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Introduction and motivation

Loop amplitudes at high multiplicity

Phenomenological predictions

Experiments at LHC
high-accuracy (up to % level in Run II)
large SM background
high c.o.m. energy⇒ multi-particle states

We need scattering amplitudes with
high accuracy⇒ loops
multi-particle⇒ high multiplicity

Theoretical studies of amplitudes
infer general structures in QFT and
gauge theories
exploit them in computational techniques

A
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Introduction and motivation

Loop amplitudes at high multiplicity

Loop amplitudes can be written as linear combinations of integrals

A(`) =
∑

i

ci Ii

the integrals Ii are special functions of the kinematic invariants
at one-loop only logarithms and dilogarithms
at higher loops multiple polylogarithms, elliptic functions, etc. . .

the coefficients ci are rational functions of kinematic invariants
they are often a bottleneck at high multiplicity

In this talk I will mostly focus on the coefficients
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Introduction and motivation

Computing amplitudes: analytic vs numerical

QCD and SM amplitudes:

Tree-level/One loop→ mostly numerical

many automated codes and toolchains
essentially a solved problem for any process/theory/multiplicity
focus is on performance and stability

Higher loops→ mostly analytic

more efficient/stable numerical evaluation
more convenient for some techniques (e.g. IBPs, diff. eqs.)
allows many checks/manipulations/studies (singularities, limits, . . . )
can be used to infer general analytic/algebraic properties

⇒ more control

note that numerical algorithms (e.g. at 1 loop) often rely on good
understanding of analytic/algebraic properties of the result
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Introduction and motivation

Analytic calculation of scattering amplitudes

Main bottleneck: large intermediate expressions
they can be orders of magnitude larger than the final result
not constrained by properties and symmetries of the result

Tools for mitigating the problem
computer algebra systems specialised in handling large
expressions (e.g. FORM [Vermaseren et al.])
generalized unitarity⇒ intermediate steps are gauge invariant

The main idea of this talk
reconstruct analytic result from “numerical” evaluations
no large intermediate expression (just numbers!)
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Introduction and motivation

Reconstruction of rational functions

Which kind of “numerical” evaluation is good?
floating-point evaluation

3 very fast
7 affected by numerical instabilities

evaluation over the rational field Q
3 exact
7 intermediate results have large numerators/denominators

⇒ requires slow multi-precision arithmetic
evaluation over finite-fields

3 a finite-number of elements, which can be represented by
machine-size integers

3 fast
3 exact
7 some information is lost and must be recovered by repeating the

reconstruction over several finite fields
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Introduction and motivation

Functional reconstruction over finite fields

Finite fields
used under-the-hood by computer algebra systems (e.g. in
polynomial factorization/GCD)
used for IBPs (univariate applications)
[von Manteuffel, Schabinger (2014–2017)]

Efficient algorithm for functional reconstruction [T.P. (2016)]

works on (dense) multivariate polynomials and rational functions
implemented in C++ code (proof of concept)
the input is a numerical procedure computing a function
the output is its analytic expression

Applications
linear systems of equations and composite functions
spinor-helicity and tree-level recursion
multi-loop integrand reduction and generalized unitarity
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Finite fields and multivariate reconstruction

Finite fields and
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Finite fields and multivariate reconstruction

Finite fields

In this talk we consider finite fields Zp, with p prime
We define

Zn = {0, . . . , n− 1}

addition, subtraction, and multiplication via modular arithmetic

4 + 5
∣∣∣
Z7

= (4 + 5) mod 7 = 2

if a ∈ Zn and a, n are coprime, we can define an inverse

b = a−1 ∈ Zn, a× b mod n = 1

if n = p prime, an inverse exists for every a ∈ Zp ⇒ Zp is a field
every rational operation is well defined in Zp

T. Peraro (University of Edinburgh) Reconstruction techniques for scattering amplitudes Amplitudes, 2017 7



Finite fields and multivariate reconstruction

Polynomials and rational functions

multi-index notation: variables z = (z1, . . . , zn) and integer list
α = (α1, . . . , αn)

zα ≡
n∏

i=1

zαi
i , |α| =

∑

i

αi

Given a generic field F
F [z] is the ring of polynomials in z with coefficients in F

f (z) =
∑

α

cα zα.

