Multivariate reconstruction techniques over finite fields for scattering amplitudes

Tiziano Peraro

Higgs Centre for Theoretical Physics University of Edinburgh

July 11, 2017 Amplitudes, Edinburgh

Outline

- Finite fields and multivariate reconstruction
- 3 Applications to scattering amplitudes

Introduction and motivation

Introduction and motivation

Reconstruction techniques for scattering amplitudes

Amplitudes, 2017

Loop amplitudes at high multiplicity

Phenomenological predictions

- Experiments at LHC
 - high-accuracy (up to % level in Run II)
 - large SM background
 - high c.o.m. energy \Rightarrow multi-particle states
- We need scattering amplitudes with
 - high accuracy \Rightarrow loops
 - multi-particle \Rightarrow high multiplicity

Theoretical studies of amplitudes

- infer general structures in QFT and gauge theories
- exploit them in computational techniques

Loop amplitudes at high multiplicity

Loop amplitudes can be written as linear combinations of integrals

$$\mathcal{A}^{(\ell)} = \sum_i c_i I_i$$

• the integrals *I_i* are special functions of the kinematic invariants

- at one-loop only logarithms and dilogarithms
- at higher loops multiple polylogarithms, elliptic functions, etc...
- the coefficients c_i are rational functions of kinematic invariants
 - they are often a bottleneck at high multiplicity

In this talk I will mostly focus on the coefficients

Computing amplitudes: analytic vs numerical

QCD and SM amplitudes:

- $\bullet \ \ \text{Tree-level/One loop} \rightarrow \text{mostly numerical}$
 - many automated codes and toolchains
 - essentially a solved problem for any process/theory/multiplicity
 - focus is on performance and stability
- Higher loops \rightarrow mostly analytic
 - more efficient/stable numerical evaluation
 - more convenient for some techniques (e.g. IBPs, diff. eqs.)
 - allows many checks/manipulations/studies (singularities, limits, ...)
 - can be used to infer general analytic/algebraic properties
 - \Rightarrow more control
- note that numerical algorithms (e.g. at 1 loop) often rely on good understanding of analytic/algebraic properties of the result

Analytic calculation of scattering amplitudes

- Main bottleneck: large intermediate expressions
 - they can be orders of magnitude larger than the final result
 - not constrained by properties and symmetries of the result
- Tools for mitigating the problem
 - computer algebra systems specialised in handling large expressions (e.g. FORM [Vermaseren et al.])
 - $\bullet\,$ generalized unitarity $\Rightarrow\,$ intermediate steps are gauge invariant

The main idea of this talk

reconstruct analytic result from "numerical" evaluations
no large intermediate expression (just numbers!)

Reconstruction of rational functions

- Which kind of "numerical" evaluation is good?
 - floating-point evaluation
 - very fast
 - X affected by numerical instabilities
 - $\bullet\,$ evaluation over the rational field ${\cal Q}$
 - 🗸 exact
 - X intermediate results have large numerators/denominators
 - \Rightarrow requires slow multi-precision arithmetic
 - evaluation over finite-fields
 - ✓ a finite-number of elements, which can be represented by machine-size integers
 - 🗸 fast
 - 🗸 exact
 - x some information is lost and must be recovered by repeating the reconstruction over several finite fields

Functional reconstruction over finite fields

- Finite fields
 - used under-the-hood by computer algebra systems (e.g. in polynomial factorization/GCD)
 - used for IBPs (univariate applications)

[von Manteuffel, Schabinger (2014–2017)]

Efficient algorithm for functional reconstruction

- works on (dense) multivariate polynomials and rational functions
- implemented in C++ code (proof of concept)
- the input is a numerical procedure computing a function
- the output is its analytic expression
- Applications
 - linear systems of equations and composite functions
 - spinor-helicity and tree-level recursion
 - multi-loop integrand reduction and generalized unitarity

[T.P. (2016)]

