Sudakov Form Factor and Colour-Kinematics Duality at Five Loops

Gang Yang

Institute of Theoretical Physics Chinese Academy of Sciences

Based on:

• JHEP 1302 (2013) 063 with R. Boels, B. Kniehl, O. Tarasov

Amplitudes

July 10-14, 2017

Higgs Centre

Edinburgh

- PRL 117 (2016) 27
- also related work: 1705.03444 with R. Boels, T. Huber

gauge theory

Confinement

Quantisation

Challenge of high loop computations

Infrared divergences

M

QCD factorisation

figure from L.Dixon 1105.0771

IR structure of amplitudes: see e.g. Gardi, Magnea; Becher, Neubert 2009; ... and Vernazza's talk

$$\mathcal{M}_{n} = \prod_{i=1}^{n} \left[\mathcal{M}^{[gg \to 1]} \left(\frac{s_{i,i+1}}{\mu^{2}}, \alpha_{s}, \epsilon \right) \right]^{1/2} \times h_{n} \left(k_{i}, \mu, \alpha_{s}, \epsilon \right)$$

$$\mathbf{Sudakov \ form \ factor} = \exp \left[-\frac{1}{4} \sum_{l=1}^{\infty} a^{l} \left(\frac{\mu^{2}}{-Q^{2}} \right)^{l\epsilon} \left(\frac{\hat{\gamma}_{K}^{(l)}}{(l\epsilon)} + \frac{2\hat{\mathcal{G}}_{0}^{(l)}}{l\epsilon} \right) + \text{ finite} \right]$$

Leading IR singularity -> Cusp anomalous dimension Non-planar correction starts at 4 loop!

see Boels' talk tomorrow

Ultraviolet divergences

A general belief: gravity theories are non-renormalisable and must be UV divergent from certain loops.

This is based on power counting of loop momentum of individual Feynman diagrams.

Surprising UV finiteness! [see Roiban's talk]

IS N=8 SUGRA UV finite? Bern, Dixon, Roiban 2006

Bets on UV divergences

Ongoing bets:

[Bossard, Howe, Stelle; Green, Russo, Vanhove; Green, Bjornsson; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Hillmann, Nicolai; Ramond, Kallosh; ...]

- At 5-loop in D=24/5, does N=8 supergravity diverge?
- At 7-loop in D≟4, does N=8 supergravity diverge?

California wine "It will diverge" Zvi Bern: California wine "It won't diverge"

pictures from Z.Bern's talk at MHV30

Feynman diagram?

by JAMES O'BRIEN FOR QUANTA MAGAZINE

Feynman diagram method works in principle, but the complexity grows extremely fast with increasing number of external legs / loops.

 $^{\mu\nu}\eta^{\sigma\tau}k_1^{\lambda}k_1^{\rho} +$

 $\eta^{\lambda\tau}\eta^{\nu\sigma}k_2^{\mu}k_1^{\rho}$

 $\lambda^{\sigma}\eta^{\nu\tau}k_{3}^{\mu}k_{1}^{\rho}$

 $-\eta^{\lambda\sigma}\eta^{\mu au}\eta^{
u
ho}k_1$

 $\eta^{\mu\sigma}\eta^{
u au}k_1\cdot k_2 +$

 $\eta^{\mu
ho}\eta^{\sigma\tau}k_1 \cdot k_2 +$

 $\mu^{\mu\rho}\eta^{\nu\sigma}k_1 \cdot k_3 +$

 $\eta^{\mu\nu}\eta^{\rho\sigma}k_1 \cdot k_3$

 $^{\mu\sigma}\eta^{\rho\tau}k_1 \cdot k_3$

 $^{\nu
ho}\eta^{\sigma\tau}k_1\cdot k_3$

 $^{\mu\tau}\eta^{\nu\sigma}k_2 \cdot k_3$

 $^{\mu\tau}\eta^{
ho\sigma}k_2 \cdot k_3$ $\nu \sigma \eta^{\rho \tau} k_2 \cdot k_3$

 $\eta^{\mu
u}\eta^{\rho\tau}k_1 \cdot k_2$

Feynman diagram?