F(z) is the field of rational functions in z with coefficients in F

f (z) =
p(z)
q(z)

=

∑
α nα zα∑
β dβ zβ

,

technicality: set dminβ = 1 to make the representation unique.
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Finite fields and multivariate reconstruction

Rational reconstruction

Functional reconstruction
Reconstruct the monomials zα and their coefficients from numerical
evaluations of the function (over finite fields)

from Q to Zp

q = a/b ∈ Q −→ q mod p ≡ a× (b−1 mod p) mod p

how to go back from Zp to Q?
rational reconstruction algorithm: given c ∈ Zn find its pre-image
q = a/b ∈ Q with “small” a, b [Wang (1981)]

it’s correct when a, b .
√

n

make n large enough using Chinese reminder theorem
solution in Zp1 ,Zp2 . . .⇒ solution in Zp1p2...
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Finite fields and multivariate reconstruction

The black-box interpolation problem

Given a polynomial or rational function f in the variables z = (z1, . . . , zn)

reconstruct analytic form of f , given a numerical procedure

z −→ f −→ f (z),

modified black-box interpolation problem, for usage with finite fields

(z, p) −→ f −→ f (z) mod p.

the two are equivalent because of Chinese reminder theorem

no further assumptions on f
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Finite fields and multivariate reconstruction

Univariate polynomials

Newton’ interpolation formula, form a sequence {y0, y1, . . .}

f (z) =

R∑

r=0

ar

r−1∏

i=0

(z− yi)

= a0 + (z− y0)

(
a1 + (z− y1)

(
a2 + (z− y2)

(
· · ·+ (z− yr−1) ar

)))

each coefficient ai can be determined by evaluations f (yj) with j ≤ i
good when degree is not known

conversion into canonical form

f (z) =

R∑

r=0

cr zr.

addition of univariate polynomials,
multiplication of a univ. polynomial by a linear univ. polynomial
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Finite fields and multivariate reconstruction

Univariate rational functions

Thiele’s (1838–1910) interpolation formula

f (z) = a0 +
z− y0

a1 +
z− y1

a2 +
z− y3

· · ·+
z− yr−1

aN

= a0 + (z− y0)

a1 + (z− y1)

(
a2 + (z− y2)

(
· · ·+

z− yN−1

aN

)−1
)−1

−1

,

analogous to Newton’s for rational functions

good when degrees of numerator/denominator are not known

if degrees are known and d0 = 1 (see later), just solve the system

f (z) =

∑R
r=0 nr zr

∑R′
r′=0 dr′ zr′

⇒
R∑

r=0

nr yr
i −

R′∑

r′=1

dr′ yr′
i f (yi) = f (yi)
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Finite fields and multivariate reconstruction

Multivariate polynomials

recursive Newton’s formula

f (z1, . . . , zn) =

R∑

r=0

ar(z2, . . . , zn)

r−1∏

i=0

(z1 − yi),

like univariate with

f (yj) −→ f (yj, z2, . . . , zn), aj −→ aj(z2, . . . , zn).

convert it back to canonical representation using
addition of multivariate polynomials,
multiplication of a multiv. polynomial by a linear univ. polynomial.

very efficient, even for large polynomials
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Finite fields and multivariate reconstruction

Multivariate rational functions

dense algorithm, adapted from sparse one by A. Cuyt, W. Lee (2011)

overall normalization
assume non-vanishing constant term in denominator (d(0,...,0) = 1)
if not the case, shift args. by appropriate vector s, using fs = f (z + s)

define new function h ∈ F(t, z) as

h(t, z) ≡ f (t z) = f (t z1, . . . , t zn) =

R∑

r=0

pr(z) tr

1 +

R′∑

r′=1

qr′(z) tr′

where
pr(z) ≡

∑

|α|=r

nα zα, qr′(z) ≡
∑

|β|=r′
dβ zβ .

⇒ univ. rational fun. in t with (homogeneous) multiv. polynomial coefficients
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Finite fields and multivariate reconstruction

Multivariate functional reconstruction (summary)

T.P. (2016)

Univariate polynomials
based on Newton’s interpolation formula

Univariate rational functions
based on Thiele’s (1838–1910) interpolation formula

Multivariate polynomials
recursive application of Newton’s interpolation

Multivariate rational functions
use ideas proposed for sparse interpolation [A. Cuyt, W. Lee (2011)]
combined with Newton and Thiele’s interpolation for dense case

Notes:
all implemented in C++
results automatically come out GCD-simplified
can be used from a MATHEMATICA interface
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Finite fields and multivariate reconstruction

Finite-fields and functional reconstruction

Any algorithm which can be implemented via a sequence of
rational operations allows a numerical implementation over Zp

Given a numerical procedure computing a rational function f over
finite fields Zp, we can reconstruct the analytic expression of f

⇒ We can perform analytic calculations by implementing equivalent
numerical algorithms over finite fields
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Finite fields and multivariate reconstruction

