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Introduction

• Kepler problem and hydrogen atom are 
important classical and quantum mechanics 
problems that can be exactly solved 

• will show that N=4 super Yang-Mills is a 
natural QFT analogue of these systems

they have a hidden symmetry



Kepler problem

• orbits do not precess

• conservation of Laplace-Runge-Lenz vector
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Hydrogen atom

• hidden symmetry:
Laplace-Runge-Lenz-Pauli vector

• operator algebra allows to find spectrum

• Hamiltonian

• conserved quantity in quantum mechanics

H =
1

2m
p2 � k

r

En = �mk2

2~2
1

n2

• degeneracy n2

n = 1, 2, . . .

[H,Ai] = 0[H,Li] = 0

[Ai, Ai] = �i~✏ijkLk
2

m
H



• In the early days of relativistic QFT, 
Wick and Cutkowski considered the following 
model:

• This is the ladder approximation to ep → ep,
 ignoring the spin of the photon.

• In the nonrelativistic limit, for massless exchange, 
this reduces to the H Hamiltonian
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extension to a relativistic QFT
• Wick and Cutkowsky considered the following model:

• This is the ladder approximation to              ,
ignoring the spin of the photon  

ep ! ep

• In the non-relativistic limit, this reduces to the
hydrogen Hamiltonian



SO(4) symmetry of Wick-Cutcosky model

• This model possesses an exact O(4) symmetry, 
even away from the NR limit

• Consider just one rung 

• The symmetry is non-obvious in this form, and is 
a conformal symmetry in momentum space
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• The symmetry becomes evident if we use Dirac’s 
embedding formalism

• Rewrite each vector as a 6-vector, with L2=0:  
 
 
 
and similarly for the external regions:  
 
 

• The 6D vector product gives: 
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• The L’s and Y’s ‘live’ in regions of the planar graph 
 
 
 
 
 
 

• The integration measure is also important, but let 
me skip it for now. 
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• Since everything (incl. measure) depends only on 6-
dimensional dot products, there is a natural 
SO(6) (really SO(4,2)) symmetry

• The two vectors Y1, Y3 obviously break it to 
SO(4).

• This SO(4) contains the usual SO(3)  
as a subgroup.

• What are the remaining three generators? The 
Runge-Lenz vector!
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• Unfortunately, the ladder approximation is not 
consistent relativistically.

• (It lacks multi-particle channels and so has 
problems with unitarity)

• For this reason this symmetry appears to have 
been mostly abandoned, like a curiosity

• Wick and Cutkowski’s study 
nonetheless left us the ``Wick rotation’’



• The simplest way to imagine a consistent QFT 
with this symmetry requires a planar limit:  
 
 
 
 
 
 
 

• The Feynman rules would have to respect the 
SO(6) symmetry, which acts in momentum space

• Can such a thing exist?

L1

L2 L3



If such a theory exists, by unitarity surely it must contain 
massless particles.  
Their self-interactions will have to respect the dual 
conformal symmetry.



Hints for dual conformal symmetry

One-loop: ‘scalar box’ integral
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Change variables to go to a dual ‘coordinate space’ picture
(not a Fourier transform!) [ Broadhurst; Drummond,J. H.,Smirnov,Sokatchev]
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All integrals contributing to A4 up to four (five) loops have this property!
[11/27]

N=4 super Yang-Mills

fast-forward from 1950’s to 2000’s

N=4 sYM has dual conformal symmetry
[Drummond, JMH, Smirnov, Sokatchev; 
Alday, Maldacena; Drummond, JMH, 
Korchemsky, Sokatchev; ...]

in massless sector:
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• this symmetry is at the heart of many developments 

- duality Wilson loops/scattering amplitudes

- integrability of N=4 SYM theory

- and other recent developments

• we have just argued that it is a natural generalization 
of the hydrogen atom’s SO(4), itself inherited from the 
Kepler problem

• but where are the massive particles?



introducing massive particles

N D3-branes

M D3-branes

z = 0

zi = 1/mi
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Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi ̸= 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,

4

gauge theory string theory

Higgs mechanism
� �! h�i+ '

U(N +M) �! U(N)⇥ U(M)

• e.g. four-particle scattering
U(N + 4) �! U(N)⇥ U(4)

consider scattering of SU(4) fields in large N limit
- infrared finite
- preserves dual conformal symmetry



• dual conformal symmetry (planar) 
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This provides a generalization of the concept of reduced
mass to this particular relativistic setup. The remain-
ing nontrivial predictions of the SO(4, 2) symmetry arise
from the subgroup which preserves the masses and yi.

This subgroup is 6-dimensional, since SO(4, 2) is 15-
dimensional and 10 constraints are imposed, but only 9
are independent. Explicitly, in a rest frame where y1 = 0
and y3 = (P 0,~0), and setting m1 = m3 = m = 2µ with-
out loss of generality, we find that the nontrivial genera-
tors are the following combinations of (4), Lorentz boosts,
and translations:
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with a similar transformation for p. By construction, the
points (yi, mi) are invariant under this symmetry.