Finite fields and multivariate reconstruction

Reconstruction techniques for scattering amplitudes

Finite fields

- In this talk we consider finite fields \mathcal{Z}_p , with p prime
- We define

$$\mathcal{Z}_n = \{0,\ldots,n-1\}$$

• addition, subtraction, and multiplication via modular arithmetic

$$4+5\Big|_{\mathcal{Z}_7} = (4+5) \mod 7 = 2$$

• if $a \in \mathbb{Z}_n$ and a, n are coprime, we can define an inverse

$$b = a^{-1} \in \mathcal{Z}_n, \qquad a \times b \mod n = 1$$

if n = p prime, an inverse exists for every a ∈ Z_p ⇒ Z_p is a field
every rational operation is well defined in Z_p

Polynomials and rational functions

• multi-index notation: variables $z = (z_1, ..., z_n)$ and integer list $\alpha = (\alpha_1, ..., \alpha_n)$

$$\mathbf{z}^{\alpha} \equiv \prod_{i=1}^{n} z_{i}^{\alpha_{i}}, \qquad |\alpha| = \sum_{i} \alpha_{i}$$

- Given a generic field \mathcal{F}
 - $\mathcal{F}[z]$ is the ring of polynomials in z with coefficients in \mathcal{F}

$$f(\mathbf{z}) = \sum_{\alpha} c_{\alpha} \, \mathbf{z}^{\alpha}.$$

• $\mathcal{F}(z)$ is the field of rational functions in z with coefficients in \mathcal{F}

$$f(\mathbf{z}) = \frac{p(\mathbf{z})}{q(\mathbf{z})} = \frac{\sum_{\alpha} n_{\alpha} \mathbf{z}^{\alpha}}{\sum_{\beta} d_{\beta} \mathbf{z}^{\beta}},$$

• technicality: set $d_{\min\beta} = 1$ to make the representation unique.

Rational reconstruction

Functional reconstruction

Reconstruct the monomials z^{α} and their coefficients from numerical evaluations of the function (over finite fields)

• from Q to Z_p

$$q = a/b \in \mathcal{Q} \quad \longrightarrow \quad q \bmod p \equiv a \times (b^{-1} \bmod p) \bmod p$$

- how to go back from \mathcal{Z}_p to \mathcal{Q} ?
- rational reconstruction algorithm: given $c \in \mathbb{Z}_n$ find its pre-image $q = a/b \in \mathcal{Q}$ with "small" a, b [Wang (1981)]

• it's correct when $a, b \lesssim \sqrt{n}$

- make *n* large enough using Chinese reminder theorem
 - solution in $Z_{p_1}, Z_{p_2} \ldots \Rightarrow$ solution in $Z_{p_1p_2\dots}$

The black-box interpolation problem

Given a polynomial or rational function f in the variables $z = (z_1, \ldots, z_n)$

• reconstruct analytic form of *f*, given a numerical procedure

$$z \longrightarrow f \longrightarrow f(z),$$

modified black-box interpolation problem, for usage with finite fields

$$(z,p) \longrightarrow f \longrightarrow f(z) \mod p.$$

• the two are equivalent because of Chinese reminder theorem

• no further assumptions on f

Univariate polynomials

• Newton' interpolation formula, form a sequence $\{y_0, y_1, \ldots\}$

$$f(z) = \sum_{r=0}^{R} a_r \prod_{i=0}^{r-1} (z - y_i)$$

= $a_0 + (z - y_0) \left(a_1 + (z - y_1) \left(a_2 + (z - y_2) \left(\dots + (z - y_{r-1}) a_r \right) \right) \right)$

• each coefficient a_i can be determined by evaluations $f(y_j)$ with $j \le i$

- good when degree is not known
- conversion into canonical form

$$f(z) = \sum_{r=0}^{R} c_r z^r.$$

- addition of univariate polynomials,
- multiplication of a univ. polynomial by a linear univ. polynomial

