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Infrared divergences

IR structure of amplitudes:
and Vernazza’s talk

QCD factorisation 

Following refs. [26, 30], we expand K[g], γ[g]
K , and G[g] in powers of αs,
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(µ2

ξ2
,αs, ϵ

)

, ϵ
)

=
∞
∑

l=1

al
(µ2

ξ2

)lϵ
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where a is defined in eq. (4.8) and the hats are a reminder that the leading-Nc dependence

has also been removed in eqs. (4.24), (4.25) and (4.26). That is, the perturbative coefficients

(defined with expansion parameter αs/(2π)) have a leading-color dependence on Nc of,
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0 N l
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We can suppress the [g] label because the N = 4 MHV amplitudes are all related by

supersymmetry Ward identities [57], so that the corresponding functions for external gluinos,

etc., are the same as for gluons. Equation (4.24) follows from solving eqs. (2.12) and (2.13)

of ref. [30] in the conformal case (β ≡ 0). In this case, K[g] contains only single poles in ϵ,

which are simply related to γ[g]
K .

The integral over G is very simple,
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The first integral over γK gives,

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K =
∞
∑

l=1

al

lϵ

[(µ2

ξ2

)lϵ
− 1
]

γ̂(l)
K . (4.29)

Adding the K[g] term to 1/2 of eq. (4.29), using eq. (4.24), we see that the “−1” is

cancelled. Then the integral over ξ is properly regulated, and evaluates to

−
1

2

∞
∑

l=1

al

(lϵ)2

( µ2

−Q2

)lϵ
γ̂(l)

K . (4.30)

Combining this result with eq. (4.28) gives
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FIG. 5: Infrared structure of leading-color scattering amplitudes for particles in the adjoint rep-

resentation. The straight lines represent hard external states, while the curly lines carry soft or

collinear virtual momenta. At leading color, soft exchanges are confined to wedges between the

hard lines.

constant everywhere. Thus the leading-color IR structure of n-point amplitudes in MSYM

may be rewritten as,
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where hn is no longer a color-space vector.

For a general theory, the Sudakov form factor at scale Q2 can be written as [30]
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where γ[g]
K denotes the soft or (Wilson line) cusp anomalous dimension, which will produce

a 1/ϵ2 pole after integration. The function K[g] is a series of counterterms (pure poles in ϵ),

while G[g] includes non-singular dependence on ϵ before integration, and produces a 1/ϵ pole

after integration.

In MSYM, αs(µ) is a constant, and the running coupling ᾱs(µ2/µ̃2,αs, ϵ) in 4 − 2ϵ di-

mensions has only trivial (engineering) dependence on the scale,
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This simple dependence makes it very easy to perform the integrals over ξ and µ̃.
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Sudakov form factor + finite]

 see e.g. Gardi, Magnea; Becher, Neubert 2009; …

Leading IR singularity -> Cusp anomalous dimension

figure from 
L.Dixon 

1105.0771

Non-planar correction starts at 4 loop!
see Boels’ talk tomorrow



Ultraviolet divergences
A general belief:  
gravity theories are non-renormalisable and 
must be UV divergent from certain loops.
This is based on power counting of loop 
momentum of individual Feynman diagrams.

Surprising UV finiteness! [see Roiban’s talk]

Is N=8 SUGRA UV finite? Bern, Dixon, Roiban 2006
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N = 8 Sugra 5 Loop Calculation 

~1000 such diagrams with ~10,000s terms each 

•  At 5 loops in D = 24/5 does 
   N = 8 supergravity diverge? 

•  At 7 loops in D = 4 does 
  N = 8 supergravity diverge? Kelly Stelle:  

English wine 
“It will diverge” 

Zvi Bern: 
California wine 

“It won’t diverge” 

Place your bets: 

ZB, Carrasco, Johannson, Roiban 

5 loops 

Being reasonable and being right are not the same. 

David Gross:  
California wine 
“It will diverge” 

7 loops 
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N = 8 Sugra 5 Loop Calculation 

•  At 5 loops in D = 24/5 does 
   N = 8 supergravity diverge? 

•  At 7 loops in D = 4 does 
  N = 8 supergravity diverge? Zvi Bern: 

California wine 
“It won’t diverge” 

Place your bets: 

ZB, Carrasco, Johannson, Roiban 

~1000 such diagrams with ~10,000s terms each 

Being reasonable and being right are not the same 

Ongoing bets:

pictures from Z.Bern’s talk at MHV30

• At 5-loop in D=24/5, does N=8 supergravity diverge? 
• At 7-loop in D=4, does N=8 supergravity diverge?

Bets on UV divergences
[Bossard, Howe, Stelle; Green, Russo, Vanhove; Green, Bjornsson; 
Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; 
Bossard, Hillmann, Nicolai; Ramond, Kallosh; …] 



Feynman diagram?

Feynman diagram method works in principle, but the 
complexity grows extremely fast with increasing number 
of external legs / loops.

by JAMES O'BRIEN FOR QUANTA MAGAZINE



Feynman diagram?
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Off-shell three-graviton vertex:

�

�
⌧

171 terms

[DeWitt, 1967]

3

2

1

more than 
100 terms
[DeWitt 1967]
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New Structures? 

Might there be a new unaccounted structure in gravity theories 
that suggests the UV might be is tamer than conventional  
arguments suggest? 

Yes! 

a single 5-loop diagram 
more than          terms !
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Gravity



Planar (large Nc) Limit

[see e.g. Papathanasiou’s talk]

Remarkable progress in planar N=4 SYM:

Dual conformal symmetry, Integrability, AdS/CFT correspondence

Challenge: generalisation to non-planar

possible for 6-loop and beyond

Some observables even known to all order: CAD, …
[Beisert, Eden, Staudacher 2006; …]



Non-planar is necessary
QCD:   Nc = 3 
Gravity is intrinsically non-planar

Colour-kinematics duality [Bern, Carrasco, Johansson 2008]

We provide a five-loop construction for Sudakov 
form factor in N=4 SYM.



Colour-Kinematics duality
A duality between:

colour factor momentum numerator
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[Bern, Carrasco, Johansson 2008]

Claim (conjecture):  
There is a cubic graph representation of amplitudes such that 
colour and kinematics satisfy the same algebraic equations.

The simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.

s
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32

Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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3

Jacobi identity dual Jacobi relation



Power of the duality

[Bern, Carrasco, Johansson 2008]
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Gravity loop integrands follow from gauge theory! 

Ideas conjectured to generalize to loops:  
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color factor        kinematic numerator 

gauge theory         gravity theory 

Gravity loop integrands follow from gauge theory! 

Ideas conjectured to generalize to loops:  

ck           nk 

color factor 

kinematic 
numerator (k) (i) (j) 

Obtain gravity from YM for free! 
(Once having the CK duality)

[Cachazo, He, Yuan 2013]
[Kawai, Lewellen, Tye 1986]similar spirit in:

Obtain non-planar from planar “for free”!
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Proof case by case
It is still a conjecture at loop level, and relies on 
explicit construction.

Challenge in studying new cases:  
without a underlying principle, it is a priori NOT 
guaranteed to work              effort + luck

examples in various gauge and gravity theories,  
including QCD @2-loop

[see Roiban’s talk]
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Sudakov form factor in N=4 SYM

A five-loop graph:

Color-Kinematics Duality and Sudakov Form Factor at Five Loops

Gang Yang
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing, 100190, China
(Dated: November 18, 2016)

Using color-kinematics duality, we construct for the first time the full integrand of the five-loop
Sudakov form factor in N = 4 super-Yang-Mills theory, including non-planar contributions. This
result also provides a first manifestation of the color-kinematics duality at five loops. The integrand
is explicitly ultraviolet finite when D < 26/5, coincident with the known finiteness bound for
amplitudes. If the double-copy method could be applied to the form factor, this would indicate
an interesting ultraviolet finiteness bound for N = 8 supergravity at five loops. The result is
also expected to provide an essential input for computing the five-loop non-planar cusp anomalous
dimension.

PACS numbers: 04.65.+e, 11.15.Bt, 11.30.Pb, 11.55.Bq

Introduction.—Last decades have seen tremendous
progress in the study of scattering amplitudes in quantum
field theory and string theory, in which the maximally
supersymmetric N = 4 super-Yang-Mills (SYM) theory
has been an important testing ground. Notably, on-shell
unitarity method [1, 2] and BCFW recursion relation [3],
initiated in the study of this toy model, have now im-
portant applications in computing quantum chromody-
namics (QCD) multijet processes at the Large Hadron
Collider [4]. In the ’t Hooft planar limit, remarkable all
loop information has been even obtained for N = 4 SYM
amplitudes, including the all loop integrand [5] and a
non-perturbative interpolation between weak and strong
coupling [6]. In comparison, much less is known beyond
the planar limit. For instance, the cusp anomalous di-
mension, which is a key quantity for the infrared (IR)
singularities of amplitudes [7], is known in principle to
all orders in planar N = 4 SYM [8], but its non-planar
correction is unknown even at leading perturbative order.

