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Aim: Can we compute scattering amplitudes in SU(N) N = 4 super Yang
Mills theory to all loops, for any multiplicity and quantum numbers of the
external particles?

Would amount to “solving” an interacting 4D gauge theory...

Ambitious, but promising in ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

▸ Perturbatively, only planar diagrams contribute
▸ Planar N = 4 SYM ⇔ Free type IIB superstrings on AdS5 × S5

strongly coupled⇔ weakly coupled

▸ Amplitudes⇔Wilson Loops; Dual Conformal Symmetry
[Alday,Maldacena][Drummond,Henn,Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

▸ Integrable structures ⇒ All loop quantities! [Beisert,Eden,Staudacher]
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Practical significance

Hopefully I’ve convinced you that this aim is theoretically interesting and
possibly within reach.

Along the way, it is very likely that new computational methods will also
be developed, as prompted by earlier successes,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

leading to significant practical applications! For example,

∣gg →Hg∣2 for N3LO Higgs cross-section [Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

or more recently the 3-loop QCD soft anomalous dimension.
[Almelid,Duhr,Gardi,McLeod,White]
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So which part of this journey are we at?

Amplitudes with n = 4,5 particles already known to all loops! Captured by
the Bern-Dixon-Smirnov ansatz ABDS

n .

More generally,
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The Amplitude Bootstrap

The most efficient method for computing planar N = 4
amplitudes in general kinematics, at fixed order in the
coupling.

A. Construct an ansatz for the amplitude assuming

1. What the general class of functions that suffices to express it is

2. What the function arguments (encoding the kinematics) are

B. Fix the coefficients of the ansatz by imposing consistency conditions
(e.g. known near-collinear or multi-Regge limiting behavior)

First applied very successfully for the first nontrivial, 6-particle amplitude
through 5 loops. [Dixon,Drummond,Henn] [Dixon,Drummond,Hippel/Duhr,Pennington]

[(Caron-Huot,)Dixon,McLeod,von Hippel]

Motivated by this progress, we upgraded this procedure for n = 7, with
information from the cluster algebra structure of the kinematical space.
Surprisingly, more powerful than n = 6! [Drummond,GP,Spradlin]
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What are the right functions?
Multiple polylogarithms (MPLs)

fk is a MPL of weight k if its differential may be written as a finite linear
combination

dfk =∑
α

f
(α)
k−1 d logφα

over some set of φα, where f
(α)
k−1 functions of weight k − 1.

Convenient tool for describing them: The symbol S(fk) [See Brandhuber’s talk]

encapsulating recursive application of above definition (on f
(α)
k−1 etc)

S(fk) = ∑
α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗⋯⊗ φαk) .

Collection of φα : symbol alphabet ∣ f
(α1,...,αk)
0 rational

Empeirical evidence: L-loop amplitudes=MPLs of weight k = 2L
[Duhr,Del Duca,Smirnov][Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka][GP]
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What are the right variables?

More precisely, what is the symbol alphabet? [See talk by Volovich]

▸ For n = 6, 9 letters, motivated by analysis of relevant integrals
▸ More generally, strong motivation from cluster algebra structure of

kinematical configuration space Confn(P3)
[Golden,Goncharov,Spradlin,Vergu,Volovich]

The latter is a collection of n ordered momentum twistors Zi on P3, (an
equivalent way to parametrise massless kinematics), modulo dual
conformal transformations. [Hodges][See talks by Arkani-Hammed,Bai,Ferro]

xi ∼ Zi−1 ∧Zi
(xi − xj)2 ∼ εIJKLZIi−1Z

J
i Z

K
j−1Z

L
j = det(Zi−1ZiZj−1Zj) ≡ ⟨i − 1ij − 1j⟩
=
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Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers.

Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

General rule for mutation at node k:

1. ∀ i→ k → j, add i→ j, reverse i← k ← j, remove ⇄.