Univariate rational functions

• Thiele's (1838–1910) interpolation formula

$$\begin{aligned} f(z) &= a_0 + \frac{z - y_0}{a_1 + \frac{z - y_1}{a_2 + \frac{z - y_3}{\dots + \frac{z - y_{r-1}}{a_N}}} \\ &= a_0 + (z - y_0) \left(a_1 + (z - y_1) \left(a_2 + (z - y_2) \left(\dots + \frac{z - y_{N-1}}{a_N} \right)^{-1} \right)^{-1} \right)^{-1}, \end{aligned}$$

- analogous to Newton's for rational functions
 - good when degrees of numerator/denominator are not known
- if degrees are known and $d_0 = 1$ (see later), just solve the system

$$f(z) = \frac{\sum_{r=0}^{R} n_r z^r}{\sum_{r'=0}^{R'} d_{r'} z^{r'}} \quad \Rightarrow \quad \sum_{r=0}^{R} n_r y_i^r - \sum_{r'=1}^{R'} d_{r'} y_i^{r'} f(y_i) = f(y_i)$$

f

Multivariate polynomials

recursive Newton's formula

$$f(z_1,\ldots,z_n) = \sum_{r=0}^{R} a_r(z_2,\ldots,z_n) \prod_{i=0}^{r-1} (z_1 - y_i),$$

like univariate with

$$f(y_j) \longrightarrow f(y_j, z_2, \ldots, z_n), \qquad a_j \longrightarrow a_j(z_2, \ldots, z_n).$$

- convert it back to canonical representation using
 - addition of multivariate polynomials,
 - multiplication of a multiv. polynomial by a linear univ. polynomial.
- very efficient, even for large polynomials

Multivariate rational functions

- dense algorithm, adapted from sparse one by A. Cuyt, W. Lee (2011)
- overall normalization
 - assume non-vanishing constant term in denominator $(d_{(0,...,0)} = 1)$
 - if not the case, shift args. by appropriate vector *s*, using $f_s = f(z + s)$
- define new function $h \in \mathcal{F}(t, z)$ as

$$h(t, z) \equiv f(tz) = f(tz_1, \dots, tz_n) = \frac{\sum_{r=0}^{R} p_r(z) t^r}{1 + \sum_{r'=1}^{R'} q_{r'}(z) t^{r'}}$$

where

$$p_r(\mathbf{z}) \equiv \sum_{|lpha|=r} n_lpha \, \mathbf{z}^lpha, \qquad q_{r'}(\mathbf{z}) \equiv \sum_{|eta|=r'} d_eta \, \mathbf{z}^eta.$$

 \Rightarrow univ. rational fun. in t with (homogeneous) multiv. polynomial coefficients

Multivariate functional reconstruction (summary)

T.P. (2016)

- Univariate polynomials
 - based on Newton's interpolation formula
- Univariate rational functions
 - based on Thiele's (1838–1910) interpolation formula
- Multivariate polynomials
 - recursive application of Newton's interpolation
- Multivariate rational functions
 - use ideas proposed for sparse interpolation [A. Cuyt, W. Lee (2011)]
 - combined with Newton and Thiele's interpolation for dense case
- Notes:
 - all implemented in C++
 - results automatically come out GCD-simplified
 - can be used from a MATHEMATICA interface

Finite-fields and functional reconstruction

- Any algorithm which can be implemented via a sequence of rational operations allows a numerical implementation over Z_p
- Given a numerical procedure computing a rational function *f* over finite fields Z_p , we can reconstruct the analytic expression of *f*
- ⇒ We can perform analytic calculations by implementing equivalent numerical algorithms over finite fields

Example: linear solver

• A $n \times m$ linear system with parametric rational entries

$$\sum_{j=1}^{m} A_{ij} x_j = b_i, \quad (j = 1, \dots, n), \qquad A_{ij} = A_{ij}(z), \quad b_i = b_i(z)$$

• solution \Rightarrow find coefficients $c_{ij} = c_{ij}(z)$ such that

$$x_i = c_{i0} + \sum_{j \in \mathsf{indep}} c_{ij} x_j$$
 $(i \notin \mathsf{indep})$