These transformations can be interpreted more easily
by taking the non-relativistic limit of the model. It is
well known that eq. (3) reduces to the Schrödinger equa-
tion in this limit, a fact which can be demonstrated by
approximating the frequency integration by its residue
on the 1/(q2 +m2) propagator. Substituting the value of
q0 on the residue, q0 ⇡ m+~q 2/(2m), the transformation
(6) is reduced to

�0~⇠~q = �~⇠
⇥
m(P 0 � 2m) + ~q 2

⇤
+ 2~⇠·~q ~q . (7)

It is easy to see that this is the canonical transformation
generated by the Laplace-Runge-Lenz vector (2) [20].
This demonstrates that the symmetries (6), which arose
from SO(4, 2) conformal transformations in momentum
space, are nothing but a relativistic generalization of the
Laplace-Runge-Lenz vector. For more on the interpreta-
tion of the latter we refer to [3].

Unfortunately, the Wick-Cutkosky model does not de-
fine a consistent relativistic theory, as the ladder approx-
imation is not unitary and lacks multi-particle e↵ects.
Remarkably, a consistent quantum field theory general-
izing the above symmetry does exist. It has been ob-
served that maximally supersymmetric Yang-Mills the-
ory N = 4 SYM with gauge group SU(Nc), which has
a superconformal symmetry, also has a dual momentum
space version of this symmetry, in the planar limit [4].
(The planar limit, which we are going to work in, is de-
fined by Nc ! 1, with the ‘t Hooft coupling � = g2Nc

held fixed.) As far as we are aware this is the only known
example of a four-dimensional quantum field theory with
such a symmetry.

In the usual formulation this is a theory of massless
particles. However, massive particles can be introduced
in a natural way via the Higgs mechanism. This al-
lows us to discuss the scattering of massive W bosons.
Their masses can be freely adjusted by varying scalar
field expectation values. Let us focus on the four-particle
scattering amplitude depicted in Fig. 1. This ampli-
tude is finite in the ultraviolet, due to the finiteness

m3

m4

m1

m2

|m1 � m2|

|m2 � m3| |m3 � m4|

|m4 � m1|

FIG. 1: Four-point amplitude in N = 4 SYM with non-trivial
scalar vacuum expectation values. Thick lines correspond to
massive W bosons, while dashed lines correspond to massless
particles.

of N = 4 SYM, as well as in the infrared, thanks to
the particle masses. Dual conformal symmetry implies
that the dependence on the kinematical invariants and
masses is as follows, for the symmetry breaking pattern
SU(Nc) ! SU(Nc � 4) ⇥ U(1)4 [5]:

A4(s, t, m1, m2, m3, m4) = Atree
4 ⇥ M(u, v) , (8)

where, as a generalization of eq. (5),

u =
4m1m3

�s + (m1 � m3)2
, v =

4m2m4

�t + (m2 � m4)2
. (9)

In the remainder of this Letter we wish to discuss impli-
cations of the structure (8), which as we have seen is inti-
mately tied to the Laplace-Runge-Lenz vector, regarding
the spectrum of the theory.

As depicted in Fig. 1, the W bosons interact by ex-
changing massless gauge fields from the unbroken part
of the gauge group. One can readily see that the inter-
action is attractive, so they will form bound states. At
weak coupling these are similar to Hydrogen states. As in
the Wick-Cutkosky model we may use eq. (9) to restrict
to the case m1 = m3 = m.

The exact dual conformal symmetry ensures that the
spectrum organizes into complete SO(4) multiplets, non-
perturbatively at any coupling �. The total degeneracy
at principal quantum number n, including supersymme-
try, is 256n2. To extract the spectrum from the am-
plitude we will benefit from relativity by making use of
Regge theory [6]. The latter instructs us to group the
highest-spin state at each energy En into a trajectory
j(s), where j is the spin:

j(sn)+1 = n when sn = E2
n (n = 1, 2, . . .) . (10)

The analytic continuation of the function j(s) then de-
termines the behavior of the amplitude in the ultra-
relativistic limit t ! 1 with s < 0 fixed, through
M ⇠ tj(s)+1. (Provided only that j(s) remains the lead-
ing trajectory in that region.) Conversely, if one knows

• four-particle scattering (planar)

[Alday, JMH, Plefka,Schuster]

[proof of DCS for loop integrands: Dennen, Huang;
Caron-Huot, O`Connell]

yAi ! yAi
y2i

y

A
i = (xµ

i ,mi)



Massive 4-particle amplitudes in N=4 sYM

• scatter scalars from unbroken SU(4) part

• mostly studied with the mass serving as a (dual-
conformal-symmetry-preserving) regulator

[Alday, JMH, Plefka, Schuster 09][JMH, Naculich, Schnitzer, Spradlin 10]

exponent, namely as the anomalous dimension of a Wilson loop with a scalar inserted at
the cusp. We test this proposal up to two loops by explicitly computing this anomalous
dimension.

The paper is organized as follows. In section 2, we define the model and amplitudes
under consideration. We discuss in detail the various physical limits and point out the all-
loop structure expected in some of them, using the one-loop result as a pedagogical example.
Section 3 summarizes our observations about the Regge limit at next-to-leading power, up
to three loops. Then, in section 4 we compute the anomalous dimension of a cusped Wilson
loop with a scalar insertion, and test our proposal that its anomalous dimension is equal to
the second Regge trajectory appearing at subleading power. Section 5 is devoted to study
of a total cross section. We make a conjecture for the exact formula of the latter at high
energy. We present our conclusions in section 6. The paper contains several Appendices
with technical details. Appendix C contains a detailed account of the analytic continuation
and differential equation technology needed to derive the various expansions.

