Scattering in Conformal Gravity

Henrik Johansson
Uppsala U. \& Nordita
July 13, 2017
Amplitudes 2017
Edinburgh

Based on work with:
Josh Nohle [1707.02965];
Marco Chiodaroli, Murat Gunaydin, Radu Roiban
[1408.0764, 1511.01740, 1512.09130, 1701.02519];
Gregor Kälin, Gustav Mogull [1706.09381].

Perturbative Einstein gravity (textbook)

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

de Donder gauge

$=\operatorname{sym}\left[-\frac{1}{2} P_{3}\left(k_{1} \cdot k_{2} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{2} \nu_{2}} \eta_{\mu_{3} \nu_{3}}\right)-\frac{1}{2} P_{6}\left(k_{1 \mu_{1}} k_{1 \nu_{2}} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{3} \nu_{3}}\right)+\frac{1}{2} P_{3}\left(k_{1} \cdot k_{2} \eta_{\mu_{1} \nu_{2}} \eta_{\nu_{1} \nu_{2}} \eta_{\mu_{3} \nu_{3}}\right)\right.$ $+P_{6}\left(k_{1}, k_{2} \eta_{\mu_{1} \nu_{1}} \eta_{\mu_{2} \mu_{3}} \eta_{\nu_{2} \nu_{3}}\right)+2 P_{3}\left(k_{1 \mu_{2}} k_{1 \nu_{3}} \eta_{\mu_{1} \nu_{1}} \eta_{\nu_{2} \mu_{3}}\right)-P_{3}\left(k_{1 \nu_{2}} k_{2 \mu_{1}} \eta_{\nu_{1} \mu_{1}} \eta_{\mu_{3} \nu_{3}}\right)$ $+P_{3}\left(k_{1 \mu 3} k_{2 \nu 3} \eta_{\mu \mu \mu 2} \eta_{\nu \nu \nu 2}\right)+P_{6}\left(k_{1 \mu 3} k_{1 \nu 3} \eta_{\mu \mu \mu 2} \eta_{\nu \nu \nu 2}\right)+2 P_{6}\left(k_{1 \mu 2} k_{2 \nu 9} \eta_{\nu \nu \mu 11} \eta_{\nu 1 \mu 3}\right)$ $\left.+2 P_{3}\left(k_{1 \mu_{2}} k_{2 \mu_{1}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{3} \nu_{1}}\right)-2 P_{3}\left(k_{1} \cdot k_{2} \eta_{\nu_{1} \mu_{2}} \eta_{\nu_{2} \mu_{3}} \eta_{\nu_{2} \mu_{1}}\right)\right] \quad$ After symmetrization ~ 100 terms !
higher order vertices...

complicated diagrams:

$\sim 10^{7}$ terms

$\sim 10^{21}$ terms

On-shell simplifications

Graviton plane wave:

$$
\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}
$$

^ Yang-Mills polarization
On-shell 3-graviton vertex:

\[

\]

Gravity scattering amplitude:

$$
M_{\text {tree }}^{\mathrm{GR}}(1,2,3,4)=\frac{s t}{u} A_{\text {tree }}^{\mathrm{YM}}(1,2,3,4) \otimes A_{\text {tree }}^{\mathrm{YM}}(1,2,3,4)
$$

Gravity processes = "squares" of gauge theory ones

$$
\text { gravity }=(\text { gauge th }) \otimes \text { (gauge th })
$$

Generic gravities are double copies

Amplitudes in familiar theories are secretly related, for example:

- $(\mathcal{N}=4 \mathrm{SYM}) \otimes(\mathcal{N}=4 \mathrm{SYM})=(\mathcal{N}=8$ SUGRA $)$
- $(\mathcal{N}=4 \mathrm{SYM}) \otimes($ pure YM $)=(\mathcal{N}=4 \mathrm{SUGRA})$
- $($ pure YM$) \otimes($ pure YM$)=\mathrm{GR}+\phi+B^{\mu \nu}$ (dilaton-axion)
- $\mathrm{QCD} \otimes \mathrm{QCD}=\mathrm{GR}+$ matter \quad (Maxwell-Einstein)
- $(\mathrm{YM}) \otimes\left(\mathrm{YM}+\phi^{3}\right)=\mathrm{GR}+\mathrm{YM} \quad$ (Yang-Mills-Einstein) and many more...
$\rightarrow($ gauge sym $) \otimes($ gauge sym $)=$ diffeo sym

Generality of double copy

Gravity processes $=$ product of gauge theory ones - entire S-matrix

Recent generalizations:
Gravity

\rightarrow Theories that are not truncations of $N=8$ SG HJ, Ochirov; Chiodaroli, Gunaydin, Roiban
\rightarrow Theories with fundamental matter HJ, Ochirov; Chiodaroli, Gunaydin, Roiban
\rightarrow Spontaneously broken theories Chiodaroli, Gunaydin, HJ, Roiban
\rightarrow Form factors Boels, Kniehl, Tarasov, Yang
\rightarrow talks by Yang \& Boels
\rightarrow Gravity off-shell symmetries from YM Anastasiou, Borsten, Duff, Hughes, Nagy
\rightarrow Classical (black hole) solutions Luna, Monteiro, O'Connell, White; Ridgway, Wise; Goldberger,...
\rightarrow Amplitudes in curved background Adamo, Casali, Mason, Nekovar
\rightarrow New double copies for string theory Mafra, Schlotterer, Stieberger, Taylor, Broedel, Carrasco...
\rightarrow CHY scattering eqs, twistor strings Cachazo, He, Yuan, Skinner, Mason, Geyer, Adamo, Monteiro,..
\rightarrow Conformal gravity HJ, Nohle see talks by Goldberger; Mason; Schlotterer

Motivation: (super)gravity UV behavior

Old results on UV properties:

- SUSY forbids 1,2 loop div. $\mathbb{R}^{2} \mathbb{R}^{3}$ Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström, Green, Schwarz, Brink, Marcus, Sagnotti
- Pure gravity 1-Ioop finite, 2-loop divergent Goroff \& Sagnotti, van de Ven
- With matter: 1-loop divergent 't Hooft \& Veltman; (van Nieuwenhuizen; Fischler..)

New results on UV properties:

- $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SG 3-loop finite!

Bern, Carrasco, Dixon, HJ, Kosower, Roiban; Bern, Davies, Dennen, Huang Beisert, Elvang, Freedman, Kiermaier, Morales,

- $\mathcal{N}=8 \mathrm{SG}$: no divergence before 7 loops Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove, Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more....
- First $\mathcal{J}=4$ SG divergence at 4 loops

Bern, Davies, Dennen, Smirnov, Smirnov (unclear interpretation, U(1) anomaly?)

- Evanescent effects: Einstein gravity

Bern, Cheung, Chi, Davies, Dixon, Nohle

Outline

- On-shell diffeomorphisms from gauge symmetry
- Color-kinematics duality \& double copy
- examples: SQCD; magical SG; YM-Einstein.
- Generalization to conformal (super-)gravity
- New dimension-six gauge theory
- Deformations and extensions \rightarrow more gravities
- Conclusion

Gauge \& diffeomorphism symmetry

cubic diagram form: $\mathcal{A}^{\text {tree }}=\sum_{i \in \text { cubic }} \frac{n_{i} c_{i}}{D_{i}} \leftarrow$ propagators

$$
n_{i} \equiv \varepsilon_{\mu}(p) n_{i}^{\mu} \quad \text { Consider a gauge transformation } \quad \varepsilon \rightarrow \varepsilon+\alpha p
$$

$$
n_{i} \rightarrow n_{i}+\Delta_{i} \quad \Delta_{i}=\alpha p_{\mu} n_{i}^{\mu}
$$