- Functional reconstruction
 - solve system numerically (over finite fields) to evaluate the coefficients c_{ii}(z) of the solution
 - independent equations/variables and vanishing coefficients can be determined quickly and simplify further evaluations
- Very good efficiency compared to traditional computer algebra systems

Applications to scattering amplitudes

Reconstruction techniques for scattering amplitudes

Choice of kinematic variables: momentum twistors

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

18

- rational parametrization of the *n*-point phase-space and the spinor components using 3n - 10 momentum-twistor variables
- the components of spinors, external momenta and polarization vectors are rational functions of momentum twistor variables

$$|1\rangle = {1 \choose 0}, \qquad |2\rangle = {0 \choose 1}, \qquad |3\rangle = {1 \choose 1}, \qquad \dots$$
$$|1] = {1 \choose \frac{x_4 - x_5}{x_4}}, \qquad |2] = {0 \choose x_1}, \qquad |3] = {x_1 x_4 \choose -x_1}, \qquad \dots$$

Both analytic and numerical calculations can be performed operating directly on the components of spinors and momenta

Tree-level amplitudes via Berends-Giele recursion

- very efficient for numerical calculations
- functional reconstruction techniques can exploit this for obtaining analytic results

T. Peraro (University of Edinburgh) Reconstruction techniques for scattering amplitudes

٠

Integrand reduction

Ossola, Papadopoulos, Pittau (2007)

generic contribution to a loop amplitude

$$\int_{-\infty}^{\infty} \left(\prod_{i=1}^{\ell} d^d k_i\right) \frac{\mathcal{N}(k_i)}{\prod_j D_j(k_i)},$$

integrand reduction (integrand as sum of irreducible contributions)

$$\frac{\mathcal{N}(k_i)}{\prod_j D_j(k_i)} = \sum_{T \in \text{topologies}} \frac{\Delta_T(k_i)}{\prod_{j \in T} D_j(k_i)}, \qquad \Delta_T(k_i) = \sum_{\alpha} c_{T,\alpha} \left(\boldsymbol{m}_T(k_i) \right)^{\alpha}$$

- the on-shell integrands or residues Δ_T
 - $\{m_T^{\alpha}\}$ forms a complete integrand basis (see below)
- fit unknown $c_{T,\alpha}$ on multiple cuts $\{D_j = 0\}_{j \in T}$
 - solutions of a linear system

Finding an integrand basis

• use monomials in a complete set of irreducible scalar products between loop momenta k_i^{μ} , external momenta p_i^{μ} and orthogonal vectors ω_i^{μ}

$$\{\boldsymbol{m}_T\} = \{\boldsymbol{m}_T\}_{\text{complete}} = \{k_i \cdot k_j, k_i \cdot p_j\}_{\text{irreducible}} \cup \{k_i \cdot \omega_j\}_{\omega_i \perp p_j}$$

- irreducible \equiv not a combination of denominators $D_i \in T$
- all scalar products k_i · ω_j are irreducible but they can be integrated out and do not appear in the final result P. Mastrolia, A. Primo, T.P. (2016)
- use monomials in a overcomplete set of irreducible scalar products

$$\{\boldsymbol{m}_T\} = \{\boldsymbol{m}_T\}_{\text{complete}} \cup (k_{i,[d-4]} \cdot k_{j,[d-4]}) \cup \cdots$$

- the monomials satisfy linear relations which can be inverted (numerically over f.f.) to determine an independent basis
- by maximizing the presence of $(k_{i,[d-4]} \cdot k_{j,[d-4]})$ we ensure a smooth $d \rightarrow 4$ limit, which yields simpler results