2 Massive scattering amplitudes in N=4 super Yang-Mills

2.1 Setup and four-particle amplitudes

We consider the N = 4 super Yang-Mills theory in the planar limit. We spontaneously
break the SU(N

c

) gauge group to SU(N
c

� 4) ⇥ SU(4) ⇥ U(1). In this way, in addition
to the “gluons” of the unbroken SU(N

c

� 4) part of the gauge group, we have massless
bosons from the unbroken SU(4) subgroup, a U(1) photon, and massive W bosons from
the off-diagonal part. In what follows we will take N

c

large and discuss the leading term of
the amplitudes.

As discussed in ref. [11], this allows us to consider color-ordered amplitudes Y ¯Y !
Y ¯Y .1 For further papers discussing various aspects of massive amplitudes on the Coulomb
branch of N = 4 super Yang-Mills, see [14–25]. Here the particle Y is one of the off-
diagonal generators of the unbroken SU(4) subgroup, lying above the diagonal; ¯Y is then
the Hermitian conjugate. An important motivation for this considering such amplitudes
is that they are natural from the AdS/CFT viewpoint [26], and that they have a dual
conformal symmetry [11].

At tree-level, the result for the scattering amplitude is the same as in the unbroken
theory,2
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1One can also consider scattering of the U(1) photons, as was done in ref. [13].
2Amplitudes with other external states, such as gluons, are related to this one by supersymmetry.
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• loops: SU(4) particle interact via massive W bosons

• we take Nc large



• we started a systematic investigation of 
massive four-particle amplitudes in N=4 SYM

• e.g. one loop

[Caron-Huot & JMH, 2014]
This expression can be derived using unitarity cuts [22]. The topology of these integrals
was depicted in Figs. 1,2.

Let us have a first look at these amplitudes. At one loop only one integral is required,
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Here we introduced dimensionless variables2
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, v =

4m2
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, (2.11)

and the following abbreviations,

�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u + v . (2.12)

The functions appearing in eq. (2.10) are examples of polylogarithms. For these and more
general classes of integral functions that we will discuss one can define a “symbol” [24–26].
Roughly speaking, the symbol contains information about the integration kernels leading
to those functions, while forgetting about boundary constants at each integration step.
We note that the symbol of the above formula is very simple, and visibly more compact
compared to eq. (2.10),

S [�uv I
1

] = 2



�u � 1

�u + 1

⌦ �uv � �u

�uv + �u
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This foreshadows a simple structure under the action of differential operators. In the next
two sections, we will see how this structure arises in a systematic way. It will not be
necessary to restrict the analysis to the level of the symbol, rather the observations will
apply to the functions directly. Indeed, we will be able to write compact formulas in terms
of iterated integrals that make the simplicity manifest, and at the same time keep track of
the integration constants.

In particular, the complete information specifying the multi-loop integrals we will dis-
cuss will be contained in simple formulas similar to eq. (2.13). In the next two sections, we
will first see how to reproduce this formula from differential equations, and then proceed
to compute the required integrals at two and three loops.

3 Differential equation at one loop: 4 versus D dimensions

Computing loop integrals via differential equations by now a fairly standard procedure [27–
29], so we will only briefly outline the main steps. For a given class of integrals under

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [8].
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to compute the required integrals at two and three loops.

3 Differential equation at one loop: 4 versus D dimensions

Computing loop integrals via differential equations by now a fairly standard procedure [27–
29], so we will only briefly outline the main steps. For a given class of integrals under

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [8].
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Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting

the M D3-branes at di�erent positions z
i

6= 0 serves as a regulator and also allows us to exhibit dual

conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:

a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
di�erent masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,
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Figure 4: (a) Double line notation of the gauge factor corresponding to the two-loop box integral in

the Higgsed theory. The integral is dual conformally invariant. (b) Diagram for the same integral in

the equal mass case m
i

= m. Dashed thin lines denote massless propagators, thick black lines denote

massive propagators.

If we think about the masses m
i

as regulating the amplitude, then it is interesting to know the
integral I(1) for the equal mass case m

i

= m and m small compared to the kinematical variables
s and t. If we did not know the result of [40], we could carry out a simpler calculation for m

i

= m
and obtain
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We remark that from (32) it follows that the function f in (31) is given by f(u, v) = 2 ln(u) ln(v)�
�2 + O(m2).

3.3 Higher loops and four-point exponentiation

If the inversion symmetry found in section 3.2 is present at any loop order then it dramatically
restricts the set of scalar integrals that can appear. We would basically find the integrals con-
sidered in [18], with the di�erence that the outer loop carries masses, with the mass assignments
as explained in section 3.1. E.g. at two loops we expect to find the following integral only (cf.
figure 3.3),
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where x̂2

i,i+1

= 0 as in the one-loop case. The momentum space notation may be more familiar
to some readers, which in the equal mass case is given by
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Figure 1. The scattering amplitude A(s, t, m2
) has various physically interesting limits. In many

of the latter, exact results are known or conjectures (e.g. high-energy limit), while other limits are
known to be governed by integrability.