2. In new quiver/cluster, ak → a′k = ( ∏
arrows i→k

ai + ∏
arrows k→j

aj)/ak

GP — The Steinmann Cluster Bootstrap Cluster Algebra Upgrade 9/21



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with

▸ Distinguished set of generators ai, the cluster variables

▸ Grouped into overlapping subsets {a1, . . . , an} of rank n, the clusters

▸ Constructed recursively from initial cluster via mutations

Can be described by quivers. Example: A3 Cluster algebra

a1 a2 a3

Initial Cluster

a1 a′2 a3

Mutate a2: New cluster

a′2 = (a1 + a3)/a2

and so on. . .
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Connection to the kinematic space

The latter is closely related to a Graßmannian: [See talks by Arkani-Hammed. . . ]

Confn(P3) = Gr(4, n)/(C∗)n−1

▸ Graßmannians Gr(k,n) equipped with cluster algebra structure [Scott]

▸ Initial cluster made of a special set of Plücker coordinates ⟨i1 . . . ik⟩
▸ Mutations also yield certain homogeneous polynomials of Plücker

coordinates

▸ Crucial observation: For all known cases, symbol alphabet of n-point
amplitudes for n = 6,7 are Gr(4, n) cluster variables (also known as
A-coordinates) [Golden,Goncharov,Spradlin,Vergu,Volovich]

Symbol alphabet is made of cluster A-coordinates on
Confn(P3). For the heptagon, 42 of them.

Fundamental assumption of “cluster bootstrap”
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▸ Mutations also yield certain homogeneous polynomials of Plücker
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Heptagon Symbol Letters

Multiply A-coordinates with suitable powers of ⟨i i + 1 i + 2 i + 3⟩ to form
conformally invariant cross-ratios,

a11 =
⟨1234⟩⟨1567⟩⟨2367⟩
⟨1237⟩⟨1267⟩⟨3456⟩ , a41 =

⟨2457⟩⟨3456⟩
⟨2345⟩⟨4567⟩ ,

a21 =
⟨1234⟩⟨2567⟩
⟨1267⟩⟨2345⟩ , a51 =

⟨1(23)(45)(67)⟩
⟨1234⟩⟨1567⟩ ,

a31 =
⟨1567⟩⟨2347⟩
⟨1237⟩⟨4567⟩ , a61 =

⟨1(34)(56)(72)⟩
⟨1234⟩⟨1567⟩ ,

where
⟨ijkl⟩ ≡ ⟨ZiZjZkZl⟩ = det(ZiZjZkZl)

⟨a(bc)(de)(fg)⟩ ≡ ⟨abde⟩⟨acfg⟩ − ⟨abfg⟩⟨acde⟩ ,

together with aij obtained from ai1 by cyclically relabeling Zm → Zm+j−1.
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Back to contructing and constraining function space

1. Locality: Amplitudes may only have singularities when intermediate
particles go on-shell ⇒ constrains first symbol entry (7-pts: a1j)

2. Integrability: For given S, ensures ∃ function with given symbol

∑
α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗⋯⊗ φαk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
omitting φαj ⊗ φαj+1

d logφαj ∧ d logφαj+1 = 0 ∀j .

3. Dual superconformal symmetry ⇒ constrains last symbol entry of
amplitudes (MHV 7-pts: a2j , a3j)

[Caron-Huot,He]

4. Collinear limit: Bern-Dixon-Smirnov ansatz ABDS
n contains all IR

divergences ⇒ Constraint on Bn ≡ An/ABDS
n ∶ limi+1∥iBn = Bn−1

Define n-gon symbol: A symbol of the corresponding n-gon alphabet,
obeying 1 & 2.
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Results [Drummond,GP,Spradlin]

Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 ∥ 6 limit 3 15 98 646 ? ?

which vanish in the 7 ∥ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table: Heptagon symbols and their properties.
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well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table: Heptagon symbols and their properties.

The symbol of the three-loop seven-particle MHV amplitude is the
only weight-6 heptagon symbol which satisfies the last-entry condition
and which is finite in the 7 ∥ 6 collinear limit.
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Comparison with the hexagon case

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (vanish) in the 6 ∥ 5 limit 0 2 11 44 155 516

well-defined (vanish) for all i+1 ∥ i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table: Hexagon symbols and their properties.