Other choices for an integrand basis

- Local integrands for 5- and 6-point 2-loop all-plus amplitudes
 - $\mathcal{N}=4$ [Arkani-Hamed, Bourjaily, Cachazo, Trnka (2010)]
 - all-plus QCD [Badger, Mogull, T.P. (2016)]
 - free of spurious singularities
 - smooth soft limits to lower-point integrands
 - infrared properties manifest at the integrand level
 - \Rightarrow simpler results
 - X ... but no general algorithm for a complete one (yet)
- Other properties worth looking for in the future
 - correspondence with uniform-weight integrals for easier integration (cfr. J. Henn (2013))
- Looking for a good choice using functional reconstruction
 - the functional reconstruction algorithm allows to quickly compute the degree of multivariate functions without a full reconstruction
 - the degree can be used to assess the complexity of the result

Integrand reduction and generalized unitarity

Britto, Cachazo, Feng (2004), Giele, Kunszt, Melnikov (2008), Bern, Dixon, Kosower et al. (2008)

- Generalized unitarity
 - build irreducible integrands from multiple cuts
 - multiple-cuts \Rightarrow loop propagators go on-shell, $\ell_i^2 = 0$
 - integrand factorizes as product of trees (summed over internal helicities)
 - multiple cuts \Rightarrow unitarity cuts
- # unitarity cuts << # diagrams
 - lower complexity
- Every intermediate step is gauge invariant
 - no ghosts
 - more compact expressions

Two-loop unitarity cuts in *d* dimensions

Bern, Carrasco, Dennen, Huang, Ita (2010), Davies (2011), Badger, Frellesvig, Zhang (2013)

- *d*-dim. dependence of loops $k_i^{\mu} \Rightarrow$ embed k_i^{μ} in \mathcal{D} dimensions ($\mathcal{D} > 4$)
- unitarity cuts $\ell_i^2 = 0 \Rightarrow$ explicit \mathcal{D} -dim. representation of loop components
- describe internal on-shell states with *D*-dim. spinor-helicity formalism see e.g. six-dim. formalism by Cheung, O'Connell (2009)
- additional gluon states as $d_s D$ scalars ($d_s = 4, d$ in FDH, tHV)

Generalized unitarity over finite fields

• Amplitudes over finite fields

- momentum-twistor variables
- loop states: embed in 6-dim.
- spinor-helicity in 4 and 6 dim.
- tree-level recursion
- two-loop *d*-dim. unitarity cuts

Finite-field implementation

- explicit six-dim. representation of loop states
- efficient numerical techniques for analytic calculations
- two-loop unitarity cuts by sewing Berends-Giele currents
 - sum over helicities only for 2 internal lines
 - the others replaced by contraction of currents

T.P. (2016)

Finite fields and functional reconstruction: examples

• five-gluon on-shell integrands of maximal cuts (\equiv top-level topology) for

(for a complete set of helicities)

Finite fields and functional reconstruction

penta-box

Helicity	Non-vanishing coeff.	Max. terms	Max. degree	Avg. non-zero terms
$(1^+, 2^+, 3^+, 4^+, 5^+)$	14	19	8	15.00
$(1^-, 2^+, 3^+, 4^+, 5^+)$	27	443	19	152.96
$(1^+, 2^-, 3^+, 4^+, 5^+)$	37	1977	24	674.97
$(1^+, 2^+, 3^+, 4^-, 5^+)$	61	474	18	184.05
$(1^-, 2^-, 3^+, 4^+, 5^+)$	35	1511	24	278.77
$(1^-, 2^+, 3^+, 4^+, 5^-)$	79	7027	34	1112.82
$(1^+, 2^+, 3^+, 4^-, 5^-)$	18	19	8	15.00
$(1^{-}, 2^{+}, 3^{-}, 4^{+}, 5^{+})$	41	2412	22	368.41
$(1^+, 2^-, 3^+, 4^-, 5^+)$	85	18960	42	3934.96
$(1^{-}, 2^{+}, 3^{+}, 4^{-}, 5^{+})$	85	10386	37	1803.52

double-pentagon

Helicity	Non-vanishing coeff.	Max. terms	Max. degree	Avg. non-zero terms
$(1^+, 2^+, 3^+, 4^+, 5^+)$	104	1937	26	626.39
$(1^-, 2^+, 3^+, 4^+, 5^+)$	104	1449	27	601.43
$(1^+, 2^+, 3^-, 4^+, 5^+)$	104	1554	23	642.90
$(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+})$	99	1751	26	739.05
$(1^+, 2^-, 3^-, 4^+, 5^+)$	104	2524	24	923.71
$(1^-, 2^+, 3^+, 4^+, 5^-)$	104	1838	27	823.00
$(1^{-}, 2^{+}, 3^{+}, 4^{-}, 5^{+})$	104	1307	24	630.48