The amplitude M can be expanded perturbatively in the coupling g2 ⌘ g2

YM

N
c

/(16⇡2

), as

M = 1 + g2M (1)

+ g4M (2)

+ g6M (3)

+ . . . . (2.3)

The expression for the loop integrand of M up to three loops [check loop order] was
derived using unitarity cuts [27]. The loop integrals up to three loops were evaluated
analytically in ref. [6]. The main focus of this paper is to investigate the various limits
discussed above and to understand additional structures appearing in them. We use the
technology of ref. [6] to derive the expansions, and present the results below.

In this section, we use the one-loop expressions as a pedagogical example, and point
out the all-loop structure, whenever the latter is known. The one-loop term M (1) of eq.
(2.3) is given by a massive one-loop box integral, which evaluates to (the form below is due
to [28])
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• compact formula containing a lot of physics

• analytic result to 3 loops
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moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
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restricts the set of scalar integrals that can appear. We would basically find the integrals con-
sidered in [18], with the di�erence that the outer loop carries masses, with the mass assignments
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analytically in ref. [6]. The main focus of this paper is to investigate the various limits
discussed above and to understand additional structures appearing in them. We use the
technology of ref. [6] to derive the expansions, and present the results below.
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Figure 3. Hierarchy of one-loop functions. The integrals are classified according to their (tran-
scendental) weight, shown in the leftmost column. Each arrow corresponds to one non-zero element
of the derivative matrix A, cf. eq. (3.8). The fact that arrows only link integrals in adjacent rows
is the statement that the matrix is block triangular. Solid and dashed lines denote massive and
massless propagators, respectively.

Let us now discuss the general solution in D = 4 � 2✏ dimensions, and then come back
to the simplifications as ✏ ! 0. With the differential equations in the form (3.6) we can
immediately write down the analytic answer in terms of Chen iterated integrals [8]. We
have

~f(s, t, m2
; ✏) = Pe✏

R
� d Ã~h(✏) . (3.12)

Here the integration contour � is a path in the space of kinematical variables, which begins
at a base point, in our case m ! 1, where we have the simple boundary condition (3.9).

Let us be more specific about the notation, following closely the recent lecture notes
[28, 29] on iterated integrals. We denote by M the space of kinematical variables, here
(u, v) 2 R2, and let !i be some differential one-forms (corresponding to entries of d ˜A or
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path is an iterated integral over the differential forms corresponding to each arrow. In this
way, one arrives at

g6 =

Z

�
d log

�u � 1

�u + 1

d log

�uv � �u

�uv + �u
+

Z

�
d log

�v � 1

�v + 1

d log

�uv � �v

�uv + �v
. (3.17)

Note that only the sum of the two iterated integrals in eq. (3.17) is homotopy invariant,
not the individual terms. We can compare this to eq. (2.9), keeping in mind that g6 =

lim✏!0
�uv
2 I1. As was already mentioned, the difference is that, unlike the symbol, eq. (3.17)

completely determines the answer.
We see that the solution is specified by the set of differential forms !i allowed to appear

in the iterated integrals. This alphabet can be read off directly from the d ˜A or d A matrices.
Of course, for multivalued functions depending on many kinematical variables, one can ex-
pect this alphabet, which is related to possible singularities of the functions, to be relatively
complicated. As we will see, one can often choose specific contours � that express the Chen
iterated integrals in terms of more common multiple polylogarithms [1, 2], at the cost of
giving up the homotopy invariance and the compactness of the expressions. An example
is given in appendix C. The general formulas are also very useful for discussing analytic
continuation and for studying simplifying limits, where again one often finds expressions in
terms of multiple polylogarithms. Many examples can be found in [17]. Discontinuities of
the functions are also very transparent, see section 5.

In this section we have explained how to obtain a simplified version of the differential
equations in the ✏ ! 0 limit, starting from the D = 4 � 2✏ dimensional case. We saw that
this implied that we could work with a smaller set of integrals which satisfy block-triangular
systems of differential equations. In the next section, we will explain how to arrive at such
results working directly in four dimensions.

4 Differential equation in D = 4: two and three loops

In D = 4 a natural subset of integrals to consider are the dual conformal ones, cf. eq (2.5).
As we will see shortly, the derivatives of dual conformal integrals with respect to kinematic
variables are themselves dual conformal. Therefore, one expects to be able to find a closed
set of differential equations among dual conformal integrals. This has several advantages
over the D-dimensional approach.5

By restricting to a subset of integrals closed under differential equations, the number of
integrals we need to consider in total decreases. This, and the possibility of setting D = 4

from the start results in much faster computer implementations of the algebra needed to
derive the differential equations. This allowed us to extend the analysis to the three-loop
level.

