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Positive Geometries and Canonical Forms

We introduce the concept of positive geometries and canonical
forms as a new framework for thinking about a class of scattering
amplitudes.

Loosely speaking, a positive geometry A is a closed geometry
with boundaries of all co-dimensions (e.g. polytopes).
Each positive geometry has a unique differential form Ω(A)
called its canonical form defined by the following properties:

1 It has logarithmic (i.e. d log z-like) singularities on the boundary of
A.

2 Its singularities are recursive: At every boundary B, we have
ResBΩ(A) = Ω(B).
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Positive Geometries and Canonical Forms

The canonical form has two remarkable properties.

Triangulation: Given a subdivision of A by finitely many pieces
Ai, we have Ω(A) =

∑
i Ω(Ai).

Pushforward: Given a diffeomorphism mapping A to B, the map
pushes Ω(A) to Ω(B).

If A diffeomorphism φ−−−−−−−−−−→ B

then Ω(A)
pushforward by φ−−−−−−−−−−→ Ω(B)

For positive geometries that appear in physics, the canonical
form is a physical observable!
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Positive Geometries and Canonical Forms

For instance, the amplituhedron A(k, n;L) is a positive geometry.
The canonical form Ω(A(k, n;L)) is conjectured to be the
n-particle NkMHV tree level amplitude for L = 0 and the L-loop
integrand for L > 0.

Slight novelty: The amplitude is a differential form on the
underlying geometry.
Our focus today: The (n− 3)-dimensional associahedron An is a
positive geometry, and its canonical form Ω(An) is the n-particle
tree level scattering amplitude of planar bi-adjoint scalar theory
with identical ordering. We will refer to these simply as “bi-adjoint
amplitudes”.
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Positive Geometries and Canonical Forms

Main insight: Both the amplituhedron and the associahedron fall
under exactly the same paradigm:

Positive Geometry→ Canonical Form = Physical Observable

We can therefore say that the associahedron is the amplituhedron
of the bi-adjoint theory.
There are other instances where this pattern has emerged, so we
anticipate that it is relevant for many other theories.
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The Associahedron

A partial triangulation of the (regular) n-gon is a set of
non-intersecting diagonals.
The set of all partial triangulations of the n-gon can be organized
in a hierarchical web:
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The Associahedron

The associahedron of dimension (n− 3) is a polytope whose
codimension d faces are in 1-1 correspondence with the partial
triangulations with d diagonals. And the lines connecting partial
triangulations tell us how the faces are glued together.

Left: Marni Sheppeard. Arcadian Functor. ”M Theory Lesso 294.” (Sep 11, 2009)
http://kea-monad.blogspot.co.id/2009/09/m-theory-lesson-294.html
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The Associahedron

Bowman, Douglas, and Alon
Regev. ”Counting symmetry classes of dissections of a convex regular polygon.” Advances in Applied Mathematics 56
(2014): 35-55. Figure 1
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The Associahedron

Recall that partial triangulations are dual to cuts on planar cubic
diagrams, with each diagonal corresponding to a cut. So the
codimenion d faces of the associahedron are dual to d-cuts.

The faces of the associahedron are therefore dual to the
singularities of a cubic scattering amplitude.
It appears that the associahedron knows about the structure of
planar cubic amplitudes. It is therefore natural to look for an
explicit construction of an associahedron within kinematic space.
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The Associahedron in Mandelstam Space

We consider scattering n massless particles with momenta kµi for
i = 1, . . . , n in any number of dimensions.

We define the Mandelstam variables as usual:
sij = (ki + kj)

2 = 2ki · kj . There are n(n− 1)/2 of these.
More generally, we have si1...im = (ki1 + · · ·+ kim)2.
There are n kinematic constraints:

∑
j sij = 0 for each i. So

Mandelstam space has dimension n(n−1)
2 − n = n(n−3)

2 .
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Cutting Out the Associahedron

We first require all planar propagators to be positive:
si,i+1,i+2,...,i+m ≥ 0. Hence the codimension 1 boundaries
correspond to single cuts.

The inequalities cut out a big simplex in Mandelstam space of
dimension n(n− 3)/2, but the associahedron is of lower
dimension n− 3.
We set the variables sij for all non-adjacent index pairs
1 ≤ i < j ≤ n− 1 to be negative constants. Namely, sij ≡ −cij .
The number of constraints is:
(n− 3) + (n− 2) + · · ·+ 1 = (n−2)(n−3)

2 . This cuts the space down
to the required dimension: n(n−3)

2 − (n−2)(n−3)
2 = n− 3.
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The Associahedron in Mandelstam Space

The intersection between the big simplex and these
equations is an associahedron!

To show this, we argue that the faces of the polytope correspond
to cuts on planar cubic diagrams. But this is true by construction,
since the faces are defined using cuts.
However, we need to argue that there are no faces given by
non-planar cuts (i.e. diagram with self-intersecting diagonals).
This follows from the negative constants.
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The Associahedron

The faces of the polytope, of all codimension, are in one-to-one
correspondence with cuts on planar cubic diagrams. The polytope
must be an associahedron!

Here we show a numerical plot (left) for n = 6. The figure has 9
faces, 21 edges and 14 vertices, and is equivalent to the 3D
associahedron (right).

Image created using Mathematica 9
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The Canonical Form of the Associahedron

Now that we have constructed a positive geometry, the next step
in our program is to study its canonical form and look for a
physical interpretation.

Positive Geometry→ Canonical Form = Physical Observable

We discover that the canonical form of the associahedron is
the bi-adjoint amplitude!
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The Canonical For of the Associahedron

We first observe that the associahedron is a simple polytope.
Recall: A D-dimensional polytope is simple if each vertex is
adjacent to exactly D facets.