Invariance of $\mathcal{A}^{\text {tree }}$ requires that c_{i} are linearly dependent

$$
c_{i}-c_{j}=c_{k} \quad \text { [Jacobi id. or Lie algebra] }
$$

thus the combination

$$
\sum_{i \in \text { cubic }} \frac{\Delta_{i} c_{i}}{D_{i}}=0 \quad \text { vanishes. }
$$

"Double copy always gravitates"

Assume: gauge freedom can be exploited to find color-dual numerators

$$
c_{i}-c_{j}=c_{k} \quad \Leftrightarrow \quad n_{i}-n_{j}=n_{k}
$$

Then the double copy $\mathcal{M}^{\text {tree }}=\sum_{i \in \text { cubic }} \frac{n_{i} \tilde{n}_{i}}{D_{i}} \rightarrow$ Gravity
describes a spin-2 theory $\quad \varepsilon_{\mu \nu}=\varepsilon_{\mu} \varepsilon_{\nu}$
invariant under (linear) diffeos $\varepsilon_{\mu \nu} \rightarrow \varepsilon_{\mu \nu}+p_{\mu} \xi_{\nu}+\xi_{\mu} p_{\nu}$
$\begin{aligned} & \mathcal{M}^{\text {tree }} \rightarrow \mathcal{M}^{\text {tree }}+\underbrace{}_{i \in \mathrm{cubic}} \frac{\Delta_{i} \tilde{n}_{i}}{D_{i}}+\sum_{i \in \mathrm{cubic}} \frac{n_{i} \tilde{\Delta}_{i}}{D_{i}} \\ &=0\end{aligned}$
$($ gauge sym $) \otimes($ gauge sym $)=$ diffeo sym

Chiodaroli, Gunaydin, HJ, Roiban

Color-kinematics duality

Color-kinematics duality

Gauge theories are controlled by a hidden kinematic Lie algebra \rightarrow Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}{ }^{2} \text { color factors }^{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \leftarrow \text { propagators }}{\text { numerators }}
$$

Color \& kinematic numerators satisfy same relations:

$$
T^{a} T^{b}-T^{b} T^{a}=f^{a b c} T^{c}
$$

color
 1

kinematics $\quad n_{i}$

$$
f^{d a c} f^{c b e}-f^{d b c} f^{c a e}=f^{a b c} f^{d c e}
$$

Bern, Carrasco, HJ

$$
n_{i}-n_{j}=n_{k}
$$

commutation identity

Gauge-invariant relations (pure adjoint theories)

$$
A(1,2, \ldots, n-1, n)=A(n, 1,2, \ldots, n-1) \text { cyclicity } \rightarrow(n-1) \text { ! basis }
$$

$$
\left.\begin{array}{ll}
\sum_{i=1}^{n-1} A(1,2, \ldots, i, n, i+1, \ldots, n-1)=0 & \mathrm{U}(1) \text { decoupling } \\
A(1, \beta, 2, \alpha)=(-1)^{|\beta|} \sum_{\sigma \in \alpha \amalg \beta^{T}} A(1,2, \sigma) & \begin{array}{l}
\text { Kleiss-Kuijf } \\
\text { relations ('89) }
\end{array}
\end{array}\right]-(n-2) \text { ! basis }
$$

$$
\sum_{i=2}^{n-1}\left(\sum_{j=2}^{i} s_{j n}\right) A(1,2, \ldots i, n, i+1, \ldots, n-1)=0
$$

$$
\left.A(1,2, \alpha, 3, \beta)=\sum_{\sigma \in S(\alpha) \amalg \beta} A(1,2,3, \sigma) \prod_{i=1}^{|\alpha|} \frac{\mathcal{F}(3, \sigma, 1 \mid i)}{s_{2, \alpha_{1}, \ldots, \alpha_{i}}}\right]\left[\begin{array}{l}
\text { BCJ relations } \\
(n-3)!\text { basis }
\end{array}\right.
$$