In this section we describe the method. The first step, to generate tables of integration-
by-part identities among dual conformal integrals, is discussed in subsection 4.1. An in-
teresting feature of working in D = 4 dimensions is that the identities sometimes contain

5
We note that the idea of using IBP relations directly in four dimensions has appeared previously in

refs. [30, 31], although not in the present context of dual conformal integrals.
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[Caron-Huot & JMH, 2014]
• canonical form of differential equations for finite integrals

• makes symbol and weight structure manifest

Here we introduced dimensionless variables

u =

4m2

�s
, v =

4m2

�t
, (2.5)

and the following abbreviations,

�
u

=

p
1 + u , �

v

=

p
1 + v , �

uv

=

p
1 + u + v . (2.6)

The functions appearing in eq. (2.4) are examples of polylogarithms, with the dilogarithm
defined as Li

2

(x) = � R

x

0

log(1 � y)/y dy. The above formulas are valid in the Euclidean
region u, v > 0. In order to continue to other regions, a small imaginary part has to be
added to s and t, according to the Feynman prescription.

As already mentioned in the introduction, the amplitude has several physically in-
teresting limits, that we discuss presently. Fig. 1 summarizes the various limits that we
discuss.

2.2 Soft limit

When |s|, |t|⌧ m2 (keeping s/t fixed), the massive W bosons can be integrated out, leading
to a local effective action. At tree-level, the massive W bosons do not appear when scatter-
ing the light SU(4) particles, so that the scattering amplitude is the same as in the unbroken
theory. On the other hand, at loop level (and in the large N

c

limit), the light particles do
not interact directly among themselves, but through a loop of massive W bosons. We have
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In this formula the g2/6m4 term is one-loop exact, as predicted from known non-renormalization
theorems (see ref. [29] and references therein).

2.3 Forward limit and a total cross section

In the forward limit t = 0, the optical theorem relates the imaginary part of the scattering
amplitude Y ¯Y �! Y ¯Y to the total cross section of Y, ¯Y producing a pair of massive W
bosons, plus other particles. We have [30]
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• massive four-point alphabet at 2 loops in D=4
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(s + t))G0,1,1,0,1,0,0,1,2 , (A.22)

f23 = � 2c✏m2
(s + t) [G0,1,2,0,1,0,0,1,1 + G0,2,1,0,1,0,0,1,1] , (A.23)

f24 =4c✏2s2G1,1,1,0,1,0,1,1,0 , (A.24)
f25 =4c✏2 [sG1,1,0,0,1,�1,1,1,1 + tG0,1,1,0,1,0,0,1,1] , (A.25)

f26 =4c✏2
p

st (st � 4m2
(s + t))G1,1,0,0,1,0,1,1,1 , (A.26)

f27 =4c✏2s
p

t (s � 4m2
) (st � 4m2

(s + t))G1,1,1,0,1,0,1,1,1 , (A.27)

f28 = � 4c✏2
p

s (s � 4m2
) [sG1,1,1,0,1,�1,1,1,1 + 2tG1,1,0,0,1,0,1,1,1] , (A.28)

f29 =4c✏2s
h

� G1,0,1,0,1,0,1,0,1 + sG1,0,1,0,1,0,1,1,1 � 2G1,1,0,0,1,�1,1,1,1 � 2tG1,1,0,0,1,0,1,1,1

+ G1,1,1,�1,1,�1,1,1,1 � sG1,1,1,0,1,�1,1,1,1 + tG1,1,1,0,1,0,1,1,0

i

. (A.29)

where the normalization factor c is

c = 1/�

2
(1 + ✏) e2✏�E ✏2 (m2

)

2✏ . (A.30)

The basis integrals are depicted (qualitatively) in Fig. 5. Integrals f1 to f13 are s-channel
triangle integrals, while the subsequent four integrals are t-channel triangle integrals. These
integrals were computed previously, to some order in ✏, in ref. [18]. The form of the basis
we have chosen has the advantage that all basis elements have uniform weight and therefore
are simpler compared to that reference. Some related integrals were also considered in ref.
[52].

We wish to comment that, contrary to the D = 4 case, where we could employ the
systematic algorithm presented in section 4, in the D-dimensional case finding the basis
where 1.1 is satisfied required a fair amount of intuition, and trial and error. Also, the
resulting ˜A-matrix is no long block-triangular (nor even triangular).

A.2 Differential equations and analytic solution

With the above basis choice, we find the differential equations in the form of eq. (3.6), with
˜A being a 29 ⇥ 29 matrix. It is given in electronic form as an ancillary file with the arXiv
submission of this paper. As was discussed in the main text, the differential equations can
be immediately solved, to any order in ✏, in terms of Chen iterated integrals, cf. eq. (3.12).
The relevant boundary condition is

fi(s = 0, t = 0; m2
) = �i,1 . (A.31)

The alphabet, i.e. the set of entries of the matrix appearing in the differential equations
turns out to be given by

{1 + u + v ,
4 � v + �

4 � v � �
,
4 + v + �

4 + v � �
,
(4�u + �)(4�u + �uv + �)

(4�u � �)(4�u + �uv � �)

,
(4�uv + �)(4�uv � �uvv + �)

(4�uv � �)(4�uv � �uvv � �)

,

(A.32)
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• additional letters at 2 loops for arbitrary D

f1 f14, f15 f6, f7 f2

f8 f4 f9, f10 f3 f16

f21, f22, f23 f12 f5 f17 f18, f19, f20

f13 f25, f26 f24 f27, f28, f29

Figure 5. Master integrals the integral family, organized by the number of propagators. Each
integral stands for a set of integrals sharing the same propagators, with possible numerator factors
not shown in the pictures.

with a new square root,

� =

p

16 + 16u + 8v + v2 . (A.33)

in addition to the letters present in (4.11). We see that the full D-dimensional solution has
a more complicated structure than just the four-dimensional dual conformal integrals.