Surprisingly, heptagon bootstrap more powerful than hexagon one! Fact that

lim7∥6R
(3)
7 = R(3)

6 , as well as discrete symmetries such as cyclic Zi → Zi+1, flip
Zi → Zn+1−i or parity symmetry follow for free, not imposed a priori.
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Upgrade II: Steinmann Relations [Steinmann][Cahill,Stapp][Bartels,Lipatov,Sabio Vera]

Dramatically simplify n-gon function space
[Caron-Huot,Dixon,McLeod,von Hippel][Dixon,Drummond,Harrington,McLeod,GP,Spradlin]

Double discontinuities vanish for any set of overlapping channels

Discs345 [Discs234A] = 0

▸ Channel labelled by Mandelstam invariant we analytically continue
▸ Channels overlap if they divide particles in 4 nonempty sets.

Here: {2}, {3,4}, {5}, and {6,7,1}
▸ Focus on si−1,i,i+1 ∝ a1i (si−1i more subtle)

Heptagon: No a1,i±1, a1,i±2 after a1,i on second symbol entry
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Results: Steinmann Heptagon symbols

Weight k = 1 2 3 4 5 6 7 7′′

parity +, flip + 4 16 48 154 467 1413 4163 3026

parity +, flip − 3 12 43 140 443 1359 4063 2946

parity −, flip + 0 0 3 14 60 210 672 668

parity −, flip − 0 0 3 14 60 210 672 669

Total 7 28 97 322 1030 3192 9570 7309

Table: Number of Steinmann heptagon symbols at weights 1 through 7, and those
satisfying the MHV next-to-final entry condition at weight 7. All of them are organized
with respect to the discrete symmetries Zi → Zi+1, Zi → Z8−i of the MHV amplitude.

1. Compare with 7, 42, 237, 1288, 6763 non-Steinmann heptagon symbols
2. 28

42 = 6
9 = 2

3 reduction at weight 2
3. Increase by a factor of ∼ 3 instead of ∼ 5 at each weight
4. E.g. 6-fold reduction already at weight 5!

In this manner, obtained 3-loop NMHV and 4-loop MHV heptagon
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New Developments I

The 6-loop, 6-particle N+MHV amplitude
[Caron-Huot,Dixon,McLeod,GP,von Hippel;to appear]

Significance:

1. Exorcising Elliptic Beasts

Elliptic generalizations of MPLs needed starting at 2 loops
[See talks by Adams,Broadhurst,Vanhove]

By analyzing its cuts, arguments
that following integral, potentially
contributing to 6-loop NMHV, is
elliptic. [Bourjaily,Parra Martinez]

Our result is purely MPL, thus lending no support to this claim.
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New Developments I

The 6-loop, 6-particle N+MHV amplitude
[Caron-Huot,Dixon,McLeod,GP,von Hippel;to appear]

Significance:

2. Application of heptagon ideas simplifying construction of function bases

New alphabet: {a, b, c,mu,mv,mw, yu, yv, yw}, where

a = u
vw , mu = 1−u

u , u = ⟨6123⟩⟨3456⟩
⟨6134⟩⟨2356⟩ , yu = ⟨1345⟩⟨2456⟩⟨1236⟩

⟨1235⟩⟨3456⟩⟨1246⟩ & cyclic
Observed empirically at first, must be consequence of original Steinmann
holding not just in the Euclidean region, but also on other Riemann sheets.
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Simplest formulation of Steinmann relations for the amplitude:
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New Developments II
Double penta-ladders to all orders

Can we construct n-gon function space without solving large linear
systems?