Promising progress has been made recently through
a surprising duality between color and kinematics dis-
covered by Bern, Carrasco and Johansson [9, 10], which
will be the subject of this Letter. This duality indicates
a deep connection between the kinematic structure and
the color structure in gauge theories. Since it involves the
full color factors, interlocking the planar and non-planar
parts, it offers the promise of transferring the advances
of the planar sector to the non-planar sector. (See also
other intriguing connections between planar and non-
planar amplitudes in [11, 12].) The duality also allows
to construct gravity amplitudes directly from Yang-Mills
amplitudes, once the latter are organized to respect the
duality. This is usually referred to as the double copy
property [10, 13], generalizing the KLT relation [14]. In-
teresting connection between classical solutions in gauge
and gravity theories has also been found in [15].

At tree level, the color-kinematics duality has been
proved using monodromy relations in string theory am-
plitudes [16, 17], or using the BCFW recursion relation

directly in field theory [18]. However, at loop level the
duality is still a conjecture and has only been verified
in examples. Up to four loops, amplitudes respecting
the duality have been found in various gauge theories
and gravity theories [10, 19–27], including QCD [28–
32]. However, no construction manifesting the duality
has been achieved beyond four loops. The extension to
higher loops is a major challenge to understand the du-
ality. Via the double copy prescription, such extension
would be also essential to resolve the long-standing UV
finiteness problem of maximal supergravity at five loops
and beyond [22, 25, 33–37].

In this Letter, we realize the color-kinematics duality
for the first time at five loops. The object we consider
is the Sudakov form factor in N = 4 SYM, which is an
important observable with a gauge-invariant operator in
the stress tensor supermultiplet and two on-shell mass-
less states [38–40]. As the operator is half-BPS, the form
factor is protected from ultraviolet (UV) divergences in
four dimensions. In practice, one may simply consider
⟨φ(p1)φ(p2)|Tr(φ2)|0⟩, with all other Sudakov form fac-
tors in the multiplet related by supersymmetric Ward
identities. Since the color-kinematics duality is not gen-
erally proved, it is a priori not guaranteed that there
exists a five-loop solution that respects the duality. In
fact, this construction for amplitudes, despite consider-
able efforts and interest, has not been achieved. Our re-
sult manifests the color-kinematics duality at five loops
for the first time, strongly indicating the duality should
be true in more general ground.

Sudakov form factor also plays a key role in the study
of IR singularities of gauge theories [41, 42]. In partic-
ular it determines the cusp anomalous dimension. The
knowledge of its non-planar corrections, which is still un-
known, is very important to resolve the full structure of
gauge theory IR singularities, see e.g. [43, 44]. We ex-
pect the new five-loop integrand will provide an essential
input towards understanding the non-planar IR singu-
larities, given the tremendous progress on integral tech-

Operator in the stress tensor supermultiplet

e.g.

UV finite at four dimensions

(2) (3) (4)

l l p1
q

p1

p2

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory

2

[see Brandhuber’s talk]



Strategy
Colour-kinematic duality

Unitarity

provides an ansatz of the integrand

provides physical constraints as well as checks

• A linear algebra problem 
• Integrand results in a compact form

See e.g.: 
Bern, Carrasco, Dixon, Johansson, Roiban 2012;  
Boels, Kniehl, Tarasov, GY 2012;  
Carrasco 2015



Cubic graphs
There are 306 trivalent topologies to consider.

For N=4 SYM: exclude those containing tadpole, bubble 
and triangle one-loop subgraphs.



Dual Jacobi relations
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Gravity loop integrands follow from gauge theory! 
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ck           nk 

color factor 

kinematic 
numerator (k) (i) (j) dual Jacobi relationJacobi identity

A highly constrained set of equations for the numerators.

Every propagator provides such a relation.



Master graphs

ℓ3

ℓ4

ℓ5

ℓ3

ℓ4

ℓ5

ℓ3

ℓ4

ℓ5

ℓ3

(a) (b) (c) (d)

Fig. 3: Master graphs for the five-loop Sudakov form factor. The blue line corresponds
to q-leg.

s212τ34 , s
2
12τ35 , s

2
12τ45 , s

2
12τi3 , s

2
12τi4 , s

2
12τi5 , s

3
12} , (3.1)

where i, j, k = 1, 2 labels two external on-shell momenta. The Ansatz of the numer-

ator is

N (a) =
36
∑

j=1

ajM
(a)
j , N (b) =

36
∑

j=1

bjM
(a)
j . (3.2)

For graph (c), the numerator is allowed to be quadratic in {ℓ3}, so there are 41 more

monomials comparing to graph (a),

M (c) = M (a) ∪ {τi3τj3τk4 , τi3τj3τk5 , τi3τj3τ45 , τi3τj3s12 , τi3τ34τj5 , τi3τ35τj4 , τ33s
2
12 ,

τ33τ45s12 , τ33τi4τj5 , τ33τi4s12 , τ33τi5s12 , τi3τ34s12 , τi3τ35s12 , τ34τ35s12} . (3.3)

Finally, for graph (d), the numerator is at most cubic in {ℓ3}, which gives 13 mono-

mials,

M (d) = {τi3τj3τk3 , s12τi3τ33 , s12τi3τj3 , s
2
12τi3 , s

2
12τ33 , s

3
12} . (3.4)

The Ansatz of the numerators for graph (c) and (d) is

N (c) =
77
∑

j=1

cjM
(c)
j , N (d) =

13
∑

j=1

djM
(d)
j . (3.5)

Choosing a set of CK relations, we can express all numerators in terms of them. In

total, we have 162 parameters in our Ansatz.

We now fix the parameters by various constrains.

The first type of constraints is the symmetry. The numerator is required to

5

Four master graphs obtained via dual Jacobi relation:

All other graphs can be generated from the master graphs by 
using dual Jacobi relations.
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FIG. 1. Cubic graphs for four-point tree amplitudes.

Apart from these, higher loop results also provide key
information to understand the explicit ultraviolet (UV)
divergences of the theory. The integrand we constructed,
while satisfying the color-kinematics duality, also man-
ifestly satisfies the known finiteness bound for N = 4
SYM amplitudes [51–53]

D < 4 +
6

L
, L > 1 . (1)

A duality-satisfying construction for amplitudes, via the
double copy prescription, would provide crucial input to
the UV finiteness problem of N = 8 supergravity. As
we will see, our result indicates the UV finiteness of the
maximal supergravity at five loops when D < 22/5, if the
double copy of the form factor has a physical meaning in
the supergravity. We will discuss more on this in the end.
Review and result.—The color-kinematics duality con-

jectures that there exists a cubic (trivalent) graph repre-
sentation of a general amplitude in gauge theories, such
that the kinematic numerators satisfy equations in one-
to-one correspondence with Jacobi identity of the color
factors [9, 10]. The duality applies also to form factors,
and explicit constructions have been obtained up to four-
loop order [39].
The instructive example is the four-gluon tree ampli-

tudes. It is always possible to represent the amplitude in
terms of three cubic graphs shown in fig. 1,

Atree
4 (1, 2, 3, 4) =

Cs Ns

s
+

Ct Nt

t
+

Cu Nu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc associated to each cubic vertex. The physical
information is encoded in the kinematic numerators Ni.
The color-kinematics duality requires that the numera-
tors should satisfy the Jacobi relation of color factors as

Cs = Ct + Cu ⇒ Ns = Nt +Nu . (3)

While at tree level this has been proved more generally,
the duality is conjectured to also hold at loop level. For
any propagator of a trivalent graph (except the internal
lines connected to the operator for a form factor), one can
take it as in a s channel four-point sub-amplitude, asso-
ciated with t- and u-channel graphs, as shown in fig. 2.
The duality requires the numerators of the three graphs
satisfy the same Jacobi relation for color factors as

Ns({la, lb, ls}, {−ls, lc, ld}, ...) =

Nt({ld, la, lt}, {−lt, lb, lc}, ...)

+Nu({la, lc, lu}, {−lu, lb, ld}, ...) , (4)

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Color-kinematics related graphs at loop level.