Remarkably, we find that the only new singularity introduced by (A.32) w.r.t. the
four-dimensional case is 1 + u + v = 0.
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u, 1 + u, v, 1 + v, u+ v,

�u � 1

�u + 1
,
�v � 1

�v + 1
,
�uv � 1

�uv + 1
,
�uv � �u

�uv + �u
,
�uv � �v

�uv + �v

• additional letters at 3 loops in D=4

u2 � 4v, v2 � 4u,
2� 2�uv + u

2 + 2�uv + u
,
2� 2�uv + v

2 + 2�uv + v

• D=4 alphabets can be made rational by changing variables



Obtaining the expansions
• derive them from differential equations obtained in

[Caron-Huot, JMH, 2014]

• expansion in small parameter

this solution is holomorphic on R. We are interested in the more special case where the
matrix A(x) has a regular singular point x

p

/2 R. Without loss of generality we choose
x

p

= 0. Then the differential equation can be rewritten as

xf 0
(x) =

¯A(x)f(x) . (A.1)

As a first step in solving (A.1) we perform a transformation f(x) = P (x)g(x) with a
non-singular holomorphic matrix P (x) to get

xg0(x) = B(x)g(x) . (A.2)

The new matrix B(x) is determined by P (x) and ¯A(x). Our aim is now to find a P (x)

such that B(x) becomes as simple as possible, in order to solve (A.2). As we will see, in
practice, we can choose B(x) and then calculate P (x) using

xP 0
(x) =

¯A(x)P (x) � P (x)B(x) .

Inserting the respective power series for ¯A(x) =

P

k2N0
¯A
k

xk as well as for B(x) and P (x)

in the differential equation above, we obtain, after equating the coefficients, the following
recursion relation

¯A
0

P
0

� P
0

B
0

= 0 (A.3)

(

¯A
0

� k1)P
k

� P
k

B
0

= �
k�1

X

j=0

(

¯A
k�j

P
j

� P
j

B
k�j

) , k > 0 . (A.4)

At this point a subtleness arises: We are of course interested in an unique solution of the
problem, but the matrix equation AX � XB = 0 for given square matrices A and B can
in principle has a non-trivial solution for the matrix X. One can show that the equation
AX � XB = 0 only has such a non-trivial solution X 6= 0 if and only if A and B have at
least one common eigenvalue.

Equipped with this knowledge, we now choose a certain matrix B(x). If ¯A in (??) is
a constant matrix, then we do not need to simplify the problem any further. Therefore we
choose as our starting point B

0

=

¯A
0

and P
0

= 1.
From the previous argument we know that if no pair of eigenvalues of the matrix

¯A
0

differs by a positive integer, the P
k

are determined by (A.4). In our case the matrix
appearing in the differential equation for the master integrals is a lower triangular matrix
with vanishing diagonal elements, hence all eigenvalues are zero and the former condition
is trivially fulfilled. We choose B

k

= 0 for k > 0 in order to obtain a simple differential
equation after the transformation. With this choice B(x) =

¯A
0

the solution of (A.2) is
given by x

¯

A0 . Returning to the original problem, we find the asymptotic expansion of the
solution of (??)

˜f(x) = P (x)x
¯

A0
= P (x) exp[

¯A
0

log(x)]f
0

, (A.5)

where P (x) is calculated recursively from (A.4) using P
0

= 1, B
0

=

¯A
0

and B
k

= 0 for
k > 0.

We wish to make the following comments.
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Ā(x) = Ā0 + Ā1x+ . . .

f(x) = [1 + P1x+ . . .]xĀ0
f0

• boundary value    : 
start from soft limit, 
transport it along the 
boundary of this square u

Regge limit
t ! 1

v

Regge limit
s ! 1

forward limit
t ! 0

forward limit
s ! 0

1

1

0

soft limit
s, t ! 0

high energy limit
s, t ! 1

Figure 2. Different limits we consider in the u� v plane. To derive expansions, first the boundary
value for each limit is obtained. Initially known in the soft limit, the boundary value is transported
along the edge of the diagram.

In order to do so, we use a well-known procedure for solving differential equations
in a limit, following closely the textbook [45]. Let x be parameter that parametrizes the
expansion around x = 0, and let f be the vector of master integrals. As we will see, the
solution for f takes the general form P (x)xA0f

0

, where P (x) is a (matrix) polynomial in x;
the matrix exponential xA0 contains possible logarithmic divergences, and f

0

is the finite
boundary value at x = 0. Given possible powers of logarithms log(x), one may also call f

0

the ‘regularized’ boundary value.
A technical point is related to obtaining such boundary values for all expansions that

we are interested in. The boundary value considered in ref. [6] is taken at s, t ! 0, see Fig.
2. In order to obtain appropriate boundary values for other expansions, we first transport
this value to other regions, along appropriate paths. By ‘transporting’ we mean solving the
differential equation along a given path. In principle one could choose any convenient path.
However, we some choices are preferable over others. In particular, one can often find paths
for which the one-parameter solution is expressible in terms of a relatively simple class of
functions, the harmonic polylogarithms. This is the case for the paths shown in Fig. 2.