more than Gravity 100 terms [DeWitt 1967] $\delta^3 S$ $2\eta^{\mu\tau}\eta^{\nu\sigma}k_1^{\lambda}k_1^{\rho} + 2\eta^{\mu\sigma}\eta^{\nu\tau}k_1^{\lambda}k_1^{\rho} - 2\eta^{\mu\nu}\eta^{\sigma\tau}k_1^{\lambda}k_1^{\rho} +$ $\overline{\delta\varphi_{\mu\nu}}\delta\varphi_{\sigma\tau}\delta\varphi_{\rho\lambda}$ $2\eta^{\lambda\tau}\eta^{\mu\nu}k_{1}{}^{\sigma}k_{1}{}^{\rho}+2\eta^{\lambda\sigma}\eta^{\mu\nu}k_{1}{}^{\tau}k_{1}{}^{\rho}+\eta^{\mu\tau}\eta^{\nu\sigma}$ $\eta^{\lambda\sigma}\eta^{\nu\tau}k_2^{\mu}k_1^{\rho} +$ $\lambda \mu_{\eta} \nu \sigma_{k_3} \eta$ $^{\lambda\nu}\eta^{\mu
ho}k_{1}^{\sigma}k_{1}$ $+2\eta^{\lambda\mu}\eta^{\nu\rho}k_1^{\sigma}k_1$ τ_{k_2} kat $\eta^{\rho\sigma}k_1^{\lambda}k_2^{\nu}$ $n^{\rho\tau}k_1$ λ_{k_2} $\eta^{\mu
ho} k_1^{\ au} k_2^{\
u}$ $-\eta^{\lambda\rho}\eta^{\mu\sigma}k_1^{\tau}k_2^{\nu}$ $-2\eta^{\lambda\rho}\eta^{\sigma\tau}k_2^{\mu}k_2^{\mu}$ $\eta^{\rho \tau} k_2^{\mu} k_2^{\nu}$ k2f $\mathbf{2}$ $n^{\sigma\tau}k_{2}^{\mu}k_{2}$ σ 1 + 2n $^{\alpha\sigma}\eta^{\mu\nu}\eta^{\rho\tau}k_2 \cdot k_3 - \eta^{\lambda\nu}\eta^{\mu\sigma}\eta^{\rho\tau}k_2$ $-\eta^{\lambda\mu}\eta^{\nu\sigma}\eta^{\rho}$ $n^{\rho\sigma}k_2$ $\cdot k_3$ · k2 $2\eta^{\lambda\rho}\eta^{\mu\nu}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\nu}\eta^{\mu\rho}\eta^{\sigma\tau}k_2 \cdot k_3 + 2\eta^{\lambda\mu}\eta^{\nu\rho}\eta^{\sigma\tau}k_2 \cdot k_3$

 λ a single 5-loop diagram more than 10^{30} terms !

Planar (large Nc) Limit

Remarkable progress in planar N=4 SYM:

possible for 6-loop and beyond [see e.g. Papathanasiou's talk]

Some observables even known to all order: CAD, ... [Beisert, Eden, Staudacher 2006; ...]

Dual conformal symmetry, Integrability, AdS/CFT correspondence

Challenge: generalisation to non-planar

Non-planar is necessary

- QCD: Nc = 3
- Gravity is intrinsically non-planar
- Colour-kinematics duality [Bern, Carrasco, Johansson 2008]
- We provide a five-loop construction for Sudakov form factor in N=4 SYM.

Colour-Kinematics duality

A duality between: **Colour factor** $\tilde{f}^{abc} = \operatorname{Tr}([T^a, T^b]T^c)$ [Bern, Carrasco, Johansson 2008] **Momentum numerator** $s_{ij} = (p_i + p_j)^2$

Claim (conjecture):

There is a cubic graph representation of amplitudes such that colour and kinematics satisfy the same algebraic equations.

Obtain **non-planar** from **planar** "for free"!