TABLE I. Number of cubic and master graphs up to five
loops.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of planar masters 1 1 1 2 4

where li label the momenta, {la, lb, ls} specify cubic ver-
tices in the graphs, and the omitted vertices are all iden-
tical in the three diagrams. Such a relation is under-
standable if four momenta la, lb, lc, ld are on-shell. The
non-trivial point of the conjectured duality is that it also
holds when all propagators are off-shell, as checked so far.
For every propagator, there is one such equation. These
equations play a central role in our construction.
Before entering the construction, let us give the final

five-loop Sudakov form factor in N = 4 SYM organized
in the following form

F5-loop
2 = s212 F

tree
2

∑

σ2

306
∑

i=1

∫ L
∏

j

dDℓj
1

Si

Ci Ni
∏

αi
P 2
αi

, (5)

where we sum over 306 non-isomorphic cubic graphs.
The sum over σ2 is due to the permutation of external
on-shell momenta p1 and p2. The symmetry factors Si

remove overcounts from the automorphism symmetries
of the graphs. Explicit expressions of the numerators Ni,
color factors Ci, symmetry factors Si and propagator lists
Pαi

are given in the Supplemental Material [54].
Below we construct the five-loop result in eq. (5) via

color-kinematics duality, together with the constrains
from unitarity cuts. Reader is referred to [21, 39, 55]
for the further details of general strategy.
Five-loop Ansatz.—The starting point is to generate

a set of needed cubic graphs. For Sudakov form factor,
these are graphs with three external legs, two with on-
shell momenta p1, p2 and one with off-shell momentum q
associated to the local operator. An important simplifi-
cation for N = 4 SYM is that graphs containing tadpole,
bubble or triangle one-loop subgraphs can be excluded,
which are known to be valid for the duality-satisfying nu-
merators up to four loops [21, 39]. One-loop sub-triangle
is allowed if one of its legs is the external q-leg. The num-
ber of contributed graphs for Sudakov form factor up to
five loops is summarized in Table I.
The next step is to find a minimal set of master graphs,

from which one can generate all other graphs using the
dual Jacobi relation eq. (4). Since the system of Jacobi

Compare to four-point amplitude in N=4 SYM:
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FIG. 1. Trivalent graphs of four-point tree amplitudes.
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FIG. 2. Color-kinematics related graphs at loop level.

Mtree
4 (1, 2, 3, 4) =

ñs ns

s
+

ñt nt

t
+

ñu nu

u
, (2)

where ni’s are kinematic factors and ci’s are color factors
given by the product of structure constants f̃abc associ-
ated to each three-vertex, explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 .
(3)

The color-kinematics duality requires that the numera-
tors should satisfy the same Jacobi relation of color fac-
tors,

cs = ct + cu ⇒ ns = nt + nu . (4)

The more remarkable and mysterious fact is that it
also works at loop level. An L-loop amplitudes can be
represent as a sum over trivalent graphs,

AL-loop
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

ci ni
∏

a Da
. (5)

For every propagator of a trivalent graph, one can take
it as s channel and perform t, u-channel transformation,
as in Fig. ??, to generate two other graphs. The duality
requires that the numerators of these three graphs should
satisfy the Jacobi relation as the color factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (6)

These give a large set of equations which highly con-
strain the kinematic numerators. Such constraints are
easy to understand if one cuts four propagators as indi-
cated by red lines in Fig. ??. The non-trivial point of the
conjecture is that the duality should hold even when all
propagators are off-shell.

Color-kinematics duality applies also to form factors,
as shown in [? ], where explicit representations have
been constructed for Sudakov form factor up to four-loop
order.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 37 370

# of masters 1 1 1 2 4

TABLE I. Numbers of topologies and master graphs of Su-
dakov form factor.

L loops L=1 L=2 L=3 L=4

# of topologies 1 2 12 85

# of masters 1 1 1 2

TABLE II. Numbers of topologies and master graphs of Su-
dakov form factor.

CONSTRUCTING FIVE-LOOP SUDAKOV FORM

FACTOR

Below we outline the main steps of constructing the
five-loop Sudakov form factor as well as some key prop-
erties. Reader is referred to [? ? ] and in particular the
lectures [? ] for further details.
The first step is generate all possible cubic graphs at

the given loop order. For Sudakov form factor, these are
graphs with three external legs, with two on-shell mo-
menta p1, p2 and one off-shell momentum q respectively.
A simplification for N=4 SYM is that one can further
exclude those graphs which contains one-loop tadpole,
bubble or triangle subgraphs. For form factor, the sub-
triangle is allowed if one of its external legs is the external
q-leg. We have 370 graphs.
The next step is to generate color-kinematics relations

for all propagators of all cubic graphs. A propagator ends
on q-leg will not be considered. Using these relations, it
is possible to find a subset of graphs, from which the
numerators of all other graphs can be generated. Such
a subset of graphs are called master graphs. Since the
system of equations are highly constraining, the master
graphs usually contain very few graphs. The choice of
master graphs is not unique. It is convenient to choose
a minimal number of master graphs such that they are
all planar. A statistics of Sudakov form factor up to
five-loop is given in Table.??. We have chosen five-loop
master graphs to be all planar, as shown in Fig.??. We
mention that it is possible to replace two of the planar
master graphs by a non-planar one, such that to reduce
the number of masters to be three.
The third step is to make an Ansatz for the numerators

of master graphs. We impose the constraints for the pow-
ers of loop momenta in N=4 SYM. Firstly, after extract-
ing an overall factor s212F

tree
2 , the five-loop numerators

should be polynomials of total degree six in the loop and
external momenta. Secondly, following the no-triangle
property of N = 4 SYM, a one-loop n-gon subgraph car-
ries no more than n − 4 powers of loop momentum for
that loop, while, if the n-gon subgraph is attached with

Boels, Kniehl, Tarasov, GY 2012; 
GY 2016

Bern, Carrasco, Johansson 2008; 
Bern, Carrasco, Dixon, Johansson, 
Roiban 2012



Ansatz of master graphs
Power counting property for N=4 SYM:
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Fig. 3: Master graphs for the five-loop Sudakov form factor. The blue line corresponds
to q-leg.

to be as small as possible, as well as the graphs to be planar topology. Since the

system of equations are of highly constraint, the master graphs usually contain very

few graphs. A counting of Sudakov form factor up to five-loop is given in Table 1.

The master graphs at five-loop are chosen to be all planar. Two of the them may be

replaced by a non-planar graph which reduces the master number to be three. For

convenience we use the all planar version.

# of loops 1 2 3 4 5

# of topologies 1 2 6 37 366

# of masters 1 1 1 2 4

Table 1: Numbers of topologies and master graphs of Sudakov form factor.

The third step to make an Ansatz for the numerators of master graphs, since all

other numerators can be determined from them. The four master graphs for five-loop

Sudakov form factor are shown in Fig. 3. We impose the constraints for the powers

of loop momenta in N=4 SYM. Firstly, after extracting an overall factor s212F
tree
2 ,

the five-loop numerators are polynomials of total degree six in the loop and external

momenta. Secondly, consistent with no-triangle property, a one-loop n-gon subgraph

carries no more than n − 4 powers of loop momentum for that loop, while, if the

n-gon subgraph is attached with the q-leg, it carries no more than n − 3 powers of

the loop momentum.

Let us first apply these to master graph (a) and (b). The numerator should be
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FIG. 1. Cubic graphs for four-point tree amplitudes.

Apart from these, higher loop results also provide key
information to understand the explicit ultraviolet (UV)
divergences of the theory. The integrand we constructed,
while satisfying the color-kinematics duality, also man-
ifestly satisfies the known finiteness bound for N = 4
SYM amplitudes [51–53]

D < 4 +
6

L
, L > 1 . (1)

A duality-satisfying construction for amplitudes, via the
double copy prescription, would provide crucial input to
the UV finiteness problem of N = 8 supergravity. As
we will see, our result indicates the UV finiteness of the
maximal supergravity at five loops when D < 22/5, if the
double copy of the form factor has a physical meaning in
the supergravity. We will discuss more on this in the end.
Review and result.—The color-kinematics duality con-

jectures that there exists a cubic (trivalent) graph repre-
sentation of a general amplitude in gauge theories, such
that the kinematic numerators satisfy equations in one-
to-one correspondence with Jacobi identity of the color
factors [9, 10]. The duality applies also to form factors,
and explicit constructions have been obtained up to four-
loop order [39].
The instructive example is the four-gluon tree ampli-

tudes. It is always possible to represent the amplitude in
terms of three cubic graphs shown in fig. 1,

Atree
4 (1, 2, 3, 4) =

Cs Ns

s
+

Ct Nt

t
+

Cu Nu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc associated to each cubic vertex. The physical
information is encoded in the kinematic numerators Ni.
The color-kinematics duality requires that the numera-
tors should satisfy the Jacobi relation of color factors as

Cs = Ct + Cu ⇒ Ns = Nt +Nu . (3)

While at tree level this has been proved more generally,
the duality is conjectured to also hold at loop level. For
any propagator of a trivalent graph (except the internal
lines connected to the operator for a form factor), one can
take it as in a s channel four-point sub-amplitude, asso-
ciated with t- and u-channel graphs, as shown in fig. 2.
The duality requires the numerators of the three graphs
satisfy the same Jacobi relation for color factors as

Ns({la, lb, ls}, {−ls, lc, ld}, ...) =

Nt({ld, la, lt}, {−lt, lb, lc}, ...)

+Nu({la, lc, lu}, {−lu, lb, ld}, ...) , (4)
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FIG. 2. Color-kinematics related graphs at loop level.