BCJ rels. proven via string theory by Bjerrum-Bohr, Damgaard, Vanhove; Stieberger ('09) and field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng ('10-'11)
Relations used in string calcs: Mafra, Stieberger, Schlotterer, et al. ('11-'17)
Loop-level generalizations: Tourkine, Vanhove; Hohenegger, Stieberger; Chiodaroli et al.
\rightarrow talk by Tourkine; Schlotterer

Gravity is a double copy of YM

Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{aligned}
\mathcal{A}_{m}^{(L)} & \left.=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}\right)_{\text {double copy }}^{\text {Bern, Carrasco, HJ }} \text { d } \\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- The two numerators can differ by a generalized gauge transformation
\rightarrow only one copy needs to satisfy the kinematic algebra
- The two numerators can differ by the external/internal states
\rightarrow graviton, dilaton, axion (B-tensor), matter amplitudes
- The two numerators can belong to different theories
\rightarrow give a host of different gravitational theories

Equivalent to KLT at tree level for adj. rep.

Which gauge theories obey C-K duality

- Pure $\mathcal{N}=0,1,2,4$ super-Yang-Mills (any dimension) $\{$
- Self-dual Yang-Mills theory O'Connell, Monteiro ('11)
- Heterotic string theory Stieberger, Taylor ('14)
- Yang-Mills $+F^{3}$ theory Broedel, Dixon ('12)
- QCD, super-QCD, higher-dim QCD HJ, Ochirov ('15); Kälin, Mogull ('17)
- Generic matter coupled to $\mathcal{N}=\mathbf{0 , 1 , 2 , 4}$ super-Yang-Mills $\left\{\begin{array}{l}\text { Chiodaroli, Gunaydin, } \\ \text { Roiban; HJ, Ochirov ('14) }\end{array}\right.$
- Spontaneously broken $\mathcal{N}=\mathbf{0 , 2 , 4} \mathbf{S Y M}$ Chiodaroli, Gunaydin, HJ, Roiban ('15)
- Yang-Mills + scalar ϕ^{3} theory Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Bi-adjoint scalar ϕ^{3} theory $\left\{\begin{array}{l}\text { Bern, de Freitas, Wong ('99), Bern, Dennen, Huang; } \\ \text { Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O'Connell }\end{array}\right.$
- NLSM/Chiral Lagrangian Chen, Du ('13)
- $D=3$ BLG theory (Chern-Simons-matter) $\left\{\begin{array}{l}\text { Bargheer, He, McLoughlin; } \\ \text { Huang, HJ, Lee ('12-13) }\end{array}\right.$
- (Non-)Abelian Z-theory Carrasco, Mafra, Schlotterer ('16)
- Dim-6 gauge theories: $(D F)^{2}+F^{3}+\ldots$ HJ, Nohle ('17)

Which gravity theories are double copies

- Pure $\mathcal{N}=4,5,6,8$ supergravity ($2<\mathrm{D}<11$) KLT ('86), Bern, Carrasco, HJ ('08-'10)
- Einstein gravity and pure $\mathcal{N}=1,2,3$ supergravity HJ, Ochirov ('14)
- $D=6$ pure $\mathcal{N}=(1,1)$ and $\mathcal{N}=(2,0)$ supergravity $H J$, Kälin, Mogull ('17)
- Self-dual gravity 0'Connell, Monteiro ('11)
- Closed string theories Mafra, Schlotterer, Stieberger ('11); Stieberger, Taylor ('14)
- Einstein $+R^{3}$ theory Broedel, Dixon ('12)
- Abelian matter coupled to supergravity $\left\{\begin{array}{l}\text { Carrasco, Chiodaroli, Gunaydin, Roiban ('12) } \\ H J, O c h i r o v ~(' 14-15) ~\end{array}\right.$
- Magical sugra, homogeneous sugra Chiodaroli, Gunaydin, HJ, Roiban ('15)
- (S)YM coupled to (super)gravity Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Spontaneously broken YM-Einstein gravity Chiodaroli, Gunaydin, HJ, Roiban ('15)
- $D=3$ supergravity (BLG Chern-Simons-matter theory) ${ }^{2}\left\{\begin{array}{l}\text { Bargheer, He, McLoughlin; } \\ \text { Huans HJ, }\end{array}\right.$
- Born-Infeld, DBI, Galileon theories (CHY form) Cachazo, He, Yuan ('14)
- $\mathcal{N}=0,1,2,4$ conformal supergravity HJ, Nohle ('17)