As we will discuss in more detail in the following, special care is required when singu-
lar boundaries are approached (corresponding to singularities of the differential equation).
When several of such boundaries intersect, it is important to clarify how the singular bound-
ary is approached. In mathematical language, one can perform a ‘blowup’ that resolves
singular intersections of boundaries.

As a non-trivial verification of our analytic continuation procedure, we verified that,
upon returning to the original point s, t ! 0 after going around the whole square in the
positive quadrant shown in Fig. 2, we recover the correct boundary value.

A.1 Solving the differential equation in an expansion

In this section we follow [45] closely. Given a square n-th order matrix A(x), which is
holomorphic on a connected open set R ⇢ C, the differential equation f 0

(x) = A(x)f(x)

has a unique solution on R, provided a boundary condition f(a) = f , a 2 R. Furthermore
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[Wasow 1965]

f0

d f(s, t,m2) = d
h
Ã(s, t,m2)

i
f(s, t,m2)



Soft limit

Here we introduced dimensionless variables

u =

4m2

�s
, v =

4m2

�t
, (2.5)

and the following abbreviations,

�
u

=

p
1 + u , �

v

=

p
1 + v , �

uv

=

p
1 + u + v . (2.6)

The functions appearing in eq. (2.4) are examples of polylogarithms, with the dilogarithm
defined as Li

2

(x) = � R

x

0

log(1 � y)/y dy. The above formulas are valid in the Euclidean
region u, v > 0. In order to continue to other regions, a small imaginary part has to be
added to s and t, according to the Feynman prescription.

As already mentioned in the introduction, the amplitude has several physically in-
teresting limits, that we discuss presently. Fig. 1 summarizes the various limits that we
discuss.

2.2 Soft limit

When |s|, |t|⌧ m2 (keeping s/t fixed), the massive W bosons can be integrated out, leading
to a local effective action. At tree-level, the massive W bosons do not appear when scatter-
ing the light SU(4) particles, so that the scattering amplitude is the same as in the unbroken
theory. On the other hand, at loop level (and in the large N

c

limit), the light particles do
not interact directly among themselves, but through a loop of massive W bosons. We have

1

st
M

✓

4m2

�s
,
4m2

�t

◆

=

1

st
� g2

6m4

+ O(1/m6

). (2.7)

In this formula the g2/6m4 term is one-loop exact, as predicted from known non-renormalization
theorems (see ref. [29] and references therein).

2.3 Forward limit and a total cross section

In the forward limit t = 0, the optical theorem relates the imaginary part of the scattering
amplitude Y ¯Y �! Y ¯Y to the total cross section of Y, ¯Y producing a pair of massive W
bosons, plus other particles. We have [30]

�
tot

=

1

2E
cm

p
cm

lim

t!0

Im(A) =

1

s
lim

t!0

Im(A) , (2.8)

where E
cm

=

p
s is the center of mass energy and p

cm

=

p
s/2 is the center of mass

momentum of one particle. We have

lim

t!0

A
Y

¯

Y !Y

¯

Y

= �2g2

Y M

lim

t!0

s

t
M

✓

4m2

�s
,
4m2

�t

◆

(2.9)

In the Euclidean region �s > 0 we find

lim

t!0

�m2

t
M (1)

=�
u

log

✓

�
u

� 1

�
u

+ 1

◆

+ 2 (2.10)
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• massive W bosons can be integrated out

• effective field theory description

• 1/m^4 term one-loop exact
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• we derive the expansion up to three loops, e.g.
+

st

m6

✓
�g2

60
� g4

12
+

g6

3

◆
+

st

m8

✓
� g2

840
� g4

180

◆

+
s2 + t2

m8

✓
� g2

420
� g4

45
+

g6

24

◆
+O

✓
1

m10
, g4

◆

in agreement with non-renormalization threorems, see e.g.
[Buchbinder, Petrov, Tseytlin 01], and references therein

Note: Soft limit for U(1) external states was discussed in 
[Bianchi, Morales, Wen 15]



High-energy limit
• mass serves as a regulator for infrared/collinear divergences

• structure of IR-divergent terms known

• finite part fixed by dual conformal Ward identity for Wilson 
loops

Analytically continuing to s > 4m2 (taking into account the Feynman i0 prescription), and
taking the imaginary part of eq. (2.10), and using formula (2.8), we arrive at

�
tot

=

32⇡3g2

N
c

m2

�
u

+ O(g4

) . (2.11)

In the following, we will make a proposal for an exact formula of this cross section, in the
high energy limit.

