	new	cancella2ons	between	diag’s	exist	that	are		
“not	consequences	of	supersymmetry	in	any	conven2onal	sense”			 Green,	Bjornsson	

Such	“enhanced	cancella2ons”	are	known	to	exist	
N=4	SG	does	not	diverge	at	3	loops	in	D=4	
N=5	SG	does	not	diverge	at	4	loops	in	D=4	
So…	Does	N=8	SG	diverge	at	7	loops	in	D=4	?	
								Does	N=8	SG	diverge	at	5	loops	in	D=24/5	?	

Sugges2on:	0.	Manifes2ng	the	enhanced	cancella2ons	requires	integra2on	
																										In	cri2cal	dimension	they	follow	from	
																						1.	Lorentz	invariance	
																						2.	SL(L) reparam.	symmetry	of	L-loop	integrals	
																						3.	Checks	at	2,	3	and	4	loops	

Bern,	Enciso,	Para-Mar2nez,	Zeng	

Bern	et	al.	

Important	to	check	this	sugges2on	and	adjust	it	if	necessary	



Color/kinema2cs	and	the	double-copy	

-	Many	open	ques2ons:	
		
										-	Develop	4-,	5-	and	higher-loop	integra2on	technology		

										-	All	double	copies	of	gauge	th’s	are	(super)gravi2es,	but	
																							are	all	(super)gravi2es	double	copies?		
										-	Is	there	a	criterion	for	when	a	qE	can/cannot	be	a	double-copy?	

										-	Color/kinema2cs	vs.	fundamental	principle?	

										-	Complete	explicit	solu2on	for	the	tree-level	S	matrix	in	<theory	of	your	choice>	

										-	Complete	iden2fica2on	of	(U-duality)	symm’s	and	of	their	physical	consequences	

										-	Understand	the	kinema2c	algebra	and	its	off-shell	realiza2on	

										-	Is	there	a	direct	link	between	c/k	and	the	UV	proper2es	of	double	copy?	

										-	Can	all	classical	solu2ons	of	(super)gravity	be	expressed	as	double-copies?		

										-	Find	explicit	(tree-level	n-point)	S-matrix	of	a	perturba2ve	QFT	in	curved	space	

		-	…	

	generalize	2	&	3-loop	integra2on	and	reduc2on	strategy	of		Henn,	Mistlberger,	Smirnov	
Zhang	et	al;	Johansson,	Kosower,	Larsen	



Color/kinema2cs	and	the	double-copy	 Bern,	Carrasco,	Johansson	

Mogull,	O’Connell	

-	Progress	on	some	of	them	hinges	on	several	technical	issues		

	+	can	be	difficult	to	find	manifest	c/k-sa2sfying	rep’s	at	higher	loops	
													-	large	ansatze												large	linear	systems	--																	unknowns	O(106)

	+	the	result	can	have	unexpectedly	high	powers	of	loop	mom.	
	-	larger	ansatze	than	one	might	expect	

	+	classical	solu2on	construc2on	slightly	different	from	scaAering	amp’s;	
					c/k	duality	needs	some	reanalysis	at	higher	points	

-	What	is	needed:	

	+	going	straight	for	(super)gravity	amplitudes	is	even	worse		

	+	keep	the	idea	of	the	double	copy	

	+	avoid	large	ansatze															construct	amplitudes	one	piece	at	a	2me	
-	may	address	possible	difficul2es	with	construc2on	of	classical	solu2ons	
			(projec2on	onto	pure	gravity	states	is	a	separate	issue)	

	+	some	kind	of	structure	should	be	present	



Diff	inv.	from	gauge	inv.	and	what	to	expect	w/o	manifest	c/k	duality:	

	follow	from	YM	linearized	gauge	symmtry	

If	c/k	is	manifest,	all	double-copy	theories	are	diffeomorphism-invariant:	

M =
X

�

n�(✏1(p1), ✏2, . . . )ñ�(✏01(p1), ✏
0
2, . . . )
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1.	Linearized	YM	gauge	transforma2ons:	
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2.	Linearized	diffeomorphisms:	

✏µ(p) 7! pµ

✏µ⌫(p) 7! p(µq⌫)
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�M =
X

�

n�(p1, ✏2, . . . )ñ�(✏01(p1), ✏
0
2, . . . )