Super-QCD at two loops

HJ, G. Kälin, G. Mogull
\rightarrow talk by Mogull

(1)

(3)

(4)

- two-loop SQCD amplitude
- color-kinematics manifest
- planar + non-planar
- \boldsymbol{N}_{f} massless quarks
- integrand valid in $\boldsymbol{D} \leq \mathbf{6}$

(6)

(7)

(8)

(5)

(10)

half-maximal supergravity numerator:

pure supergravities given by $D_{s}=D=4,5,6 \quad$ cf. HJ, Ochirov ('14)
(the $D=6$ theory is $\mathcal{N}=(1,1)$ supergravity)

$\mathcal{N}=(1,1)$ vs $\mathcal{N}=(2,0)$ supergravity

In six dimensions there are two half-maximal supergravities:

$$
\begin{aligned}
(\mathcal{N}=(1,1) \mathrm{SG})= & (\mathcal{N}=(1,0) \mathrm{SQCD}) \otimes(\mathcal{N}=(0,1) \mathrm{SQCD}) \\
& \text { (graviton + vector multiplets) }
\end{aligned}
$$

$$
\begin{aligned}
(\mathcal{N}=(2,0) \mathrm{SG})= & (\mathcal{N}=(1,0) \mathrm{SQCD}) \otimes(\mathcal{N}=(1,0) \mathrm{SQCD}) \\
& \text { (graviton + tensor multiplets) }
\end{aligned}
$$

In terms of gravity numerators:

Magical and homogeneous SUGRAs

Maxwell-Einstein 5d supergravity theories
Gunaydin, Sierra, Townsend
$e^{-1} \mathcal{L}=-\frac{R}{2}-\frac{1}{4} \stackrel{o}{a}_{I J} F_{\mu \nu}^{I} F^{J \mu \nu}-\frac{1}{2} g_{x y} \partial_{\mu} \varphi^{x} \partial^{\mu} \varphi^{y}+\frac{e^{-1}}{6 \sqrt{6}} C_{I J K} \epsilon^{\mu \nu \rho \sigma \lambda} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} A_{\lambda}^{K}$
Lagrangian is entirely determined by constants $C_{I J K}$

- Homogenous scalar manifold

$$
C_{I J K} \sim \Gamma_{\alpha \beta}^{a} \quad \text { de Wit, van Proeyen }
$$

- Double copy:

$$
(\mathcal{N}=2 \mathrm{SQCD}) \otimes\left(D, N_{f} \mathrm{QCD}\right)
$$

- Magical theories

$$
\begin{array}{r}
(\mathcal{N}=2 \mathrm{SQCD}) \otimes(D=7,8,10,14 \mathrm{QCD}) \\
=\text { Magical } \mathcal{N}=2 \text { Supergravity } \\
(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} \text { type })
\end{array}
$$

Chiodaroli, Gunaydin, HJ, Roiban (' 15)
cf. HJ, Ochirov ('15)

Yang-Mills-Einstein theory (GR+YM)

Chiodaroli, Gunaydin, HJ, Roiban ('14)