At least for n = 6 subspace spanned by double penta-ladder integrals, yes!
[Caron-Huot,Dixon,McLeod,GP,von Hippel;to appear]

[Arkani-Hamed,Bourjaily,Cachazo,Caron-Huot, Trnka]

[Drummond,Henn,Trnka]

Ω(L)(u, v,w)

E.g. Ω(2) ≡ ∫ d4ZABd
4ZCD(iπ2

)
−2

⟨AB13⟩⟨CD46⟩⟨2345⟩⟨5612⟩⟨3461⟩
⟨AB61⟩⟨AB12⟩⟨AB23⟩⟨AB34⟩⟨ABCD⟩⟨CD34⟩⟨CD45⟩⟨CD56⟩⟨CD61⟩

Can in fact resum Ω ≡ ∑λLΩ(L) in terms of a simple integral.
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Beyond seven particles

For N ≥ 8, Gr(N,8) cluster algebra becomes infinite

▸ However, in multi-Regge limit, Gr(N,8)→ AN−5 ×AN−5: finite!
[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

▸ The two AN−5 factors not independent: Related by single-valuedness

Therefore multi-Regge limit important stepping stone towards bootstrap-
ping higher-point amplitudes, and also closely related to integrability &
collinear OPE limit. [Basso,Caron-Huot,Sever][Drummond,Papathanasiou]
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Conclusions & Outlook

In this presentation, we talked about the bootstrap program for
constructing N = 4 SYM amplitudes at fixed-order/general kinematics,
by exploiting their analytic properties.

Our improved understanding of the latter has led to two major upgrades:
▸ Cluster algebras are instrumental in identifying the function space

(arguments) in which the amplitude “lives”
▸ (Extended) Steinmann relations massively reduce the size of this

space ⇒ much simpler to single it out

This has led a wealth of results for n = 6,7 amplitudes, with the power of
the method, surprisingly, increasing with n. More to come, n ≥ 8, QCD. . .

Ultimately, can the integrability of planar SYM theory, together with
a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory’s exact S-matrix?
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Momentum Twistors ZI [Hodges]

▸ Represent dual space variables xµ ∈ R1,3 as projective null vectors

XM ∈ R2,4 , X2 = 0 , X ∼ λX.

▸ Repackage vector XM of SO(2,4) into antisymmetric representation

XIJ = −XJI = of SU(2,2)

▸ Can build latter from two copies of the fundamental ZI = ,

XIJ = Z[I Z̃J] = (ZI Z̃J −ZJ Z̃I)/2 or X = Z ∧ Z̃

▸ After complexifying, ZI transform in SL(4,C). Since Z ∼ tZ, can be
viewed as homogeneous coordinates on P3.

▸ Can show

(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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Confn(P3) and Graßmannians

Can realize Confn(P3) as 4 × n matrix (Z1∣Z2∣ . . . ∣Zn) modulo rescalings
of the n columns and SL(4) transformations, which resembles a
Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in
an n-dimensional space. Equivalently the space of k × n matrices modulo
GL(k) transformations:

▸ k-plane specified by k basis vectors that span it ⇒ k × n matrix

▸ Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

Confn(P3) = Gr(4, n)/(C∗)n−1
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Imposing Constraints: Integrable Words

Given a random symbol S of weight k > 1, there does not in general exist
any function whose symbol is S. A symbol is said to be integrable, (or, to
be an integrable word) if it satisfies

∑
α1,...,αk

f
(α1,α2,...,αk)
0 d logφαj ∧ d logφαj+1 (φα1 ⊗⋯⊗ φαk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
omitting φαj ⊗ φαj+1

= 0 ,

∀j ∈ {1, . . . , k − 1}. These are necessary and sufficient conditions for a
function fk with symbol S to exist.

Example: (1 − xy)⊗ (1 − x) with x, y independent.

d log(1 − xy) ∧ d log(1 − x) = −ydx − xdy
1 − xy ∧ −dx

1 − x
= x

(1 − xy)(1 − x)dy ∧ dx

Not integrable
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Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate
particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

(pi + pi+1 +⋯ + pj−1)2 = (xj − xi)2 ∝ ⟨i−1 i j−1 j⟩→ 0

Singularities of multiple polylogarithm functions are encoded in the first
entry of their symbols.