D�
+ (n $ ñ)

c�2.	Jacobi	iden22es	for		

n�, ñ�&c� have	the	same	proper2es	 																				for	the	same	reasons		
																				as	in	YM	theory	

BCJ;	JO;BDHK;	Chiodaroli,	Gunaydin,	Johansson,	RR	

=) �M = 0



Just	how	bad	is	a	double	copy	without	manifest	c/k	duality?	
Closest	analog:	gauge	theory	in	which	we	formally	relax	the	color	Jacobi	rela2ons	

On	to	gravity:	

�i : �j : �k :

�A ⇠
X

�ijk

f�ijk(✏̂1, ✏2, . . . , p1, . . . )(c�i + c�j + c�k)

D�ijk

�M ⇠
X

�ijk

f�ijk(✏̂1, ✏2, . . . , p1, . . . )(ñ�i + ñ�j + ñ�k)

D�ijk

+ (n $ ñ)

Conclusions:		
1.	Breaking	of	diff.	inv.	of	naïve	double-copy	is	itself	a	double	copy	
2.	Correc2on	terms	restoring	diff.	inv.	should	also	be	double-copies	
3.	Relevant	factors	are															and															--	viola2ons	of	the	kinema2c	
					Jacobi	rela2ons	in	the	two	gauge	theory	factors				

J{�,�}

⇠
X

�

X

�2�

f{�,�}(✏̂1, ✏2, . . . , p1, . . . ) J̃{�,�}
D�

+ (n $ ñ)

J̃{�,�}

0.	It	should	be	possible	to	correct	a	naïve	double-copy	



Most	straighxorward	test	of	these	ideas	is	at	tree	level	

Should	be	equally	straighxorward	to	use	them	to	find	generalized	cuts	

KLT:	too	many	terms,	too	many	spurious	poles,	not	organized	in	terms	of	graphs		

More	efficient	methods	always	come	in	handy	



To	avoid	this…	

Ansatz-based	generalized	unitarity/method	of	maximal	cuts:	

1.	Organize	integrand	in	terms	of	graphs	of									theory;	each	graph	gets	an		
					ansatz	for	numerator	with	some	desired	proper2es	

'3

2.	Fix	numerators	by	fiyng	them	onto	cuts		

Max	cuts	 N-Max	cuts	 N		-Max	cuts	2	 N		-Max	cuts	3	

E.g.	

AYM =
X

�

Z
n�c�
D�

M(S)G =
X

�

Z
N�

D�

Leads	to	(obscure)	large	linear	systems	at	sufficiently	high	loop	order	



Generalized	unitarity/the	contact	term	method:	

1.	Start	with	some	approxima2on	of	the	supergravity	amplitude,	organized	in		
			terms	of	the	graphs	of							theory,	which	has	the	correct	maximal	cuts,	e.g.	'3

N-contact	 N		-contact	2	E.g.	

Bern,	Carrasco,	Chen,	Johansson,	RR		

M(S)G =
X

�

Z
n�ñ�

D�

-focus	on	(super)gravity	

2.	Itera2vely	correct	it	w/	graphs	w/	higher-pt.	vert’s	to	sa2sfy	such	that	N		-Max	cuts	k	

N		-contact	=	N		-max	cut	–	(N		-max	cut	of	approxima2on	of	amp.)	k	 k	

-		Each	cut	gives	an		
			independent	contrib.		
			to	amplitude		
-	Freedom	in	choosing	
			each	of	them	

-		Lots	of	cuts	

-		But	a	finite	number!	

a	naïve	double-copy:	

-		Effec2vely	a	tree-level	calcula2on	
-		Ideal	if	cuts	are	organized	in	terms	of	cubic	tree	graphs	

N		-contact	3	

k	

Bern,	Carrasco,	Dixon,	Johansson,	RR		

-	N=8	SG:	N							-contact	2L-4	



A	few	unexpected	but	useful	features	

0.	A	naïve	double-copy	has	the	correct	maximal	and	next-to-maximal	cuts	

N		-contact	=	N		-max	cut	–	(N		-max	cut	of	approximate	amplitude)	k	 k	

1.	Contact	terms	are	much	simpler	than	one	has	the	right	to	expect	
-	In	N=8	SG	most	of	them	vanish	(at	least	through	5	loops)	

2.	Four-point	double-contact	terms	factorize;	each	factor	has	features	resembling		
					gauge	theory	quan22es		

3.	Higher-contact	terms	no	longer	factorize	but,	in	hindsight,	can	be	wriAen	as	sums	
					of	products	of	factors	with	features	resembling	gauge	theory	quan22es		

Using	KLT	to	construct	SG	cuts:	

4.	These	observa2ons	match	the	expected	features	of	the	conclusions	we	drew	from	
					the	diff.	invariance	constraints	on	correc2ons	to	a	naïve	double	copy.			