Example: linear solver

A n× m linear system with parametric rational entries
m∑

j=1

Aij xj = bi, (j = 1, . . . , n), Aij = Aij(z), bi = bi(z)

solution⇒ find coefficients cij = cij(z) such that

xi = ci0 +
∑

j∈indep

cij xj (i 6∈ indep)

Functional reconstruction

solve system numerically (over finite fields) to evaluate the
coefficients cij(z) of the solution
independent equations/variables and vanishing coefficients can be
determined quickly and simplify further evaluations

Very good efficiency compared to traditional computer algebra systems
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Applications to scattering amplitudes

Applications to
scattering amplitudes
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Applications to scattering amplitudes

Choice of kinematic variables: momentum twistors

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

rational parametrization of the n-point phase-space and the spinor
components using 3n− 10 momentum-twistor variables

the components of spinors, external momenta and polarization
vectors are rational functions of momentum twistor variables

|1〉 =
(1

0

)
, |2〉 =

(0
1

)
, |3〉 =

( 1
x1

1

)
, . . .

|1] =
( 1

x4−x5
x4

)
, |2] =

( 0
x1

)
, |3] =

(x1 x4

−x1

)
, . . .

Both analytic and numerical calculations can be performed operating
directly on the components of spinors and momenta
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Applications to scattering amplitudes

Tree-level amplitudes via Berends-Giele recursion

J(1, . . . ,m) = =
∑

j1

1

(p1 + . . . + pm)2
V3

J

1

j1

J

j1 + 1

m

V3

V4V4
j1 + j2

+
∑

j1,j2

1

(p1 + . . . + pm)2

J

j1 + j2 + 1

m

J

j1 + 1

J

1

j1

+ · · ·

J

1

m

very efficient for numerical calculations

functional reconstruction techniques can exploit this for obtaining
analytic results
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Applications to scattering amplitudes

Integrand reduction
Ossola, Papadopoulos, Pittau (2007)

generic contribution to a loop amplitude

∫ ∞

−∞

(∏̀

i=1

ddki

)
N (ki)∏
j Dj(ki)

,

integrand reduction (integrand as sum of irreducible contributions)

N (ki)∏
j Dj(ki)

=
∑

T∈topologies

∆T(ki)∏
j∈T Dj(ki)

, ∆T(ki) =
∑

α

cT,α (mT(ki))
α

the on-shell integrands or residues ∆T

{mα
T } forms a complete integrand basis (see below)

fit unknown cT,α on multiple cuts {Dj = 0}j∈T

solutions of a linear system
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Applications to scattering amplitudes

Finding an integrand basis

1 use monomials in a complete set of irreducible scalar products between
loop momenta kµi , external momenta pµi and orthogonal vectors ωµi

{mT} = {mT}complete = {ki · kj, ki · pj}irreducible ∪ {ki · ωj}ωi⊥pj

irreducible ≡ not a combination of denominators Di ∈ T
all scalar products ki · ωj are irreducible but they can be integrated
out and do not appear in the final result P. Mastrolia, A. Primo, T.P. (2016)

2 use monomials in a overcomplete set of irreducible scalar products

{mT} = {mT}complete ∪ (ki,[d−4] · kj,[d−4]) ∪ · · ·

the monomials satisfy linear relations which can be inverted
(numerically over f.f.) to determine an independent basis
by maximizing the presence of (ki,[d−4] · kj,[d−4]) we ensure a smooth
d → 4 limit, which yields simpler results
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Applications to scattering amplitudes

Other choices for an integrand basis

Local integrands for 5- and 6-point 2-loop all-plus amplitudes
N = 4 [Arkani-Hamed, Bourjaily, Cachazo, Trnka (2010)]
all-plus QCD [Badger, Mogull, T.P. (2016)]
free of spurious singularities
smooth soft limits to lower-point integrands
infrared properties manifest at the integrand level

⇒ simpler results
7 . . . but no general algorithm for a complete one (yet)

Other properties worth looking for in the future
correspondence with uniform-weight integrals for easier integration
(cfr. J. Henn (2013))

Looking for a good choice using functional reconstruction
the functional reconstruction algorithm allows to quickly compute
the degree of multivariate functions without a full reconstruction
the degree can be used to assess the complexity of the result
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Applications to scattering amplitudes

Integrand reduction and generalized unitarity

Britto, Cachazo, Feng (2004), Giele, Kunszt, Melnikov (2008), Bern, Dixon, Kosower et al. (2008)