First-entry condition: Only ⟨i−1 i j−1 j⟩ allowed in the first entry of S

Particularly for n = 7, this restricts letters of the first entry to a1j .

Define a heptagon symbol: An integrable symbol with alphabet aij that
obeys first-entry condition.
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MHV Constraints: Yangian anomaly equations

▸ Tree-level amplitudes exhibit (usual + dual) superconformal symmetry
[Drummond,Henn,Korchemsky,Sokatchev]

▸ Combination of two symmetries gives rise to a Yangian
[Drummond,Henn,Plefka][Drummond,Ferro]

▸ Although broken at loop level by IR divergences, Yangian anomaly
equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear
combination of d log⟨i j−1 j j+1⟩, which implies

Last-entry condition: Only ⟨i j−1 j j+1⟩ may appear in the last entry
of the symbol of any MHV amplitude.

Particularly here: Only the 14 letters a2j and a3j may appear in the last
symbol entry of R7.
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Particularly here: Only the 14 letters a2j and a3j may appear in the last
symbol entry of R7.
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Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS normalized n-particle L-loop
MHV remainder function that it should smoothly approach the
corresponding (n−1)-particle function in any simple collinear limit:

lim
i+1∥i

R(L)
n = R(L)

n−1 .

For n = 7, taking this limit in the most general manner reduces the
42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet,
plus nine additional letters.

A function has a well-defined i+1 ∥ i limit only if its symbol is
independent of all nine of these letters.
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Computing Heptagon Symbols

Step 1 (Straightforward)
Form linear combination of all length-k symbols made of aij obeying
initial/Steinmann (+final) entry conditions, with unknown coefficients
grouped in vector X.

Step 2 (Challenging)
Solve integrability constraints, which take the form

A ⋅X = 0 .

Namely all weight-k heptagon functions will be the right nullspace of
rational matrix A.

“Just” linear algebra, however for e.g. 4-loop MHV hexagon A boils down
to a size of 941498 × 60182. Tackled with fraction-free variants of
Gaussian elimination that bound the size of intermediate expressions,
implemented in Integer Matrix Library and Sage. [Storjohann]
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BDS versus BDS-like normalized amplitudes

▸ BDS ansatz: Essentially the exponentiated 1-loop amplitude
▸ Contains 3-particle invariants si−1,i,i+1

▸ BDS-like: Remove si−1,i,i+1 from BDS in conformally invariant fashion

ABDS-like
7 ≡ ABDS

7 exp [Γcusp

4
Y7]

Y7 = −
7

∑
i=1

[Li2 (1 − 1

ui
) + 1

2
log ( ui+2ui−2

ui+3uiui−3
) logui] ,

ui =
x2
i+1,i+5 x

2
i+2,i+4

x2
i+1,i+4 x

2
i+2,i+5

, Γcusp = 4g2 − 4π2

3
g4 +O(g6) ,

This way, Discsi−1,i,i+1A7 = ABDS-like
7 Discsi−1,i,i+1[A7/ABDS-like

7 ]

BDS-like normalized amplitudes obey Steinmann relations,
BDS normalized ones do not!
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NMHV (super)amplitudes

Beyond MHV, amplitudes most efficiently organized by exploiting the
(dual) superconformal symmetry of N = 4 SYM.

Φ = G++ηAΓA+ 1
2!η

AηBSAB+ 1
3!η

AηBηCεABCDΓ̄D+ 1
4!η

AηBηCηDεABCDG
−

AMHV
n = (2π)4δ(4)(

n

∑
i=1

pi) ∑
1≤j<k≤n

(ηj)4(ηk)4AMHV
n (1+... j−... k−... n+)+. . . ,

E ≡ A
NMHV
7

ABDS-like
7

= P(0)E0 + [(12)E12 + (14)E14 + cyclic] .