TABLE I. Number of cubic and master graphs up to five
loops.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of planar masters 1 1 1 2 4

where li label the momenta, {la, lb, ls} specify cubic ver-
tices in the graphs, and the omitted vertices are all iden-
tical in the three diagrams. Such a relation is under-
standable if four momenta la, lb, lc, ld are on-shell. The
non-trivial point of the conjectured duality is that it also
holds when all propagators are off-shell, as checked so far.
For every propagator, there is one such equation. These
equations play a central role in our construction.
Before entering the construction, let us give the final

five-loop Sudakov form factor in N = 4 SYM organized
in the following form

F5-loop
2 = s212 F

tree
2

∑

σ2

306
∑

i=1

∫ L
∏

j

dDℓj
1

Si

Ci Ni
∏

αi
P 2
αi

, (5)

where we sum over 306 non-isomorphic cubic graphs.
The sum over σ2 is due to the permutation of external
on-shell momenta p1 and p2. The symmetry factors Si

remove overcounts from the automorphism symmetries
of the graphs. Explicit expressions of the numerators Ni,
color factors Ci, symmetry factors Si and propagator lists
Pαi

are given in the Supplemental Material [54].
Below we construct the five-loop result in eq. (5) via

color-kinematics duality, together with the constrains
from unitarity cuts. Reader is referred to [21, 39, 55]
for the further details of general strategy.
Five-loop Ansatz.—The starting point is to generate

a set of needed cubic graphs. For Sudakov form factor,
these are graphs with three external legs, two with on-
shell momenta p1, p2 and one with off-shell momentum q
associated to the local operator. An important simplifi-
cation for N = 4 SYM is that graphs containing tadpole,
bubble or triangle one-loop subgraphs can be excluded,
which are known to be valid for the duality-satisfying nu-
merators up to four loops [21, 39]. One-loop sub-triangle
is allowed if one of its legs is the external q-leg. The num-
ber of contributed graphs for Sudakov form factor up to
five loops is summarized in Table I.
The next step is to find a minimal set of master graphs,

from which one can generate all other graphs using the
dual Jacobi relation eq. (4). Since the system of Jacobi

With dual Jacobi equations:
we get numerators of all other graphs

no more than linear in the loop momenta {ℓ3, ℓ4, ℓ5}. There are 36 monomials

M (a) = {τi3τj4τk5 , s12τi3τ45 , s12τi4τ35 , s12τi5τ34 , s12τi3τj4 , s12τi3τj5 , s12τi4τj5 ,

s212τ34 , s
2
12τ35 , s

2
12τ45 , s

2
12τi3 , s

2
12τi4 , s

2
12τi5 , s

3
12} , (3.1)

where i, j, k = 1, 2 labels two external on-shell momenta. The Ansatz of the numer-

ator is

N (a) =
36
∑

j=1

ajM
(a)
j , N (b) =

36
∑

j=1

bjM
(a)
j . (3.2)

For graph (c), the numerator is allowed to be quadratic in {ℓ3}, so there are 41 more

monomials comparing to graph (a),

M (c) = M (a) ∪ {τi3τj3τk4 , τi3τj3τk5 , τi3τj3τ45 , τi3τj3s12 , τi3τ34τj5 , τi3τ35τj4 , τ33s
2
12 ,

τ33τ45s12 , τ33τi4τj5 , τ33τi4s12 , τ33τi5s12 , τi3τ34s12 , τi3τ35s12 , τ34τ35s12} . (3.3)

Finally, for graph (d), the numerator is at most cubic in {ℓ3}, which gives 13 mono-

mials,

M (d) = {τi3τj3τk3 , s12τi3τ33 , s12τi3τj3 , s
2
12τi3 , s

2
12τ33 , s

3
12} . (3.4)

The Ansatz of the numerators for graph (c) and (d) is

N (c) =
77
∑

j=1

cjM
(c)
j , N (d) =

13
∑

j=1

djM
(d)
j . (3.5)

Choosing a set of CK relations, we can express all numerators in terms of them. In

total, we have 162 parameters in our Ansatz.

We now fix the parameters by various constrains.

The first type of constraints is the symmetry. The numerator is required to

preserve the graph symmetry. In total, one can fix 115 parameters using symmetry

constraints alone.

Next we can employ some simple physical constraints. We can write the rung rule

numerators for the master graphs,

N
(a)
rung-rule = (ℓ3 − p1)

2(ℓ4 − p1 − p2)
2(ℓ5 − p2)

2 , (3.6)
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 5 master -> in total 162 
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momenta {ℓ3, ℓ4, ℓ5}. There are 36 monomials

M (a) = {τi3τj4τk5, s12τi3τ45, s12τi4τ35, s12τi5τ34,
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where i, j, k = 1, 2 labels two external on-shell momenta.
We use the notation τij = 2ki · ℓj if i ≤ 2, j ≥ 3, and
τij = 2ℓi · ℓj if i, j ≥ 3. The Ansatz of the numerator is

N (a) =
36
∑

j=1

ajM
(a)
j , N (b) =

36
∑

j=1

bjM
(a)
j . (7)

For graph (c), the numerator is allowed to be quadratic
in {ℓ3}, so there are 41 more monomials comparing to
graph (a),

M (c) = M (a) ∪ {τi3τj3τk4, τi3τj3τk5, τi3τj3τ45, τi3τj3s12,

τi3τ34τj5, τi3τ35τj4, τ33τ45s12, τ33τi4τj5, τ33τi4s12,

τ33τi5s12, τi3τ34s12, τi3τ35s12, τ34τ35s12, τ33s
2
12}.

(8)

Finally, for graph (d), the numerator is at most three
power in {ℓ3} and independent of other ℓi, which gives
13 monomials,

M (d) = {τi3τj3τk3, s12τi3τ33, s12τi3τj3, s
2
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2
12τ33, s

3
12}.
(9)

The Ansatz of the numerators for graph (c) and (d) is

N (c) =
77
∑

j=1

cjM
(c)
j , N (d) =

13
∑

j=1

djM
(d)
j . (10)

By choosing a proper set of color-kinematics relations,
we can express all numerators in terms of four Ansatz-
numerators, which contain in total 162 parameters.
We now fix the parameters by imposing various prop-

erties and physical constrains.
The first property comes from requiring the numera-

tors to preserve the graph symmetries. Consider master
graph (c), the symmetry requires the numerator to be
invariant under the transformation:

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5, ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (11)

Applying all graph symmetries allows us to fix 115 pa-
rameters.
Next we employ simple physical constraints. It is easy

to write the rung-rule numerators for all master graphs,

N (a)
rung-rule = (ℓ3 − p1)
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FIG. 4. Non-trivial unitarity cuts of five-loop form factor.

Under maximal cuts, the Ansatz-numerators and the
rung-rule-numerators must be identical

(

N (x) −N (x)
rung-rule

)
∣

∣

maximal cut
= 0 . (16)

This fix further 27 parameters. We thus reduce the num-
ber of parameter to be 20.
Since we so far only use a subset of color-kinematics

relations, we can check if all other relations are satisfied.
This provides 10 more constraints such that all relations
are satisfied. We are thus left with only 10 parameters.
Given the small number of parameter, we are ready to

consider more non-trivial cuts:

s212 F
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∣

∣
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=

∫

∏
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a

Atree
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(17)
This will not only help to fix further parameters, but
also make sure the correctness of the result. Several cuts
among most complicated types are given in Fig.??.
We find that applying cut (a)-(d) in Fig.?? fixes 7 pa-

rameters, leaving an integrand result with only 3 unfixed
parameters. Further checks of cut (e) and (f) show that
the 3-parameter result is consistent with these cuts.
The check of cut (f) is mostly non-trivial, so we pro-

vide some details. From the tree products side i.e. RHS
of (??), it contains the product of a six-point form fac-
tor and an eight-point amplitudes. One needs also to
sum over all possible helicity configurations as well as
summing over all possible states of the cut legs, which
requires the computation of

∫

∏

i

d4ηℓi

[

FMHV
6 AN4MHV

8 + FN4MHV
6 AMHV

8

+ FNMHV
6 AN3MHV

8 + FN3MHV
6 ANMHV

8

+ FN2MHV
6 AN2MHV

8

]

. (18)

This can be computed with MHV rule method, see e.g. [?
] and also [? ]. On the other hand, from the Ansatz side
i.e. LHS of (??), it involves 79 trivalent topologies that
contribute to planar order and gives more than a thou-
sand cut diagrams. These two highly non-trivial expres-
sions, computed from totally different origins, match per-
fectly with each other. This provides one of the strongest
check of the result.
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momenta {ℓ3, ℓ4, ℓ5}. There are 36 monomials
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where i, j, k = 1, 2 labels two external on-shell momenta.
We use the notation τij = 2ki · ℓj if i ≤ 2, j ≥ 3, and
τij = 2ℓi · ℓj if i, j ≥ 3. The Ansatz of the numerator is