$\mathrm{GR}+\mathrm{YM}=\mathrm{YM} \otimes\left(\mathrm{YM}+\phi^{3}\right)$

GR+YM amplitudes are $\quad h^{\mu \nu} \sim A^{\mu} \otimes A^{\nu}$ "heterotic" double copies $A^{\mu a} \sim A^{\mu} \otimes \phi^{a}$

- simplest type of gauged supergravity; R-symmetry gauged is more complicated - construction extends to SSB (Coulomb branch) Chiodaroli, Gunaydin, HJ, Roiban ('15)

$$
(\mathrm{SSB})=(\mathrm{SSB}) \otimes(\operatorname{expl} . \mathrm{SB})
$$

Conformal Gravity

Conformal gravity

Some properties of conformal gravity:
4-derivative action $\quad \int d^{4} x \sqrt{-g} W^{2}$
(Weyl) $^{2} \quad\left(W_{\mu \nu \rho \sigma}\right)^{2}=\left(R_{\mu \nu \rho \sigma}\right)^{2}-2\left(R_{\mu \nu}\right)^{2}+\frac{1}{3} R^{2}$
invariant under local scale transformations: $g_{\mu \nu} \rightarrow \Omega^{2}(x) g_{\mu \nu}$
propagator $\sim \frac{1}{k^{4}} \sim \frac{1}{k^{2}}-\frac{1}{k^{2}-m^{2}}$

States: 2 + 5-1 (Weyl invariance

- graviton: 2
- graviton ghost: 2
- vector ghost : 2

However: physical S-matrix trivial in flat space Maldacena; Adamo, Mason
\rightarrow negative-norm states \rightarrow non-unitary
$\rightarrow R^{2}$ gravities renormalizable K. Stelle ('77)

Conformal supergravity

Some properties of conformal supergravity:
supersymmetric extensions of $\int d^{4} x \sqrt{-g} f(\phi) W^{2}+$ mess invariant under local superconformal transformations

$$
\mathcal{N}=1, \quad \mathcal{N}=2 \text { and } \mathcal{N}=4 \text { models }
$$

$$
\mathcal{N}=4 \quad \mathcal{N}=2 \quad \mathcal{N}=1
$$

Total \# on-shell states: 192

- graviton multipet: 32
- graviton ghost multipet : 32
- gravitino ghost multiplets:
- vector ghost multiplets:
4×32
0

40	16
8	4
8	4
2×8	4
8	4

"minimal" $N=4$ at one-loop: conformal anomaly present Fradkin, Tseytlin unless coupled to four $N=4$ vector multiplets.
"non-minimal" $N=4$ (e.g. arise in twistor string) - may remove anomaly.

Double copy for conformal supergravity?

How to obtain conformal gravity and supersymmetric extensions?
Double copy? $\frac{n_{s} \tilde{n}_{s}}{s}+\frac{n_{t} \tilde{n}_{t}}{t}+\frac{n_{u} \tilde{n}_{u}}{u}$
Problems: 1) simple poles \rightarrow double poles
2) many strange states to account for
3) non-unitary theory (unitarity method?)
dimensional analysis: \quad Ampl. has 4 derivatives: $M \sim \partial^{4}$

$$
n_{i} \sim \partial^{(m-2)}
$$

at any

$$
\tilde{n}_{i} \sim \partial^{m} \sim \frac{\partial^{3(m-2)}}{\partial^{2(m-3)}}
$$

Double copy for conformal gravity?

$$
n_{i} \sim \partial^{(m+2 L-2)}
$$

at any loop order:

$$
\tilde{n}_{i} \sim \partial^{m} \sim \frac{\partial^{3(m+2 L-2)}}{\partial^{2(m+3 L-3)}}
$$

The latter theory is marginal in $\mathrm{D}=6: \quad \frac{\tilde{n}_{i}}{D_{i}} \sim \partial^{(6-6 L-m)}$