Expect	that	it	should	be	possible	to	express	cuts	and	contacts	in	terms	of		
BCJ	discrepancy	func2ons,										and										,	using	solely	gauge	theory	informa2on	J�,� J̃�,�

Key	for	using	this	is	the	generalized	gauge	symmetry	

&				4-pt	amp’s	obey	c/k	duality	M tr
4 (1, 2, 3) = iAtr

3 (1, 2, 3)A
tr
4 (1, 2, 3)

k	



ni1,i2,...ik = nBCJ
i1,i2,...ik +�i1,i2,...ik

X

i1,...,ik

�i1,i2,...ikci1,i2,...ik
Di1 . . . Dik

= 0

It	leaves	the	gauge	theory	amplitude	invariant	

A	solu2on:	the	numerators	of	each	graph	of	triplet	of	graphs	related	by	Jacobi			
transforma2on	on	edges	i, j, k is	shiEed	by	the	inverse	propagator	of	its	Jacobi	edge	
mul2plied	by	an	arbitrary	func2on	common	to	all	members	of	the	triplet	

Cnaive 2-copy =
X

i1,...,ik

ni1,i2,...ik ñi1,i2,...ik

Di1 . . . Dik
1

2

3

k

CG =
X

i1,...,ik

nBCJ
i1,i2,...ik ñ

BCJ
i1,i2,...ik

Di1 . . . Dik

The	generalized	gauge	transf.	rela2ng	n	and	n     :	BCJ	
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It	leaves	the	gauge	theory	amplitude	invariant	
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BCJ
i1,i2,...ik
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The	generalized	gauge	transf.	rela2ng	n	and	n     :	BCJ	

X

i1,...,ik

�i1,i2,...ikn
BCJ
i1,i2,...ik

Di1 . . . Dik

= 0

CG =
X

i1,...,ik

ni1,i2,...ik ñi1,i2,...ik

Di1 . . . Dik

�
X

i1,...,ik

�i1,i2,...ik�̃i1,i2,...ik

Di1 . . . Dik

The	gravity	(double-copy	theory)	cut:	
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The	generalized	gauge	transf.	rela2ng	n	and	n     :	BCJ	

X

i1,...,ik

�i1,i2,...ikn
BCJ
i1,i2,...ik

Di1 . . . Dik

= 0

CG =
X

i1,...,ik

ni1,i2,...ik ñi1,i2,...ik

Di1 . . . Dik

�
X

i1,...,ik

�i1,i2,...ik�̃i1,i2,...ik

Di1 . . . Dik

The	gravity	(double-copy	theory)	cut:	

Express						in	terms	of			� J

Why	is	there	a	solu2on	at	all?!		

Ji1,...,ip�1,{A,l},ip+1,...,ik = ni1,...,ip�1,A,ip+1,...,ik ± ni1,...,ip�1,B,ip+1,...,ik ± ni1,...,ip�1,C,ip+1,...,ik

= �i1,...,ip�1,A,ip+1,...,ik ±�i1,...,ip�1,B,ip+1,...,ik ±�i1,...,ip�1,C,ip+1,...,ik

Many	more	equa2ons	than	�i1,...,ik



All	double-4-point	cut	and	contact	
terms	from	gauge	theory	data		

C4⇥4
YM =

X

i1,i2

ni1i2ci1i2

d(1)i1
d(2)i2

The	gauge	parameters:	

Gauge	theory	cut:	 Generalized	gauge	transforma2on:	

BCJ	discrepancy	func2ons:	

Supergravity	cut:		

Bern,	Carrasco,	Chen,	Johansson,	RR	

X

i1,i2

�i1i2ci1i2

d(1)i1
d(2)i2

= 0 =
X

i1,i2

�i1i2n
BCJ
i1i2

d(1)i1
d(2)i2

�i1i2 ⌘ ni1i2 � nBCJ
i1,i2

X

i1

ci1i2 = 0 =
X

i2

ci1i2

(
P

i1
d(1)i1

= 0 =
P

i2
d(2)i2

)