Generalized unitarity
build irreducible integrands from multiple cuts
multiple-cuts⇒ loop propagators go on-shell, `2

i = 0
integrand factorizes as product of trees
(summed over internal helicities)
multiple cuts⇒ unitarity cuts

# unitarity cuts� # diagrams
lower complexity

Every intermediate step is
gauge invariant

no ghosts
more compact expressions

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3
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Applications to scattering amplitudes

Two-loop unitarity cuts in d dimensions
Bern, Carrasco, Dennen, Huang, Ita (2010), Davies (2011), Badger, Frellesvig, Zhang (2013)

d-dim. dependence of loops kµi ⇒ embed kµi in D dimensions (D > 4)

unitarity cuts `2
i = 0⇒ explicit D-dim. representation of loop components

describe internal on-shell states with D-dim. spinor-helicity formalism
see e.g. six-dim. formalism by Cheung, O’Connell (2009)

additional gluon states as ds −D scalars (ds = 4, d in FDH, tHV)

D = 6 sufficient up to two loops

numerical evaluation over finite fields
using an explicit (rational)
representation of internal states

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3
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Applications to scattering amplitudes

Generalized unitarity over finite fields

T.P. (2016)
Amplitudes over finite fields

momentum-twistor variables
loop states: embed in 6-dim.
spinor-helicity in 4 and 6 dim.
tree-level recursion
two-loop d-dim. unitarity cuts

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3

Finite-field implementation

explicit six-dim.
representation of loop states

efficient numerical techniques
for analytic calculations

two-loop unitarity cuts by
sewing Berends-Giele
currents

sum over helicities only
for 2 internal lines
the others replaced by
contraction of currents
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Applications to scattering amplitudes

Finite fields and functional reconstruction: examples

five-gluon on-shell integrands of maximal cuts (≡ top-level topology) for

1

2

3

4

5

k1k2

4

5
k1k2

1

2

3

(for a complete set of helicities)
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Applications to scattering amplitudes

Finite fields and functional reconstruction

penta-box
Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 14 19 8 15.00
(1−, 2+, 3+, 4+, 5+) 27 443 19 152.96
(1+, 2−, 3+, 4+, 5+) 37 1977 24 674.97
(1+, 2+, 3+, 4−, 5+) 61 474 18 184.05
(1−, 2−, 3+, 4+, 5+) 35 1511 24 278.77
(1−, 2+, 3+, 4+, 5−) 79 7027 34 1112.82
(1+, 2+, 3+, 4−, 5−) 18 19 8 15.00
(1−, 2+, 3−, 4+, 5+) 41 2412 22 368.41
(1+, 2−, 3+, 4−, 5+) 85 18960 42 3934.96
(1−, 2+, 3+, 4−, 5+) 85 10386 37 1803.52

double-pentagon
Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 104 1937 26 626.39
(1−, 2+, 3+, 4+, 5+) 104 1449 27 601.43
(1+, 2+, 3−, 4+, 5+) 104 1554 23 642.90
(1−, 2−, 3+, 4+, 5+) 99 1751 26 739.05
(1+, 2−, 3−, 4+, 5+) 104 2524 24 923.71
(1−, 2+, 3+, 4+, 5−) 104 1838 27 823.00
(1−, 2+, 3+, 4−, 5+) 104 1307 24 630.48
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Summary & Outlook

Summary & Outlook

Summary
Finite-fields and functional reconstruction techniques

can be use to solve complex algebraic problems
any function which can be implemented as a sequence of rational
operations is suited for these algorithms

Applications to scattering amplitudes
spinor-helicity in four and six dimensions
tree-level calculations
multi-loop integrand reduction via generalized unitarity

Outlook
complete five-point two-loop calculations
apply the algorithm to other techniques (e.g. diagrammatic
techniques, tensor reduction, IBPs,. . . )
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THANKS!
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BACKUP SLIDES
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Extended euclidean algorithm

given integers a, b, find s, t such that

a s + b t = gcd(a, b).

algorithm: generate sequences of integers {ri}, {si}, {ti} and the integer
quotients {qi} as follows

r0 = a · · · = · · ·
s0 = 1 qi = bri−2/ri−1c
t0 = 0 ri = ri−2 − qi ri−1

r1 = b si = si−2 − qi si−1

s1 = 0 ti = ti−2 − qi ti−1

t1 = 1

stop when rk = 1⇒ t = tk−1, s = sk−1, gcd(a, b) = rk−1

multiplicative inverse: if b = n and gcd(a, n) = 1⇒ s = a−1.