Guess for double copy: $\int \frac{n_{s} \tilde{n}_{s}}{s}+\sqrt{\frac{n_{t} \tilde{n}_{t}}{t}+\frac{n_{u} \tilde{n}_{u}}{u}}$

$$
\mathrm{CG}=\underbrace{(\text { gauge th })}_{\text {marginal in } D=6} \otimes \underbrace{\mathrm{YM}}_{\text {marginal in } D=4} \text { (dimensional analysis) }
$$

Dimension-six gauge theory

Two dim-6 operators: $\underbrace{\frac{1}{2}\left(D_{\mu} F^{\mu \nu}\right)^{2}}-\frac{1}{3} g F^{3}$
correct $1 / k^{4}$ propagator but trivial S-matrix

$$
A_{3}=\langle 12\rangle\langle 23\rangle\langle 31\rangle
$$

3pt double copy is promising:
(Broedel, Dixon)

$$
M_{3}=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \times\langle 12\rangle\langle 23\rangle\langle 31\rangle=\langle i j\rangle^{4} \sim \phi W^{2}
$$

amplitude violates $\mathrm{U}(1)$ R-symmetry $\leftrightarrow S$-matrix is non-trivial
(3-graviton amplitude vanish $\leftrightarrow \rightarrow$ Gauss-Bonnet term)

Dimension-six gauge theory

Candidate theory: $\frac{1}{2}\left(D_{\mu} F^{\mu \nu}\right)^{2}-\frac{1}{3} g F^{3}$
4pt ampl: $\quad A_{4}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=\frac{\langle 12\rangle^{2}}{\langle 34\rangle^{2}}(u-t)$
Check color-kinematics duality (BCJ relation):

$$
0 \stackrel{?}{=} t A_{4}(1,2,3,4)-u A_{4}(2,1,3,4)=\frac{\langle 12\rangle^{2}}{\langle 34\rangle^{2}} s(t-u)
$$

Missing contribution: $\quad \Delta=\frac{\langle 12\rangle^{2}[34]^{2}}{s} \quad \rightarrow \quad \varphi F^{2}$
Add scalar, new operators: $\left\{\left(D_{\mu} \varphi\right)^{2}, \varphi F^{2}, \varphi^{3}\right\}$

Ansatz for dimension-six theory

$$
\mathcal{L}=\frac{1}{2}\left(D_{\mu} F^{a \mu \nu}\right)^{2}-\frac{1}{3} g F^{3}+\frac{1}{2}\left(D_{\mu} \varphi^{\alpha}\right)^{2}+\frac{1}{2} g C^{\alpha a b} \varphi^{\alpha} F_{\mu \nu}^{a} F^{b \mu \nu}+\frac{1}{3!} g d^{\alpha \beta \gamma} \varphi^{\alpha} \varphi^{\beta} \varphi^{\gamma}
$$

scalar in some real representation of gauge group (not adjoint) unknown Clebsh-Gordan coeff: $C^{\alpha a b}, d^{\alpha \beta \gamma} \quad$ (symmetric)

Assume: diagrams with internal scalars reduce to $\sim f^{a b c} f^{c d e} \ldots$

4 pt BCJ relation $\rightarrow C^{\alpha a b} C^{\alpha c d}=f^{a c e} f^{e d b}+f^{a d e} f^{e c b}$
6pt BCJ relation $\rightarrow C^{\alpha a b} d^{\alpha \beta \gamma}=\left(T^{a}\right)^{\beta \alpha}\left(T^{b}\right)^{\alpha \gamma}+C^{\beta a c} C^{\gamma c b}+(a \leftrightarrow b)$
sufficient to compute any tree amplitude with external vectors!
Which representation for scalar? "Bi-adjoint", "auxiliary" rep.