C4⇥4
SG =

X

i1,i2

ni1i2 ñi1i2

d(1)i1
d(2)i2

�
X

i1,i2

�i1i2�̃i1i2

d(1)i1
d(2)i2

�i1i2 = d(1)i1
↵(2)(i2) + d(2)i2

↵(1)(i1)

J•,i2 ⌘
X

i1

ni1i2 = d(2)i2

X

i1

↵(1)(i1) Ji1,• ⌘
X

i2

ni1i2 = d(1)i1

X

i2

↵(2)(i2)



All	double-4-point	cut	and	contact	
terms	from	gauge	theory	data		

C4⇥4
YM =

X

i1,i2

ni1i2ci1i2

d(1)i1
d(2)i2

The	gauge	parameters:	Gauge	theory	cut:	

BCJ	discrepancy	func2ons:	

Supergravity	cut:		
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All	double-4-point	cut	and	contact	
terms	from	gauge	theory	data		
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The	gauge	parameters:	Gauge	theory	cut:	

BCJ	discrepancy	func2ons:	

Bern,	Carrasco,	Chen,	Johansson,	RR	

(
P

i1
d(1)i1

= 0 =
P

i2
d(2)i2

)

Supergravity	cut	(there	are	several	equivalent	variants):		

-	Correct	in	any	double-copy	quantum	field	theory	
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-	Only	par2cular	combina2ons	of	gauge	parameters	appear	in	the	SG	cut	

Complete	1-loop	4-point	amp’s	without	massive	maAer	
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4Detailed		
3-loop	example:	

•  Reproduces	known	SG	contact	term	
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n1,1 = s2 , n1,2 = s(t+ ⌧26 + ⌧26) , n1,3 = s(u� ⌧26)

n1,1 = s2 , n1,2 = s(t+ ⌧37 + ⌧27) , n1,3 = s(u� ⌧27) J1,• = s⌧27

J•,1 = s⌧26�!

�!

NN=8
(l) = �2

J•,1J1,•
⌧26⌧37

= �2s2

Bern,	Carrasco,	Dixon,	Johansson,	RR	

•  All	other	nonzero	double-four-point	contacts	are	relabelings	of	this	one	

Relevant	YM	numerators	(from	0808.4112)	

•  Five-point	contact	terms	are	also	present;	more	formulae	are	needed	

Bern,	Carrasco,	Chen,		
Johansson,	RR	



Ji1,...,ip�1,{A,l},ip+1,...,ik = ni1,...,ip�1,A,ip+1,...,ik ± ni1,...,ip�1,B,ip+1,...,ik ± ni1,...,ip�1,C,ip+1,...,ik

= �i1,...,ip�1,A,ip+1,...,ik ±�i1,...,ip�1,B,ip+1,...,ik ±�i1,...,ip�1,C,ip+1,...,ik

So	why	are	there																																	solu2ons:	J(�) ! �(J)

A.	Not	all	discrepancy	func2ons	are	independent	

B.	Not	all	generalized	gauge	parameters	are	important		

C.	Global	picture:	
								1.	some	gauge	parameters	are	func2ons	of	
								2.	remaining	gauge	parameters	drop	out	from	the	SG	amplitude	
								3.	re-expressing	in	terms	of	overcomplete	set	of J restores	locality	

-	Defined	for	each	propagator	of	each	graph													each	appears	three	2mes	

-	(n-3)(2n-5)!!/3	vs.	(2n-5)!!														linear	rela2ons	similar	in	spirit	to	KK	

-	when	evaluated	on	parameters	leaving	amp’s	invariant,	the	rhs	is	of	the	form	
																																with	K	noninver2ble:					K�independent v0 ·K = 0 �! v0 · J = 0

- K	noninver2ble													not	all																									are	determined	i.t.o.			�independent J independent

-	Remaining	ones	drop	out	of	SG	amplitude	

J independent

E.g.	single-blob:		
X

i,�,�0

ci,�,�0
J{i,�}

d(�
0)

i

= 0 5-&6-blob:													Tye,	Zhang	
Bjerrum-Bohr,	Damgaard,		Sondergaard,	Vanhove	



C4⇥···⇥4
SG = . . .