N (a) =
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(a)
j , N (b) =
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For graph (c), the numerator is allowed to be quadratic
in {ℓ3}, so there are 41 more monomials comparing to
graph (a),
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Finally, for graph (d), the numerator is at most three
power in {ℓ3} and independent of other ℓi, which gives
13 monomials,
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The Ansatz of the numerators for graph (c) and (d) is

N (c) =
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∑

j=1

cjM
(c)
j , N (d) =
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∑
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j . (10)

By choosing a proper set of color-kinematics relations,
we can express all numerators in terms of four Ansatz-
numerators, which contain in total 162 parameters.
We now fix the parameters by imposing various prop-

erties and physical constrains.
The first property comes from requiring the numera-

tors to preserve the graph symmetries. Consider master
graph (c), the symmetry requires the numerator to be
invariant under the transformation:

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5, ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (11)

Applying all graph symmetries allows us to fix 115 pa-
rameters.
Next we employ simple physical constraints. It is easy

to write the rung-rule numerators for all master graphs,

N (a)
rung-rule = (ℓ3 − p1)
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Under maximal cuts, the Ansatz-numerators and the
rung-rule-numerators must be identical

(

N (x) −N (x)
rung-rule

)
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maximal cut
= 0 . (16)

This fix further 27 parameters. We thus reduce the num-
ber of parameter to be 20.
Since we so far only use a subset of color-kinematics

relations, we can check if all other relations are satisfied.
This provides 10 more constraints such that all relations
are satisfied. We are thus left with only 10 parameters.
Given the small number of parameter, we are ready to

consider more non-trivial cuts:
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This will not only help to fix further parameters, but
also make sure the correctness of the result. Several cuts
among most complicated types are given in Fig.??.
We find that applying cut (a)-(d) in Fig.?? fixes 7 pa-

rameters, leaving an integrand result with only 3 unfixed
parameters. Further checks of cut (e) and (f) show that
the 3-parameter result is consistent with these cuts.
The check of cut (f) is mostly non-trivial, so we pro-

vide some details. From the tree products side i.e. RHS
of (??), it contains the product of a six-point form fac-
tor and an eight-point amplitudes. One needs also to
sum over all possible helicity configurations as well as
summing over all possible states of the cut legs, which
requires the computation of
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This can be computed with MHV rule method, see e.g. [?
] and also [? ]. On the other hand, from the Ansatz side
i.e. LHS of (??), it involves 79 trivalent topologies that
contribute to planar order and gives more than a thou-
sand cut diagrams. These two highly non-trivial expres-
sions, computed from totally different origins, match per-
fectly with each other. This provides one of the strongest
check of the result.
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momenta {ℓ3, ℓ4, ℓ5}. There are 36 monomials
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where i, j, k = 1, 2 labels two external on-shell momenta.
We use the notation τij = 2ki · ℓj if i ≤ 2, j ≥ 3, and
τij = 2ℓi · ℓj if i, j ≥ 3. The Ansatz of the numerator is

N (a) =
36
∑

j=1

ajM
(a)
j , N (b) =

36
∑

j=1

bjM
(a)
j . (7)

For graph (c), the numerator is allowed to be quadratic
in {ℓ3}, so there are 41 more monomials comparing to
graph (a),

M (c) = M (a) ∪ {τi3τj3τk4, τi3τj3τk5, τi3τj3τ45, τi3τj3s12,

τi3τ34τj5, τi3τ35τj4, τ33τ45s12, τ33τi4τj5, τ33τi4s12,

τ33τi5s12, τi3τ34s12, τi3τ35s12, τ34τ35s12, τ33s
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Finally, for graph (d), the numerator is at most three
power in {ℓ3} and independent of other ℓi, which gives
13 monomials,

M (d) = {τi3τj3τk3, s12τi3τ33, s12τi3τj3, s
2
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2
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3
12}.
(9)

The Ansatz of the numerators for graph (c) and (d) is

N (c) =
77
∑

j=1

cjM
(c)
j , N (d) =

13
∑

j=1

djM
(d)
j . (10)

By choosing a proper set of color-kinematics relations,
we can express all numerators in terms of four Ansatz-
numerators, which contain in total 162 parameters.
We now fix the parameters by imposing various prop-

erties and physical constrains.
The first property comes from requiring the numera-

tors to preserve the graph symmetries. Consider master
graph (c), the symmetry requires the numerator to be
invariant under the transformation:

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5, ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (11)

Applying all graph symmetries allows us to fix 115 pa-
rameters.
Next we employ simple physical constraints. It is easy

to write the rung-rule numerators for all master graphs,

N (a)
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Under maximal cuts, the Ansatz-numerators and the
rung-rule-numerators must be identical

(

N (x) −N (x)
rung-rule

)
∣

∣

maximal cut
= 0 . (16)

This fix further 27 parameters. We thus reduce the num-
ber of parameter to be 20.
Since we so far only use a subset of color-kinematics

relations, we can check if all other relations are satisfied.
This provides 10 more constraints such that all relations
are satisfied. We are thus left with only 10 parameters.
Given the small number of parameter, we are ready to

consider more non-trivial cuts:
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(17)
This will not only help to fix further parameters, but
also make sure the correctness of the result. Several cuts
among most complicated types are given in Fig.??.
We find that applying cut (a)-(d) in Fig.?? fixes 7 pa-

rameters, leaving an integrand result with only 3 unfixed
parameters. Further checks of cut (e) and (f) show that
the 3-parameter result is consistent with these cuts.
The check of cut (f) is mostly non-trivial, so we pro-

vide some details. From the tree products side i.e. RHS
of (??), it contains the product of a six-point form fac-
tor and an eight-point amplitudes. One needs also to
sum over all possible helicity configurations as well as
summing over all possible states of the cut legs, which
requires the computation of
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. (18)

This can be computed with MHV rule method, see e.g. [?
] and also [? ]. On the other hand, from the Ansatz side
i.e. LHS of (??), it involves 79 trivalent topologies that
contribute to planar order and gives more than a thou-
sand cut diagrams. These two highly non-trivial expres-
sions, computed from totally different origins, match per-
fectly with each other. This provides one of the strongest
check of the result.
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FIG. 1. Trivalent graphs of four-point tree amplitudes.

divergences of the theory. The integrand we constructed,
while satisfying the color-kinematics duality, also man-
ifestly satisfies the known finiteness bound for N = 4
SYM amplitudes [50–52]

D < 4 +
6

L
, L > 1 . (1)

A duality-satisfying construction for amplitudes, via the
double copy prescription, would provide crucial input to
the UV finiteness problem of N = 8 supergravity. As
we will see, our result indicates the UV finiteness of the
maximal supergravity at five loops when D < 22/5, if the
double copy of the form factor has a physical meaning in
the supergravity. We will discuss more on this in the end.

Review and result– The color-kinematics duality conjec-
tures that there exists a cubic (trivalent) graph represen-
tation of a general amplitude in gauge theories, such that
the kinematic numerators satisfy equations in one-to-one
correspondence with Jacobi identity of the color factors
[9, 10]. The duality applies also to form factors, and ex-
plicit constructions have been obtained up to four-loop
order [38].
The instructive example is the four-gluon tree ampli-

tudes. It is always possible to represent the amplitude in
terms of three cubic graphs shown in fig. 1,

Atree
4 (1, 2, 3, 4) =

Cs Ns

s
+

Ct Nt

t
+

Cu Nu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc associated to each cubic vertex. The physi-
cal information is encoded in the kinematic numerators
Ni. The color-kinematics duality requires that the nu-
merators should satisfy the same Jacobi relation of color
factors, namely

Cs = Ct + Cu ⇒ Ns = Nt +Nu . (3)

While at tree level this has been proved more generally,
the duality is conjectured to also hold at loop level. For
any propagator of a trivalent graph, one can take it as
in a s channel four-point sub-amplitude, associated with
two t- and u-channel graphs, as shown in fig. 2. The
duality requires that the numerators of the three graphs
satisfy the same Jacobi relation as color factors as

Ns({la, lb, ls}, {−ls, lc, ld}, ...) =

Nt({ld, la, lt}, {−lt, lb, lc}, ...)