Obtain **gravity** from **YM** for free! (Once having the CK duality) [Bern, Carrasco, Johansson 2008]

similar spirit in: [Kawai, Lewellen, Tye 1986] [Cachazo, He, Yuan 2013]

Proof case by case

It is **still a conjecture** at loop level, and relies on explicit construction.

examples in various gauge and gravity theories, [see Roiban's talk] including QCD @2-loop

Challenge in studying new cases: without a underlying principle, it is a priori NOT guaranteed to work — effort + luck

Five-loop construction

Sudakov form factor in N=4 SYM

Operator in the stress tensor supermultiplet

e.g. $\langle \phi(p_1)\phi(p_2)|\mathrm{Tr}(\phi^2)|0\rangle$ [see Brandhuber's talk]

A five-loop graph:

Colour-kinematic duality

See e.g.:

Bern, Carrasco, Dixon, Johansson, Roiban 2012; Boels, Kniehl, Tarasov, GY 2012; Carrasco 2015

provides an **ansatz** of the integrand

Unitarity

provides physical constraints as well as checks

- A linear algebra problem
 - Integrand results in a compact form

Cubic graphs

There are 306 trivalent topologies to consider.

L. A. A. D. M. W. W. W. D. D. D. M. A. A.

B~)>>-

A. D. A. B. B. B. B. B. B. B. B. B.

For N=4 SYM: exclude those containing tadpole, bubble and triangle one-loop subgraphs.

DID DO DE LA CARDE CONSTRUCTION OF THE ACTION DE LA CARDE

Ø. Ø._

Dual Jacobi relations

Every propagator provides such a relation. A highly constrained set of equations for the numerators.

Master graphs

Four master graphs obtained via dual Jacobi relation:

All other graphs can be generated from the master graphs by using dual Jacobi relations.

****4

Boels, Kniehl, Tarasov, GY 2012; GY 2016

TABLE I. Number of cubic and master graphs up to five loops.

L loops	L=1	L=2	L=3	L=4	L=5
# of topologies	1	2	6	34	306
# of planar masters	1	1	1	2	4

Compare to four-point amplitude in N=4 SYM:

L loops	L=1	L=2	L=3	L=4
# of topologies	1	2	12	85
# of masters	1	1	1	2

Bern, Carrasco, Johansson 2008; Bern, Carrasco, Dixon, Johansson, Roiban 2012

Ansatz of master graphs

Power counting property for N=4 SYM:

With dual Jacobi equations: $N_s = N_t + N_u$ we get numerators of all other graphs

Full ansatz

$$\mathcal{F}_{2}^{5\text{-loop}} = s_{12}^{2} F_{2}^{\text{tree}} \sum_{\sigma_{2}} \sum_{i=1}^{306} \int \prod_{j}^{L} d^{D} \ell_{j} \frac{1}{S_{i}} \frac{C_{i} N_{i}}{\prod_{\alpha_{i}} P_{\alpha_{i}}^{2}}$$

The numerators depend linearly on 162 parameters

We need to fix these parameters:

- Automorphism symmetry
- Unitarity constraints

Automorphism symmetry

Example:

 $\{ \ell_3 \to p_1 + p_2 = \ell_3 : \ell_4 \to \ell_5, \\ \ell_6 \to p_1 + p_2 - \ell_4 - \ell_5 - \ell_6, \\ \ell_7 \to p_1 + p_2 - \ell_4 - \ell_5^{(a)} - \ell_7 \}.$ (c)

(b)

Fix 115 parameters!

ď

Fixing parameters

162 Starting point: Automorphism symmetry: 47 Simple maximal cuts: 20 All dual Jacobi relations: 10 Non-trivial cuts: ↓ 3 Local poles:

Numerators saturate the same finiteness bound for N=4 SYM amplitudes:

$$D < 4 + \frac{6}{L}, \qquad L > 1$$

Double copy indicate possible UV divergences at D=22/5. (possible enhanced cancellation after integration?)

Six loops?

Interesting: contain 5-loop four-point amplitude!

Six loops

Try as in the lower loops:

~3000 trivalent topologies

5 masters, ansatz with ~1400 parameters

fail even for some maximal cuts (more efforts needed)

Summary

- First five-loop realisation of the colour-kinematics duality
- Compact four/five-loop integrand of Sudakov form factor in N=4 SYM
- Potential implication to five-loop UV property of N=8 SUGRA (via double copy)

Outlook

- Integration: UV -> Enhanced cancellation?
 IR -> non-planar cusp AD
 see Rutger Boels' talk tomorrow
- Interpretation for double-copy for form factor?
- Six-loop?
- Generalisation to other operators/theories(QCD)?

What is the underlying principle of the duality?

Thank you for your attention!