Generaliza2on:	cuts	have	(fairly)	closed-form	structured	expressions	i.t.o.	cubic	graphs	

-	Subtrac2on	of	the	cuts	of	the	approximate	amplitude	is	straighxorward	
-	Built-in	verifica2on:	difference	must	be	local	(i.e.	all	denominators	should	cancel)	
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Bern,	Carrasco,	Chen,	Johansson,	RR	
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An(other)	example:	a	class	of	N			contact	terms	

1

2
3N		-Max	cut:	3	

X

i1,i2,i3

ni1i2i3 ñi1i2i3

d(1)i1
d(2)i2

d(3)i3

�T1 � T2

N		-Max	cut	of	(naïve	double	copy	+	N		-Max	contacts)	3	 2	

•  naïve	double	copy:		
X

i1,i2,i3

ni1i2i3 ñi1i2i3

d(1)i1
d(2)i2

d(3)i3

•  N		-max	ct’s:	2	

Difference	is	a	linear	combina2on	of	J	bilinears;	all	denominators	cancel	out	

3	

� 1

d(1)1 d(2)1 d(3)k
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J•,1,kJ̃1,•,k + J1,•,kJ̃•,1,k

⌘

� 1

d(1)k d(2)1 d(3)1
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N		-contact	=	N		-max	cut	–	(N		-max	cut	of	approximate	amplitude)	k	 k	 k	



C5⇥4⇥···⇥4
SG = . . .

Many	generalized	cuts	have	(fairly)	closed-form	structured	expressions	

Others,	e.g.									have	currently	a	less…	pleasant	appearance	C6
SG

C5⇥4
SG =

X

i

niñi

d(1)i,1d
(1)
i,2d

(2)
i,1

+more complicated

These	formulae	hold	in	any	adjoint	double-copy	field	theory	

The	5-point	formula	is	similar	to	(though	preyer	than)	a	known	5-point	tree	formula,		
wriAen	in	a	basis	of	discrepancy	func2ons			Bjerrum-Bohr,	Damgaard,	Sondergaad,	Vanhove	

C5
SG =

15X

i=1

niñi

d(1)i,1d
(1)
i,2

�1

6

15X

i=1

J{i,1}J̃{i,2} + J{i,2}J̃{i,1}

d(1)i,1d
(1)
i,2



•  Star2ng	point	can	be	any	graph-based	representa2on	of	amplitudes,		
					including	Feynman	diagrams	

•  Novel	way	to	find	gravity	tree-level	amplitudes	adapted	to	cubic	graphs	

Some	features:	

•  Cuts	are	naturally	in	a	cubic	graph-based	form;	iden2fica2on	of	the		
						new	contact	term	is	straighxorward	

•  Highest	contact	terms	depend	on	the	power	coun2ng	of	the	theory;		
						top	levels	are	very	simple	–	linear	in	momentum	invariants.	Numerical		
						approach	–	rather	than	analy2c	simplifica2on	–	may	be	more	efficient	

•  But…	



•  Star2ng	point	can	be	any	graph-based	representa2on	of	amplitudes,		
					including	Feynman	diagrams	

•  Novel	way	to	find	gravity	tree-level	amplitudes	adapted	to	cubic	graphs	

Some	features:	

•  Cuts	are	naturally	in	a	cubic	graph-based	form;	iden2fica2on	of	the		
						new	contact	term	is	straighxorward	

•  Highest	contact	terms	depend	on	the	power	coun2ng	of	the	theory;		
						top	levels	are	very	simple	–	linear	in	momentum	invariants.	Numerical		
						approach	–	rather	than	analy2c	simplifica2on	–	may	be	more	efficient	

•  But	the	proof	is	in	the	pudding…	



Allowed	us	to	construct	the	4-point	5-loop	integrand	of	N=8	supergravity		
Bern,	Carrasco,	Chen,	Johansson,	RR,	Zeng	–	to	appear	

together	with		
2-,	3-,	4-,	5-,	and		
6-collapsed		
propagator	graphs:	

N		:	9159	
N		:	17935	
N		:	23996	
N		:	24198	
N		:	17110	

-	only	about	20%	of	
		which	are	nonzero	

Explicit	power	ct	is	poor	
because	of	poor	rep.	
of	N=4	sYM	amplitude		

2	
3	
4	
5	
6	



On	integra2on	

-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func2on:	one	needs	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D =	22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc2on	of	the	integrand	

-	General	structure	of	the	amplitude:	

M(5)
4 ⇠ (stuM(0)

4 ) s2
Z

d5Dl
6X

k=0

N6�k(p2, l · p, li · lj)
((l + p)2)16�k

⇠ (stuM(0)
4 ) s2

Z
d5Dl

⇥
F�10(li · lj) + sF�11(li · lj) + s2F�12(li · lj) + . . .