+Nu({la, lc, lu}, {−lu, lb, ld}, ...) , (4)

ts ua

b

d

c

a

b c

d
a d
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FIG. 2. Color-kinematics related graphs at loop level.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of planar masters 1 1 1 2 4

TABLE I. Numbers of cubic graphs and master graphs for
Sudakov form factor.

where li label the momenta, {la, lb, ls} specify cubic ver-
tices in the graphs, and the omitted vertices are all iden-
tical in the three diagrams. Such a relation is under-
standable if four momenta la, lb, lc, ld are on-shell. The
non-trivial point of the conjectured duality is that it also
holds when all propagators are off-shell, as checked so far.
For every propagator, there is one such equation. These
equations play a central role in our construction.
Before entering the construction, let us give the final

five-loop Sudakov form factor in N=4 SYM organized in
the following form

F5-loop
2 = s212 F

tree
2

∑

σ2

306
∑

i=1

∫ L
∏

j

dDℓj
1

Si

Ci Ni
∏

αi
P 2
αi

, (5)

where we sum over all 306 non-isomorphic cubic graphs.
The sum over σ2 is due to the permutation of external
on-shell momenta p1 and p2. The symmetry factors Si

remove overcounts from the automorphism symmetries
of the graphs. Explicit expressions of the numerators Ni,
color factors Ci, symmetry factors Si and propagators
Pαi

are given in the file submitted with this paper.
Below we construct the five-loop result in eq. (5) via

color-kinematics duality, together with the constrains
from unitarity cuts. Reader is referred to [22, 38, 53]
for the further details of general strategy.

Five-loop Ansatz– The starting point is to generate a set
of needed cubic graphs. For Sudakov form factor, these
are graphs with three external legs, two with on-shell
momenta p1, p2 and one with off-shell momentum q asso-
ciated to the local operator. An important simplification
for N=4 SYM is that graphs containing tadpole, bubble
or triangle one-loop subgraphs can be excluded, which
are known to be valid for the duality-satisfying numer-
ators up to four loops [22, 38]. One-loop sub-triangle is
allowed if one of its legs is the external q-leg. The num-
ber of contributed graphs for Sudakov form factor up to
five loops is summarized in Table I.
The next step is to find a minimal set of master

graphs, from which one can generate all other graphs us-
ing the dual Jacobi relations eq. (4). Since the system

The numerators depend linearly on 162 parameters

We need to fix these parameters:

• Automorphism symmetry 
• Unitarity constraints
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FIG. 3. Master graphs for the five-loop Sudakov form factor.

of equations are highly constraining, the number of mas-
ter graphs is usually very small. Note that the choice of
master graphs is not unique. For convenience we choose
all master graphs to be planar, as shown in fig. 3. We
point out that it is possible to replace two of the planar
master graphs by a non-planar one, which reduces the
number of masters to be three. A counting of (planar)
master graphs up to five loops is given in Table I.

The third step is to make an ansatz for the numerators
of master graphs. After an overall factor s212F

tree
2 is fac-

torized as in eq. (5), the remaining numerators should be
polynomials of degree six in the loop and external mo-
mentum. Following previous observation at four loops,
we impose the power counting conditions that, a one-loop
n-gon subgraph carries no more than n−4 powers of loop
momentum for that loop, and if the n-gon subgraph is
attached to the q-leg, it carries no more than n−3 powers
of the loop momentum. For master graph fig. 3(c), for
example, the numerator should be no more than linear
in the loop momenta ℓ4, ℓ5 and at most quadratic in ℓ3.
This gives an ansatz of the sum over 77 Lorentz products
of ℓi, pi with 77 parameters. With numerators of other
three graphs, we have in total 162 parameters.

Choosing a proper set of dual Jacobi relations eq. (4),
we can express all other numerators in terms of the four
master ansatz-numerators. Note that we have used the
no-triangle and power counting properties of N = 4 SYM
to simplify the ansatz. Whether such an ansatz should
be sufficient at five loops is a priori not clear. If not,
one would need to relax some conditions and enlarge the
ansatz space. As we will see, the above ansatz turns out
to be sufficient for the construction.

Solving ansatz and checks– To fix the parameters, we first
demand that each numerator respects the automorphism
symmetries of the graph. Take master graph fig. 3(c)
as an example. There is one automorphism symmetry,
which constrains the numerator to be invariant under
the transformation

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5,

ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (6)

Applying symmetry constraints for all graphs fixes 115
parameters.
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Next we employ physical constraints via unitarity cuts

cut(
∑

cubic graphs) =
∑

states

F tree
∏

I

Atree
I , (7)

where the cut integrand of the ansatz cubic graphs is
compared with the product of tree observables. We start
with some simple maximal cuts. It is easy to write the
rung-rule numerators for all master graphs [54]. For in-
stance for master graph fig. 3(b),

N (b)
rung-rule = s12(ℓ3 + ℓ5 − p1 − p2)

2(ℓ4 − p1)
2 (8)

+ (ℓ3 − p1)
2(ℓ4 − p1 − p2)

2(ℓ5 − p1 − p2)
2 .

Under maximal cuts, the ansatz-numerator and the rung-
rule-numerator must be equal. Applying this for four
master graphs fixes further 27 parameters. Since so far
we only use a subset of dual Jacobi relations to generate
all numerators, we should check if all other Jacobi re-
lations are satisfied. This provides 10 more constraints.
We are thus left with only 10 parameters.
Given the small number of parameters, we are ready

to consider more general cuts as given in fig. 4. We find
that applying cut (a)-(d) in fig. 4 fixes 7 parameters, leav-
ing an integrand with only 3 unfixed parameters. Fur-
ther checks of cut (e) and (f) in fig. 4 show that the
3-parameter integrand automatically satisfies these cuts.
The check of cut (f) is one of the most involving cuts,

so we provide some details. From the r.h.s. of eq. (7), it is
the product of a six-point form factor and an eight-point
amplitude. One needs to sum over all possible states of
the cut legs. This includes summing over all helicity con-
figurations including non-trivial non-MHV tree results up
to N4MHV. Such tree amplitudes and form factors, in-
cluding the summing of states, can be computed with
MHV rule method [55–57]. On the other hand, from
the ansatz side i.e. l.h.s. of eq. (7), it involves 79 triva-
lent topologies which generate more than a thousand cut
diagrams. These two highly non-trivial expressions, com-
puted from different origins, match perfectly with each
other.
One subtle unitarity check is related to the graphs as

given by fig. 5(a). Such a graph is apparently not well-
defined: it is one-particle-reducible (1PR) and contains a
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of equations are highly constraining, the number of mas-
ter graphs is usually very small. Note that the choice of
master graphs is not unique. For convenience we choose
all master graphs to be planar, as shown in fig. 3. We
point out that it is possible to replace two of the planar
master graphs by a non-planar one, which reduces the
number of masters to be three. A counting of (planar)
master graphs up to five loops is given in Table I.

The third step is to make an ansatz for the numerators
of master graphs. After an overall factor s212F

tree
2 is fac-

torized as in eq. (5), the remaining numerators should be
polynomials of degree six in the loop and external mo-
mentum. Following previous observation at four loops,
we impose the power counting conditions that, a one-loop
n-gon subgraph carries no more than n−4 powers of loop
momentum for that loop, and if the n-gon subgraph is
attached to the q-leg, it carries no more than n−3 powers
of the loop momentum. For master graph fig. 3(c), for
example, the numerator should be no more than linear
in the loop momenta ℓ4, ℓ5 and at most quadratic in ℓ3.
This gives an ansatz of the sum over 77 Lorentz products
of ℓi, pi with 77 parameters. With numerators of other
three graphs, we have in total 162 parameters.

Choosing a proper set of dual Jacobi relations eq. (4),
we can express all other numerators in terms of the four
master ansatz-numerators. Note that we have used the
no-triangle and power counting properties of N = 4 SYM
to simplify the ansatz. Whether such an ansatz should
be sufficient at five loops is a priori not clear. If not,
one would need to relax some conditions and enlarge the
ansatz space. As we will see, the above ansatz turns out
to be sufficient for the construction.

Solving ansatz and checks– To fix the parameters, we first
demand that each numerator respects the automorphism
symmetries of the graph. Take master graph fig. 3(c)
as an example. There is one automorphism symmetry,
which constrains the numerator to be invariant under
the transformation

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5,

ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (6)

Applying symmetry constraints for all graphs fixes 115
parameters.
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Each blob denotes a tree amplitude or form factor.

Next we employ physical constraints via unitarity cuts

cut(
∑

cubic graphs) =
∑

states

F tree
∏

I

Atree
I , (7)

where the cut integrand of the ansatz cubic graphs is
compared with the product of tree observables. We start
with some simple maximal cuts. It is easy to write the
rung-rule numerators for all master graphs [54]. For in-
stance for master graph fig. 3(b),

N (b)
rung-rule = s12(ℓ3 + ℓ5 − p1 − p2)

2(ℓ4 − p1)
2 (8)

+ (ℓ3 − p1)
2(ℓ4 − p1 − p2)

2(ℓ5 − p1 − p2)
2 .