For a simple polytope of dimension D, the canonical form is:

∑
vertex P

D∏
i=1

d log(Ei,P )

where Ei,P = 0 are the equations of the facets adjacent to P ,
ordered by orientation.
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The Canonical For of the Associahedron

The canonical form of the associahedron is therefore a sum over
vertices. But each vertex is labeled by a triangulation of the n-gon,
or equivalently, a planar cubic diagram:

The canonical form is therefore a sum over planar cubic diagrams.
This looks like an amplitude!
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The Canonical Form of the Associahedron

The expression for each vertex is the product of d-log of the
equations for the n− 3 adjacent facets. But the facets are given by
the propagators sgi = 0 on the diagram. So the expression is just
the d-log of the propagators.

=
∏n−3
i=1

dsgi
sgi

= d log s23 d log s123 d log s45
= ds23 ds123 ds45

s23 s123 s45

The numerator
∏n−3
i=1 dsgi is the same for each diagram when

pulled back onto the (n− 3)-plane containing the associahedron.
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The Canonical Form of the Associahedron

The expression for each diagram is therefore:

Planar cubic diagram =

(
n−3∏
i=1

1

sgi

)
dn−3s

where sgi are the propagators. The quantity in parentheses is the
amplitue expression for the diagram.

The terms add to form the bi-adjoint amplitude:

Canonical form =
∑

Planar cubic diagram

= (Amplitude)dn−3s

It is crucial that we pull back to the (n− 3)-plane where the form
reduces to a top form, otherwise the cubic diagrams do not add in
a physically meaningful way.
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Quick Summary

We started with Mandelstam space sij of dimension n(n− 3)/2.

We cut out a big simplex in Mandelstam space.
We also cut out a (n− 3)-plane.
Intersecting the big simplex with the plane gives us an
associahedron.
We then introduced positive geometries and canonical forms.
Every positive geometry A has a unique form Ω(A) called its
canonical form.
The associahedron is a positive geometry whose canonical
form is the bi-adjoint amplitude!
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An Example for n = 4

For n = 4, we have s, t, u satisfying s+ t+ u = 0.
We impose s, t ≥ 0 and u < 0 constant (hence ds = −dt).
The associahedron is a line segment (red).
The canonical form is the 4 point amplitude.

Canonical form =
ds

s
− dt

t
=

(
1

s
+

1

t

)
ds = (4pt Amplitude) ds
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Scattering Equations as Pushforwards

Recall that the moduli space of n ordered points on a circle (i.e.
the open string world sheet) is shaped like an associahedron.

So there are two associahedra: one in moduli space, the other in
Mandelstam space.
The two spaces are related by the scattering equations:
Ed({σa, sbc}) = 0. So it is natural to expect that the two
associahedra are also related in some way.
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Scattering Equations as a Diffeomorphism

Observation: If the kinematic variables are on the interior of the
Mandelstam associahedron, then there exists exactly one solution
on the interior of the moduli space associahedron.

Hence the scattering equations act as a diffeomorphism from
the moduli space associahedron to the Mandelstam
associahedron.
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Scattering Equations as a Diffeomorphism

Mandelstam space

Moduli space:
(σ1, σ4, σ5) = (0, 1,∞)
0 < σ2 < σ3 < 1

Scattering equations as a diffeo. {σi} → {sjk}:
s12 = −σ2

σ3
(s13 + s14σ3)

s123 = 1
1−σ2 (s24σ2−(s14+s24)σ3+s14σ2σ3)

Image created using Mathematica 9
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Scattering Equations as a Diffeomorphism

Recall: Diffeomorphisms push canonical forms to canonical forms.

If A diffeomorphism φ−−−−−−−−−−→ B

then Ω(A)
pushforward by φ−−−−−−−−−−→ Ω(B)

Applying this to our case with φ = scattering equations, we get

moduli space assoc.
diffeomorphism φ−−−−−−−−−−→ Mandelstam assoc.

Ω(moduli space assoc.)
pushforward by φ−−−−−−−−−−→ Ω(Mandelstam assoc.)

Hence, dnσ/Vol SL(2)∏n
i=1(σi−σi+1)

pushforward by φ−−−−−−−−−−→ (Amplitude)dn−3s

The scattering equations push the Parke-Taylor form to the
amplitude form!
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CHY Formula as a Pushforward

In order words,∑
sol. σ

dnσ/Vol SL(2)∏n
i=1(σi − σi+1)

= (Amplitude)dn−3s

where the sum over solutions σa({scb}) is required by the
pushforward.

This is equivalent to the CHY formula for the bi-adjoint amplitude:

∫
dnσ/Vol SL(2)∏n
i=1(σi − σi+1)2

∏
i

′
δ

∑
j 6=i

sij
σi − σj

 = Amplitude

We have deduced the CHY formula above purely as a
consequence of geometry!
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Summary

There is an associahedron in Mandelstam space.

The associahedron is a positive geometry and therefore has a
canonical form, which is the bi-adjoint amplitude.
Furthermore, the scattering equations act as a diffeomorphism
from the moduli space associahedron to the Mandelstam
associahedron, and the CHY formula is the corresponding
pushforward.
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Outlook

The story is similar for other orderings in the bi-adjoint theory. The
geometry for each ordering is obtained by taking an
associahedron and sending to infinity vertices corresponding to
inadmissible cubic graphs.

Long term goal: Find all theories whose physical observables
can be reformulated as the canonical form of some positive
geometry.

Positive Geometry→ Canonical Form = Physical Observable
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