⇤

4	 22/5	 24/5	Cri2cal	dimension:	

Observa2ons:	1.	All	linear	rela2ons	among	integrals	are	IBPs	(					SL(L) symmetry)	
		2.	Lower	loops	suggest	that	integrals	with	maximal	cuts	have		
					highest	transcendentality		Kosower,	Larsen;	Abreu,	BriAo,	Duhr,	Gardi;		

Bosma,	Sogaard,	Zhang;	Schabinger	et	al;	Tancredi,	Primo;	Zeng;	etc		

Two	such	integrals;	through	IBPs,	they			
receive	contribu2ons	from	many	terms	

⇠

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

v.	Manteuffel,	Schabinger;	Henn	et	al;	Larsen,	Zhang;	Zeng,	etc		
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-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func2on:	one	needs	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D=22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc2on	of	the	integrand	

-	General	structure	of	the	amplitude:	
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Observa2ons:	1.	All	linear	rela2ons	among	integrals	are	IBPs	(					SL(L)	symmetry)	
		2.	Lower	loops	suggest	that	integrals	with	maximal	cuts	have		
					highest	transcendentality		

Two	such	integrals;	through	IBPs,	they			
receive	contribu2ons	from	many	terms	

coefficients		
vanish,	

as	expected	

⇠

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

v.	Manteuffel,	Schabinger;	Henn	et	al;	Larsen,	Zhang;	Zeng,	etc		

Kosower,	Larsen;	Abreu,	BriAo,	Duhr,	Gardi;		
Bosma,	Sogaard,	Zhang;	Schabinger	et	al;	Tancredi,	Primo;	Zeng;	etc		



On	integra2on	

-	5-loop	vacuum	integrals	are	state	of	the	art	in	QCD	

-	QCD	beta	func2on:	one	needs	to	expand	to	second	order	in	external	momenta;	
			Here	second	order	(6	external	momenta)	checks	convergence	in	D=22/5	
														-	constrained	by	supersymmetry	
														-	checks	our	construc2on	of	the	integrand	
																																further	strong	indica2on	that	integrand	is	correct	

Chetyrkin,	Kataev,	Tkachov;	Laporta;	A.V.	Smirnov;	V.	A.	Smirnov;		
Vladimirov;		Marcus,	Sagnoy;	Czakon;	Laporta;	Kosower;		

v.	Manteuffel,	Schabinger;	Henn	et	al;	Larsen,	Zhang;	Zeng,	etc		

-	General	structure	of	the	amplitude:	
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-	Enhanced	cancella2ons	probed	at	fourth	order	--																terms	in												F�12(li · lj)O(108)

4	 22/5	 24/5	Cri2cal	dimension:	

Stay	tuned!	 Bern,	Carrasco,	Chen,	Johansson,	RR,	Zeng	–	in	progress	



An	outlook	

-	Reviewed		recent	developments	and	illustrated	some	of	them		
-	Focused	on	color/kinema2cs	and	double-copy	

-	Many	open	ques2ons,	some	computa2onal,	some	conceptual		

-	New	method	for	construc2ng	supergravity	amplitudes:		
			can	convert	any	representa2on	of	gauge	theory	amp’s	into	supergravity	amp’s	

-	Takes	over	when	c/k	duality	is	for	some	reason	imprac2cal;		algorithmic		
			construc2on	of	amplitudes’	contact	terms	in	terms	of	the	breaking		
			of	kinema2c	Jacobi	rela2ons		

-	Allows	the	construc2on	of	the	5-loop	4-graviton	integrand		of	N=8	SG	

-	May	have	applica2ons	to	construc2on	of	classical	solu2ons	of	SG	eom	

-	Terms	in	amplitudes	are	constructed	one	by	one	

-	Full	poten2al	is	to	be	explored,	as	is	the	physics	of	the	5-loop	SG	amplitude		



Fisches Nachtgesang 

– Christian Morgenstern