▸ E0,E12,E14 the transcendental functions we wish to determine

▸ P(0)
7 = 3

7 (12) + 1
7 (13) + 2

7 (14) + cyclic the tree-level superamplitude
▸ (67) = (76) ≡ [12345] Dual superconformal R-invariants, with

[abcde] =
δ0∣4(χa⟨bcde⟩ + cyclic)

⟨abcd⟩⟨bcde⟩⟨cdea⟩⟨deab⟩⟨eabc⟩ , χAi =
i−1

∑
j=1

⟨ji⟩ηAj .
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NMHV final entry conditions

[Caron-Huot]

(34) log a21, (14) log a21, (15) log a21, (16) log a21, (13) log a21, (12) log a21,

(45) log a37, (47) log a37, (37) log a37, (27) log a37, (57) log a37, (67) log a37,

(45) log
a34

a11
, (14) log

a34

a11
, (14) log

a11a24

a46
, (14) log

a14a31

a34
,

(24) log
a44

a42
, (56) log a57, (12) log a57, (16) log

a67

a26
,

(13) log
a41

a26a33
+ ((14) − (15)) log a26 − (17) log a26a37 + (45) log

a22

a34a35
− (34) log a33 ,
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Results: 3-loop NMHV Heptagon

Loop order L = 1 2 3

Steinmann symbols 15 × 28 15×322 15×3192

NMHV final entry 42 85 226

Dihedral symmetry 5 11 31

Well-defined collinear 0 0 0

1. Independent R-invariants × functions

2. Relations between 15 × 42 R-invariants × final entries [Caron-Huot]

3. Cyclic: i→ i + 1 on all twistor labels and letters
Flip: i→ 8 − i on all twistor labels and letters, except a2i ↔ a3,8−i

4. We also need collinear limit of R-invariants
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Results: 4-loop MHV Heptagon

Loop order L = 1 2 3 4

Steinmann symbols 28 322 3192 ?

MHV final entry 1 1 2 4

Well-defined collinear 0 0 0 0

For last step, we need to convert BDS-like normalized amplitude F to
BDS normalized one F ,

F = Fe
Γcusp

4
Y7

symbolÐÐÐÐÐ→
Γcusp→4g2

F(L) =
L

∑
k=0

F (k) Y L−k
n

(L − k)! .

Independence of limi+1∥iF on 9 additional letters no longer a
homogeneous constraint, fixes amplitude completely!

Strong tension between collinear properties and Steinmann re-
lations.
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Further checks: Multi-Regge limit
Phenomenologically relevant high-energy gluon scattering

s12 ≫ s3⋯N−1, s4⋯N ≫ s3⋯N−2, s4⋯N−1, s5⋯N ≫ ⋯
. . .≫ s34, . . . , sN−1N ≫ −t1,⋯,−tN−3 .

Actively studied at weak and strong coupling [Bartels,Kormilitzin,Lipatov(Prygarin)]

[Bartels,Schomerus,Sprenger][Bargheer,Papathanasiou,Schomerus][Bargheer]

▸ To obtain nontrivial result, necessary to analytically continue the
energies of kp+1, . . . kq

▸ Compared limit of heptagon to results on the leading logarithmic
approximation (LLA) [Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

▸ Obtained new results for all terms beyond LLA
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Further check: Heptagon Wilson loop OPE

This is an expansion in two variables e−τ1 , e−τ2 near the double collinear
limit τ1 →∞, τ2 →∞.

Integrability predicts linear terms in e−τi to
all loops in integral form, e.g.[Basso,Sever,Vieira 2]

h =ei(φ1+φ2) e−τ1−τ2 ∫
dudv

(2π)2
µ(u)PFF (−u∣v)µ(v)×

× e−τ1γ1+ip1σ1−τ2γ2+ip2σ2 .

1. Computed its weak-coupling expansion to 3 loops, employing the
technology of Z-sums [Moch,Uwer,Weinzierl][GP’13][GP’14]

2. Expanded our symbol for R
(3)
7 in the same kinematics, relying on

[Dixon,Drummond,Duhr,Pennington]
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