Under maximal cuts, the ansatz-numerator and the rung-
rule-numerator must be equal. Applying this for four
master graphs fixes further 27 parameters. Since so far
we only use a subset of dual Jacobi relations to generate
all numerators, we should check if all other Jacobi re-
lations are satisfied. This provides 10 more constraints.
We are thus left with only 10 parameters.
Given the small number of parameters, we are ready

to consider more general cuts as given in fig. 4. We find
that applying cut (a)-(d) in fig. 4 fixes 7 parameters, leav-
ing an integrand with only 3 unfixed parameters. Fur-
ther checks of cut (e) and (f) in fig. 4 show that the
3-parameter integrand automatically satisfies these cuts.
The check of cut (f) is one of the most involving cuts,

so we provide some details. From the r.h.s. of eq. (7), it is
the product of a six-point form factor and an eight-point
amplitude. One needs to sum over all possible states of
the cut legs. This includes summing over all helicity con-
figurations including non-trivial non-MHV tree results up
to N4MHV. Such tree amplitudes and form factors, in-
cluding the summing of states, can be computed with
MHV rule method [55–57]. On the other hand, from
the ansatz side i.e. l.h.s. of eq. (7), it involves 79 triva-
lent topologies which generate more than a thousand cut
diagrams. These two highly non-trivial expressions, com-
puted from different origins, match perfectly with each
other.
One subtle unitarity check is related to the graphs as

given by fig. 5(a). Such a graph is apparently not well-
defined: it is one-particle-reducible (1PR) and contains a
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Another evidence that things are going right is that all the fix parameters are

either small integers or small rational numbers.

The check of cut (f) is mostly non-trivial. From the tree products side, it contains

the product of a six-point form factor and an eight-point amplitudes. One needs also

to sum over all possible helicity configurations as well as summing over all possible

states of the cut legs, which requires the computation of

∫ 8
∏

i=3

d4ηli

[

FMHV
6 (−l8,−l7,−l6,−l5,−l4,−l3)A

N4MHV
8 (p1, p2, l3, l4, l5, l6, l7, l8)

+FNMHV
6 (−l8,−l7,−l6,−l5,−l4,−l3)A

N3MHV
8 (p1, p2, l3, l4, l5, l6, l7, l8)

+FN2MHV
6 (−l8,−l7,−l6,−l5,−l4,−l3)A

N2MHV
8 (p1, p2, l3, l4, l5, l6, l7, l8)

+FN3MHV
6 (−l8,−l7,−l6,−l5,−l4,−l3)A

NMHV
8 (p1, p2, l3, l4, l5, l6, l7, l8)

+FN4MHV
6 (−l8,−l7,−l6,−l5,−l4,−l3)A

MHV
8 (p1, p2, l3, l4, l5, l6, l7, l8)

]

.

(3.12)

This can be computed efficiently with MHV rule method, which involves a huge

number of diagrams but are straightforward numerically. On the other hand, from

the Ansatz side, it involves 79 different trivalent topologies (which correspond to all

topologies that contribute to leading colour order of N5
c ). And the total number

of various cut diagrams is 1,662. These two complicated expressions, coming from

totally different origins, match perfectly with each other. (We have made different

random choices of momenta and evaluate both expressions numerically many times.

They always match with each other.)

Let us present the final expressiones of the four master graph numerators
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Another evidence that things are going right is that all the fix parameters are

either small integers or small rational numbers.

The check of cut (f) is mostly non-trivial. From the tree products side, it contains

the product of a six-point form factor and an eight-point amplitudes. One needs also

to sum over all possible helicity configurations as well as summing over all possible

states of the cut legs, which requires the computation of
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[
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6 (−l8,−l7,−l6,−l5,−l4,−l3)A
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]

.

(3.12)

This can be computed efficiently with MHV rule method, which involves a huge

number of diagrams but are straightforward numerically. On the other hand, from

the Ansatz side, it involves 79 different trivalent topologies (which correspond to all

topologies that contribute to leading colour order of N5
c ). And the total number

of various cut diagrams is 1,662. These two complicated expressions, coming from

totally different origins, match perfectly with each other. (We have made different

random choices of momenta and evaluate both expressions numerically many times.

They always match with each other.)

Let us present the final expressiones of the four master graph numerators
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equations are highly constraining, the number of mas-
ter graphs is usually very small. The choice of master
graphs is not unique. For convenience we choose all mas-
ter graphs to be planar, as shown in fig. 3. Note that it
is possible to replace two of the planar master graphs by
a non-planar one, which reduces the number of masters
to be three. A counting of (planar) master graphs up to
five loops is given in Table I.

The third step is to make an ansatz for the numerators
of master graphs. After an overall factor s212F

tree
2 is fac-

torized as in eq. (5), the remaining numerators should be
polynomials of degree six in the loop and external mo-
mentum. Following previous observation at four loops,
we impose the power counting conditions that, a one-loop
n-gon subgraph carries no more than n−4 powers of loop
momentum for that loop, and if the n-gon subgraph is
attached to the q-leg, it carries no more than n−3 powers
of the loop momentum. For master graph fig. 3(c), for
example, the numerator should be no more than linear
in the loop momenta ℓ4, ℓ5 and at most quadratic in ℓ3.
This gives an ansatz of the sum over 77 Lorentz products
of ℓi, pi with 77 parameters. With numerators of other
three graphs, we have in total 162 parameters.

Choosing a proper set of dual Jacobi relations eq. (4),
we can express all other numerators in terms of the four
master ansatz-numerators. Note that we have used the
no-triangle and power counting properties of N = 4 SYM
to simplify the ansatz. Whether such an ansatz should
be sufficient at five loops is a priori not clear. If not,
one would need to relax some conditions and enlarge the
ansatz space. As we will see, the above ansatz turns out
to be sufficient for the construction.

Solving ansatz and checks.—To fix the parameters, we
first demand that each numerator respects the automor-
phism symmetries of the graph. Take master graph fig.
3(c) as an example. There is one automorphism sym-
metry, which constrains the numerator to be invariant
under the transformation

{ℓ3 → p1 + p2 − ℓ3, ℓ4 ↔ ℓ5,

ℓ6 → p1 + p2 − ℓ4 − ℓ5 − ℓ6,

ℓ7 → p1 + p2 − ℓ4 − ℓ5 − ℓ7}. (6)

Applying symmetry constraints for all graphs fixes 115
parameters.
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FIG. 4. Non-trivial unitarity cuts of five-loop form factor.
Each blob denotes a tree amplitude or form factor.

Next we employ physical constraints via unitarity cuts

cut(
∑

cubic graphs) =
∑

states

F tree
∏

I

Atree
I , (7)

where the cut integrand of the ansatz cubic graphs is
compared with the product of physical tree quantites.
We start with some simple maximal cuts. It is easy to
write the rung-rule numerators for all master graphs [56].
For instance for master graph fig. 3(b),

N (b)
rung-rule = s12(ℓ3 + ℓ5 − p1 − p2)

2(ℓ4 − p1)
2 (8)

+ (ℓ3 − p1)
2(ℓ4 − p1 − p2)

2(ℓ5 − p1 − p2)
2 .

Under maximal cuts, the ansatz-numerator and the rung-
rule-numerator must be equal. Applying this for four
master graphs fixes further 27 parameters. Since so far
we only use a subset of dual Jacobi relations to generate
all numerators, we should check if all other Jacobi re-
lations are satisfied. This provides 10 more constraints.
We are thus left with only 10 parameters.
Given the small number of parameters, we are ready to

consider more general cuts as given in fig. 4. We find that
applying cuts (a)-(d) in fig. 4 fixes 7 parameters, leav-
ing an integrand with only 3 unfixed parameters. Fur-
ther checks of cuts (e) and (f) in fig. 4 show that the
3-parameter integrand automatically satisfies these cuts.
The check of cut (f) is one of the most involving cuts,

so we provide some details. From the r.h.s. of eq. (7), it is
the product of a six-point form factor and an eight-point
amplitude. One needs to sum over all possible states of
the cut legs. This includes summing over all helicity con-
figurations including non-trivial non-MHV tree results up
to N4MHV. Such tree amplitudes and form factors, in-
cluding the summing of states, can be computed with
MHV rule method [57–59]. On the other hand, from
the ansatz side i.e. l.h.s. of eq. (7), it involves 79 triva-
lent topologies which generate more than a thousand cut
diagrams. These two highly non-trivial expressions, com-
puted from different origins, match perfectly with each
other.
One subtle unitarity check is related to the graphs as

given by fig. 5(a). Such a graph is apparently not well-
defined: it is one-particle-reducible (1PR) and contains a

from the ansatz
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FIG. 1. Trivalent graphs of four-point tree amplitudes.

divergences of the theory. The integrand we constructed,
while satisfying the color-kinematics duality, also man-
ifestly satisfies the known finiteness bound for N = 4
SYM amplitudes [50–52]

D < 4 +
6

L
, L > 1 . (1)

A duality-satisfying construction for amplitudes, via the
double copy prescription, would provide crucial input to
the UV finiteness problem of N = 8 supergravity. As
we will see, our result indicates the UV finiteness of the
maximal supergravity at five loops when D < 22/5, if the
double copy of the form factor has a physical meaning in
the supergravity. We will discuss more on this in the end.