Construction works!

$$
\mathcal{L}=\frac{1}{2}\left(D_{\mu} F^{a \mu \nu}\right)^{2}-\frac{1}{3} g F^{3}+\frac{1}{2}\left(D_{\mu} \varphi^{\alpha}\right)^{2}+\frac{1}{2} g C^{\alpha a b} \varphi^{\alpha} F_{\mu \nu}^{a} F^{b \mu \nu}+\frac{1}{3!} g d^{\alpha \beta \gamma} \varphi^{\alpha} \varphi^{\beta} \varphi^{\gamma}
$$

Color-kinematics duality checked up to 8 pts ! (no new Feynman vertices beyond 6pt)

Double copy with YM agrees with conformal gravity: (Berkovits, Witten)

$$
M^{\mathrm{CG}}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)=\langle 12\rangle^{4} \prod_{i=3}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{[i j]\langle j q\rangle^{2}}{\langle i j\rangle\langle i q\rangle^{2}}
$$

All-plus amplitude is non-zero \rightarrow no susy extension of \mathcal{L}

$$
A\left(1^{+}, 2^{+}, 3^{+}, 4^{+}\right)=u \frac{[12][34]}{\langle 12\rangle\langle 34\rangle}
$$

Supersymmetry of conformal supergravity sits on the YM side:

$$
\mathrm{CSG}=(\text { dim- } 6 \text { theory }) \otimes(\mathcal{N}=1,2,4 \mathrm{SYM})
$$

Generalizations and deformations

Curiously no interacting scalars are obtained from dimensional reduction Instead add regular scalars in adjoint...
$\mathcal{L}=\frac{1}{2}\left(D_{\mu} F^{a \mu \nu}\right)^{2}-\frac{1}{3} g F^{3}+\frac{1}{2}\left(D_{\mu} \varphi^{\alpha}\right)^{2}+\frac{1}{2} g C^{\alpha a b} \varphi^{\alpha} F_{\mu \nu}^{a} F^{b \mu \nu}+\frac{1}{3!} g d^{\alpha \beta \gamma} \varphi^{\alpha} \varphi^{\beta} \varphi^{\gamma}$

$$
+\left(D_{\mu} \phi^{a A}\right)^{2}+\frac{1}{2} g C^{\alpha a b} \phi^{a A} \phi^{b A} \varphi^{\alpha}+\frac{1}{3!} g \lambda f^{a b c} \tilde{f}^{A B C} \phi^{a A} \phi^{b B} \phi^{c C}
$$

color-kinematics fixes interactions
Double copy: Maxwell-Weyl gravity:

$$
\sqrt{-g} f(\phi)\left(W^{2}+F^{2}+\ldots\right)
$$

Bi-adjoint ϕ^{3}

Double copy: Yang-Mills-Weyl

$$
N=4 \text { case: Witten's twistor string! }
$$

finally, deform with dim-4 operators: \rightarrow Yang-Mills-Einstein-Weyl gravity

$$
-\frac{1}{4} m^{2} F^{2}-\frac{1}{2} m^{2}\left(\varphi^{\alpha}\right)^{2} \quad \rightarrow \sqrt{-g} f(\phi)\left(m^{2} R+W^{2}+F^{2}+\ldots\right)
$$

Summary

- Powerful framework for constructing scattering amplitudes in various gravitational theories - well suited for multi-loop UV calculations
- Color-kinematics duality and gauge symmetry underlies consistency of construction. (Kinematic Lie algebra ubiquitous in gauge theory.)
- Constructed new dim-6 theory using color-kinematics duality - theory has several unusual features.
- Checks: Explicitly up to 8pts tree level (loop level analysis remains...)
- First construction of conformal gravity as a double copy:
- may simplify analysis of unresolved unitarity issues (if not yet resolved)
- may be an interesting UV regulator of Einstein (super)gravity (div. $N=4 \mathrm{SG} \leftarrow \rightarrow \mathrm{U}(1)$ anomaly cf. Bern, Edison, Kosower, Parra-Martinez)
- An increasing number of gravitational theories exhibit double-copy structure (some in surprising ways) - more are likely to be found!