Summary & Outlook

Summary

- Finite-fields and functional reconstruction techniques
 - can be use to solve complex algebraic problems
 - any function which can be implemented as a sequence of rational operations is suited for these algorithms
- Applications to scattering amplitudes
 - spinor-helicity in four and six dimensions
 - tree-level calculations
 - multi-loop integrand reduction via generalized unitarity

Outlook

- complete five-point two-loop calculations
- apply the algorithm to other techniques (e.g. diagrammatic techniques, tensor reduction, IBPs,...)

THANKS!

BACKUP SLIDES

Reconstruction techniques for scattering amplitudes

Extended euclidean algorithm

• given integers *a*, *b*, find *s*, *t* such that

$$as + bt = \gcd(a, b).$$

algorithm: generate sequences of integers {*r_i*}, {*s_i*}, {*t_i*} and the integer quotients {*q_i*} as follows

$r_0 = a$	$\cdots = \cdots$
$s_0 = 1$	$q_i = \lfloor r_{i-2}/r_{i-1} \rfloor$
$t_0 = 0$	$r_i = r_{i-2} - q_i r_{i-1}$
$r_1 = b$	$s_i = s_{i-2} - q_i s_{i-1}$
$s_1 = 0$	$t_i = t_{i-2} - q_i t_{i-1}$
$t_1 = 1$	

• stop when $r_k = 1 \Rightarrow t = t_{k-1}$, $s = s_{k-1}$, $gcd(a, b) = r_{k-1}$

• multiplicative inverse: if b = n and $gcd(a, n) = 1 \Rightarrow s = a^{-1}$.

Chinese reminder theorem

• given $a_1 \in \mathcal{Z}_{n_1}$, $a_2 \in \mathcal{Z}_{n_2}$ (n_1, n_2 co-prime) find $a \in \mathcal{Z}_{n_1n_2}$ such that

 $a \mod n_1 = a_1, \qquad a \mod n_2 = a_2.$

- rational reconstruction over Q
 - reconstruct a function f over several finite fields Z_{p_1}, Z_{p_2}, \ldots
 - recursively combine the result in $Z_{p_1p_2}$... using the Chinese reminder
 - use the rational reconstruction algorithm on the combined result over $Z_{p_1p_2\cdots}$ to obtain a guess over Q
 - when $\prod_{i} p_i$ is large enough the reconstruction is successful
 - the termination criterion is consistency over several finite fields
- we can choose the primes p_i small enough to use machine-size integers
- multi-precision arithmetic only required for Chinese reminder
- 1, 2 or 3 primes are often sufficient

Rational reconstruction: example

- Reconstruct q = -611520/341 from its images over finite fields
- Z_{p_1} , with $p_1 = 897473$

 $a_1 = q \mod p_1 = 13998,$ first guess: $a_1 \xrightarrow{\text{rational rec. over } Z_{p_1}} g_1 = -411/577$

•
$$Z_{p_2}$$
, with $p_2 = 909683$

 $a_2 = q \mod p_2 = 835862$ $g_1 \mod p_2 = 807205 \implies \text{guess } g_1 \text{ is wrong}$

• Chinese reminder: $a_1, a_2 \longrightarrow a_{12} \in \mathcal{Z}_{p_1p_2}$, with $p_1p_2 = 816415931059$

 $a_{12} \equiv q \mod p_1 p_2 = 629669763217 \xrightarrow{\text{rational rec. over } Z_{p_1 p_2}} g_2 = -611520/341$