Review and result– The color-kinematics duality conjec-
tures that there exists a cubic (trivalent) graph represen-
tation of a general amplitude in gauge theories, such that
the kinematic numerators satisfy equations in one-to-one
correspondence with Jacobi identity of the color factors
[9, 10]. The duality applies also to form factors, and ex-
plicit constructions have been obtained up to four-loop
order [38].
The instructive example is the four-gluon tree ampli-

tudes. It is always possible to represent the amplitude in
terms of three cubic graphs shown in fig. 1,

Atree
4 (1, 2, 3, 4) =

Cs Ns

s
+

Ct Nt

t
+

Cu Nu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc associated to each cubic vertex. The physi-
cal information is encoded in the kinematic numerators
Ni. The color-kinematics duality requires that the nu-
merators should satisfy the same Jacobi relation of color
factors, namely

Cs = Ct + Cu ⇒ Ns = Nt +Nu . (3)

While at tree level this has been proved more generally,
the duality is conjectured to also hold at loop level. For
any propagator of a trivalent graph, one can take it as
in a s channel four-point sub-amplitude, associated with
two t- and u-channel graphs, as shown in fig. 2. The
duality requires that the numerators of the three graphs
satisfy the same Jacobi relation as color factors as

Ns({la, lb, ls}, {−ls, lc, ld}, ...) =

Nt({ld, la, lt}, {−lt, lb, lc}, ...)

+Nu({la, lc, lu}, {−lu, lb, ld}, ...) , (4)

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Color-kinematics related graphs at loop level.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of planar masters 1 1 1 2 4

TABLE I. Numbers of cubic graphs and master graphs for
Sudakov form factor.

where li label the momenta, {la, lb, ls} specify cubic ver-
tices in the graphs, and the omitted vertices are all iden-
tical in the three diagrams. Such a relation is under-
standable if four momenta la, lb, lc, ld are on-shell. The
non-trivial point of the conjectured duality is that it also
holds when all propagators are off-shell, as checked so far.
For every propagator, there is one such equation. These
equations play a central role in our construction.
Before entering the construction, let us give the final

five-loop Sudakov form factor in N=4 SYM organized in
the following form

F5-loop
2 = s212 F

tree
2

∑

σ2

306
∑

i=1

∫ L
∏

j

dDℓj
1

Si

Ci Ni
∏

αi
P 2
αi

, (5)

where we sum over all 306 non-isomorphic cubic graphs.
The sum over σ2 is due to the permutation of external
on-shell momenta p1 and p2. The symmetry factors Si

remove overcounts from the automorphism symmetries
of the graphs. Explicit expressions of the numerators Ni,
color factors Ci, symmetry factors Si and propagators
Pαi

are given in the file submitted with this paper.
Below we construct the five-loop result in eq. (5) via

color-kinematics duality, together with the constrains
from unitarity cuts. Reader is referred to [22, 38, 53]
for the further details of general strategy.

Five-loop Ansatz– The starting point is to generate a set
of needed cubic graphs. For Sudakov form factor, these
are graphs with three external legs, two with on-shell
momenta p1, p2 and one with off-shell momentum q asso-
ciated to the local operator. An important simplification
for N=4 SYM is that graphs containing tadpole, bubble
or triangle one-loop subgraphs can be excluded, which
are known to be valid for the duality-satisfying numer-
ators up to four loops [22, 38]. One-loop sub-triangle is
allowed if one of its legs is the external q-leg. The num-
ber of contributed graphs for Sudakov form factor up to
five loops is summarized in Table I.
The next step is to find a minimal set of master

graphs, from which one can generate all other graphs us-
ing the dual Jacobi relations eq. (4). Since the system

Numerators saturate the same finiteness bound 
for N=4 SYM amplitudes:
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FIG. 1. Cubic graphs for four-point tree amplitudes.

Apart from these, higher loop results also provide key
information to understand the explicit ultraviolet (UV)
divergences of the theory. The integrand we constructed,
while satisfying the color-kinematics duality, also man-
ifestly satisfies the known finiteness bound for N = 4
SYM amplitudes [51–53]

D < 4 +
6

L
, L > 1 . (1)

A duality-satisfying construction for amplitudes, via the
double copy prescription, would provide crucial input to
the UV finiteness problem of N = 8 supergravity. As
we will see, our result indicates the UV finiteness of the
maximal supergravity at five loops when D < 22/5, if the
double copy of the form factor has a physical meaning in
the supergravity. We will discuss more on this in the end.
Review and result.—The color-kinematics duality con-

jectures that there exists a cubic (trivalent) graph repre-
sentation of a general amplitude in gauge theories, such
that the kinematic numerators satisfy equations in one-
to-one correspondence with Jacobi identity of the color
factors [9, 10]. The duality applies also to form factors,
and explicit constructions have been obtained up to four-
loop order [39].
The instructive example is the four-gluon tree ampli-

tudes. It is always possible to represent the amplitude in
terms of three cubic graphs shown in fig. 1,

Atree
4 (1, 2, 3, 4) =

Cs Ns

s
+

Ct Nt

t
+

Cu Nu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc associated to each cubic vertex. The physical
information is encoded in the kinematic numerators Ni.
The color-kinematics duality requires that the numera-
tors should satisfy the Jacobi relation of color factors as

Cs = Ct + Cu ⇒ Ns = Nt +Nu . (3)

While at tree level this has been proved more generally,
the duality is conjectured to also hold at loop level. For
any propagator of a trivalent graph (except the internal
lines connected to the operator for a form factor), one can
take it as in a s channel four-point sub-amplitude, asso-
ciated with t- and u-channel graphs, as shown in fig. 2.
The duality requires the numerators of the three graphs
satisfy the same Jacobi relation for color factors as

Ns({la, lb, ls}, {−ls, lc, ld}, ...) =

Nt({ld, la, lt}, {−lt, lb, lc}, ...)

+Nu({la, lc, lu}, {−lu, lb, ld}, ...) , (4)
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FIG. 2. Color-kinematics related graphs at loop level.

TABLE I. Number of cubic and master graphs up to five
loops.

L loops L=1 L=2 L=3 L=4 L=5

# of topologies 1 2 6 34 306

# of planar masters 1 1 1 2 4

where li label the momenta, {la, lb, ls} specify cubic ver-
tices in the graphs, and the omitted vertices are all iden-
tical in the three diagrams. Such a relation is under-
standable if four momenta la, lb, lc, ld are on-shell. The
non-trivial point of the conjectured duality is that it also
holds when all propagators are off-shell, as checked so far.
For every propagator, there is one such equation. These
equations play a central role in our construction.
Before entering the construction, let us give the final

five-loop Sudakov form factor in N = 4 SYM organized
in the following form

F5-loop
2 = s212 F

tree
2

∑

σ2

306
∑

i=1

∫ L
∏

j

dDℓj
1

Si

Ci Ni
∏

αi
P 2
αi

, (5)

where we sum over 306 non-isomorphic cubic graphs.
The sum over σ2 is due to the permutation of external
on-shell momenta p1 and p2. The symmetry factors Si

remove overcounts from the automorphism symmetries
of the graphs. Explicit expressions of the numerators Ni,
color factors Ci, symmetry factors Si and propagator lists
Pαi

are given in the Supplemental Material [54].
Below we construct the five-loop result in eq. (5) via

color-kinematics duality, together with the constrains
from unitarity cuts. Reader is referred to [21, 39, 55]
for the further details of general strategy.
Five-loop Ansatz.—The starting point is to generate

a set of needed cubic graphs. For Sudakov form factor,
these are graphs with three external legs, two with on-
shell momenta p1, p2 and one with off-shell momentum q
associated to the local operator. An important simplifi-
cation for N = 4 SYM is that graphs containing tadpole,
bubble or triangle one-loop subgraphs can be excluded,
which are known to be valid for the duality-satisfying nu-
merators up to four loops [21, 39]. One-loop sub-triangle
is allowed if one of its legs is the external q-leg. The num-
ber of contributed graphs for Sudakov form factor up to
five loops is summarized in Table I.
The next step is to find a minimal set of master graphs,

from which one can generate all other graphs using the
dual Jacobi relation eq. (4). Since the system of Jacobi

Double copy indicate possible UV divergences 
at D=22/5. (possible enhanced cancellation after integration?)

[GY 2016]



Six loops?
Interesting: contain 5-loop four-point amplitude!



Six loops

5 masters, ansatz with ~1400 parameters

~3000 trivalent topologies

fail even for some maximal cuts

Try as in the lower loops:

(more efforts needed)



Summary
• First five-loop realisation of the colour-kinematics 

duality

• Compact four/five-loop integrand of Sudakov 
form factor in N=4 SYM

• Potential implication to five-loop UV property of 
N=8 SUGRA (via double copy)



Outlook

• Generalisation to other operators/theories(QCD)?

• Six-loop?

• Interpretation for double-copy for form factor?

• Integration: UV -> Enhanced cancellation?

What is the underlying principle of the duality?

IR  -> non-planar cusp AD
see Rutger Boels’ talk tomorrow



Thank you for your attention!