T. Peraro (University of Edinburgh) Reconstruction techniques for scattering amplitudes Amplitudes, 2017



Chinese reminder theorem

given a1 ∈ Zn1 , a2 ∈ Zn2 (n1, n2 co-prime) find a ∈ Zn1n2 such that

a mod n1 = a1, a mod n2 = a2.

rational reconstruction over Q
reconstruct a function f over several finite fields Zp1 ,Zp2 , . . .
recursively combine the result in Zp1p2··· using the Chinese reminder
use the rational reconstruction algorithm on the combined result
over Zp1p2··· to obtain a guess over Q
when

∏

i

pi is large enough the reconstruction is successful

the termination criterion is consistency over several finite fields

we can choose the primes pi small enough to use machine-size integers

multi-precision arithmetic only required for Chinese reminder

1, 2 or 3 primes are often sufficient
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Rational reconstruction: example

Reconstruct q = −611520/341 from its images over finite fields

Zp1 , with p1 = 897473

a1 = q mod p1 = 13998,

first guess: a1
rational rec. over Zp1−−−−−−−−−−−−→ g1 = −411/577

Zp2 , with p2 = 909683

a2 = q mod p2 = 835862
g1 mod p2 = 807205 ⇒ guess g1 is wrong

Chinese reminder: a1, a2 −→ a12 ∈ Zp1p2 , with p1p2 = 816415931059

a12 ≡ q mod p1p2 = 629669763217
rational rec. over Zp1p2−−−−−−−−−−−−−→ g2 = −611520/341

calculation over other fields Zp3 , . . . confirm the guess g2
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Choice of variables: spinor-helicity formalism
Mangano, Parke

tree-level amplitudes and coefficients of loop integrals are rational
functions of spinor variables |p〉 and |p]

satisfying the Dirac equation (in Weyl components)

pµ σµ|p〉 = pµ σµ|p] = 0

momenta and polarization vectors

pµ =
1
2
〈p|σµ |p], εµ+(p) =

〈η|σµ|p]√
2 〈η p〉

, εµ−(p) =
〈p|σµ|η]√

2 [p η]

helicity amplitudes are combinations of spinor products, e.g.

A5g(1+, 2−, 3+, 4−, 5+) = i g3
s

〈2 4〉4
〈 1 2〉〈 2 3〉〈 3 4〉〈 4 5〉〈5 1〉

redundancy: spinor components are not all independent
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A brief digression on spinor phases

under a little group tranformation (complex redefinition of phase)

|i〉 → ti |i〉, |i]→ 1
ti
|i],

an n-point amplitude A(1, . . . , n) transforms as

A(1, . . . , n)→
(

n∏

i=1

t−2 hi
i

)
A(1, . . . , n),

where hi is the helicity of the i-th particle (e.g. ±1/2 for fermions and ±1
for gluons)

extract from the amplitude an overall factor A(phase)(1, . . . , n) which
transform as the amplitude

consider Ã such that

A = A(phase)
︸ ︷︷ ︸

only depends on helicities

× Ã(xi)︸ ︷︷ ︸
phase-free→ mom. twist.
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A brief digression on spinor phases

Examples (loop independent):
possible choices for 5-gluon amplitudes

A(phase)(1+, 2+, 3+, 4+, 5+) =
1

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

A(phase)(1−, 2+, 3+, 4+, 5+) =
(〈1 2〉 [23]〈3 1〉])2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

A(phase)(1−, 2−, 3+, 4+, 5+) =
〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 ,

a choice n-gluon amplitudes S. Badger (2016)

A(phase)(1h1 , . . . , nhn) =

( 〈3 2 1]

〈3 1〉

)(h1−
∑n

i=2 hi) n∏

i=2

〈i 1〉−2hi
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Choice of kinematic variables (phase-free part)

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

3n− 10 momentum-twistor variables

5-point example→ 5 variables {x1, . . . , x5}

|1〉 =
(1

0

)
, |1] =

( 1
x4−x5

x4

)
, xk = xk(sij, tr(σ5 1 2 3 4))

|2〉 =
(0

1

)
, |2] =

( 0
x1

)
, pµi =

〈i|σµ| i]
2

|3〉 =
( 1

x1

1

)
, |3] =

(x1 x4

−x1

)
,

|4〉 =
( 1

x1
+ 1

x1 x2

1

)
, |4] =

(x1(x2 x3 − x3 x4 − x4)

− x1 x2 x3 x5
x4

)
,

|5〉 =
( 1

x1
+ 1

x1 x2
+ 1

x1 x2 x3

1

)
, |5] =

(x1 x3(x4 − x2)
x1 x2 x3 x5

x4

)
.
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