• calculation over other fields Z_{p_3}, \ldots confirm the guess g_2

Choice of variables: spinor-helicity formalism

Mangano, Parke

- tree-level amplitudes and coefficients of loop integrals are rational functions of spinor variables |p> and |p]
- satisfying the Dirac equation (in Weyl components)

$$p^{\mu} \sigma_{\mu} |p\rangle = p^{\mu} \sigma_{\mu} |p] = 0$$

momenta and polarization vectors

$$p^{\mu} = \frac{1}{2} \left\langle p \right| \sigma^{\mu} \left| p \right], \quad \epsilon^{\mu}_{+}(p) = \frac{\left\langle \eta \right| \sigma^{\mu} \left| p \right]}{\sqrt{2} \left\langle \eta p \right\rangle}, \quad \epsilon^{\mu}_{-}(p) = \frac{\left\langle p \right| \sigma^{\mu} \left| \eta \right]}{\sqrt{2} \left[p \right. \eta \right]}$$

• helicity amplitudes are combinations of spinor products, e.g.

$$\mathcal{A}_{5g}(1^+, 2^-, 3^+, 4^-, 5^+) = i g_s^3 \frac{\langle 24 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

redundancy: spinor components are not all independent

A brief digression on spinor phases

• under a little group tranformation (complex redefinition of phase)

$$|i
angle
ightarrow t_i \, |i
angle, \qquad |i]
ightarrow rac{1}{t_i} \, |i],$$

an *n*-point amplitude $\mathcal{A}(1, \ldots, n)$ transforms as

$$\mathcal{A}(1,\ldots,n) \rightarrow \left(\prod_{i=1}^{n} t_i^{-2h_i}\right) \mathcal{A}(1,\ldots,n),$$

where h_i is the helicity of the *i*-th particle (e.g. $\pm 1/2$ for fermions and ± 1 for gluons)

- extract from the amplitude an overall factor $\mathcal{A}^{(\text{phase})}(1,\ldots,n)$ which transform as the amplitude
- consider A such that

$$\mathcal{A} = \underbrace{\mathcal{A}^{(\text{phase})}}_{\text{only depends on helicities}} \times \underbrace{\tilde{\mathcal{A}}(x_i)}_{\text{phase-free} \to \text{ mom. twist.}}$$

A brief digression on spinor phases

Examples (loop independent):

• possible choices for 5-gluon amplitudes

$$\begin{split} \mathcal{A}^{(\mathsf{phase})}(1^+, 2^+, 3^+, 4^+, 5^+) &= \frac{1}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \langle 3 \, 4 \rangle \langle 4 \, 5 \rangle \langle 5 \, 1 \rangle} \\ \mathcal{A}^{(\mathsf{phase})}(1^-, 2^+, 3^+, 4^+, 5^+) &= \frac{(\langle 1 \, 2 \rangle [23] \langle 3 \, 1 \rangle])^2}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \langle 3 \, 4 \rangle \langle 4 \, 5 \rangle \langle 5 \, 1 \rangle} \\ \mathcal{A}^{(\mathsf{phase})}(1^-, 2^-, 3^+, 4^+, 5^+) &= \frac{\langle 1 \, 2 \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \langle 3 \, 4 \rangle \langle 4 \, 5 \rangle \langle 5 \, 1 \rangle}, \end{split}$$

• a choice *n*-gluon amplitudes

S. Badger (2016)

$$\mathcal{A}^{(\mathsf{phase})}(1^{h_1},\ldots,n^{h_n}) = \left(\frac{\langle 3\,2\,1]}{\langle 3\,1\rangle}\right)^{(h_1-\sum_{i=2}^nh_i)} \prod_{i=2}^n \langle i\,1\rangle^{-2h_i}$$

Choice of kinematic variables (phase-free part)

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

- 3*n* − 10 momentum-twistor variables
- 5-point example \rightarrow 5 variables { x_1, \ldots, x_5 }