2.4 Threshold expansion

Let us consider the amplitude close to the threshold s = 4m2 for producing a pair of W

bosons. We expect the perturbative series to break down in the regime when �
u

⇠ g2,
for the following reason. The produced W bosons interact by exchanging massless gauge
fields and scalars (and fermions), from the unbroken part of the gauge group, which lead to
an attractive 1/r potential. This causes the W bosons to form non-relativistic Hydrogen-
like bound states, which are exactly stable in the large N

c

limit. Their binding energies
are of order �E ⇠ mg4 at weak coupling. While one cannot see these bound states in
our fixed-order calculation, one should still expected to see the perturbative series diverge
when the kinetic energy becomes of this order. Recalling that �

u

=

p

1 � 4m2/s this indeed
translates to �

u

⇠ g2.
Physically, the leading terms should originate from a nonrelativistic hydrogen-like sys-

tem with the Hamiltonian in the center-of-mass frame3

H =

p2

m
� �

4⇡r
. (2.12)

The contribution of this system cam in fact be computed analytically as a function of g2/�
u

(see ref. [31], eq. (4.55)):

lim

�u!0

+

�m2

ImM(u, �4m

2

t

)

g2t
=

4⇡2g2

1 � e�
4⇡2g2

�u

+ O(�2

u

, g2�
u

, . . .). (2.13)

This resummation accounts for certain ladder graphs; these are the same graphs which
govern the Regge limit.There is in fact a very close connection between these two limits,
as discussed in ref. [12]. Higher order corrections to eq. (2.13) should be interpreted as
relativistic and many-body corrections to the Coulomb Hamiltonian.

2.5 High energy limit

We can take s, t to be much larger than the mass, m2/s ! 0, m2/t ! 0, with s/t fixed.
In this case, the mass serves as an infrared and collinear regulator, leading to a double
logarithm in the small mass limit. Expanding eq. (2.4) in this limit, we obtain

M

✓

4m2

�s
,
4m2

�t

◆

= 1 + g2



�2 log

✓

m2

�s

◆

log

✓

m2

�t

◆

+ ⇡2

�

+ O(g4

) . (2.14)

3The potential is twice that coming from gauge boson exchange, due to the scalar exchange.
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It was argued [11], based on anomalous dual conformal Ward identities originally de-
rived for Wilson loops [10], that the four-point amplitude should have the following exact
form,

log M

✓

4m2

�s
,
4m2

�t

◆

= � 1

8

�(g2

)



log

2

✓�s

m2

◆

+ log

2

✓ �t

m2

◆�

� ˜G
0



log

✓�s

m2

◆

+ log

✓ �t

m2

◆�

+

1

8

�(g2

)



log

2

✓�s

�t

◆

+ ⇡2

�

+ c̃(g2

) + O(m2

) . (2.15)

where �(a) is the light-like cusp anomalous dimension [32, 33], ˜G
0

is a collinear anomalous
dimension, and ã a coupling-dependent constant. Eq. (2.15) can be viewed as a mass-
regulated version of the BDS ansatz [9], which was originally formulated within dimensional
regularization.

The small mass limit and eq. (2.15) were studied previously using Mellin-Barnes tech-
niques in refs. [19, 20]. In the preceding sections, we derived analytic formulas for M up to
three loops. As a check, we reproduced eq. (2.15) to that order by taking the small mass
limit of our formulas. For reference the coefficients are �(g2

) = 8g2 � 16⇣
2

g4

+ 176⇣
4

g6;
˜G
0

= �4⇣
3

g4

+ g6

(36⇣
5

� 8⇣
2

⇣
3

); c̃(g2

) = 3g4⇣
4

� g6

(50⇣
6

+ 16⇣2

3

).
We note that eq. (2.15) can be rewritten in an interesting way,

log M

✓

4m2

�s
,
4m2

�t

◆

=

�(g)

8
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+ c̃(g) + O(m2

) . (2.16)

The fact that only a single logarithm appears is consistent with behaviour expected in the
Regge limit s � m2, that will be discussed presently. The fact that eq. (2.16) contains
only a single logarithm (and no further s dependence) means that M is Regge exact (in the
small mass limit).4

2.6 Regge limit

The leading term in the Regge limit s � m2, t limit, up to power corrections, has been
discussed in refs. [19, 20]. It is given by a single power law,
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The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. The leading terms for j

0

(t) and r
0

(t)

were given in eqs. (3.2).
We note that in planar N = 4 super Yang-Mills, the Regge trajectory is equal to the

angle-dependent cusp anomalous dimension [19],
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4The property of Regge-exactness was observed in the dimensionally-regularized massless case in refs.
[34, 35].
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�(g) light-like cusp [Beisert, Eden, Staudacher, 07]

• confirms a previous conjecture [Bern, Dixon, Smirnov, 05]

High-energy limit
• mass serves as a regulator for infrared/collinear divergences

• structure of IR-divergent terms known
• finite part fixed by dual conformal Ward identity for Wilson 
loops

Analytically continuing to s > 4m2 (taking into account the Feynman i0 prescription), and
taking the imaginary part of eq. (2.10), and using formula (2.8), we arrive at

�
tot

=

32⇡3g2

N
c

m2

�
u

+ O(g4

) . (2.11)

In the following, we will make a proposal for an exact formula of this cross section, in the
high energy limit.

2.4 Threshold expansion

Let us consider the amplitude close to the threshold s = 4m2 for producing a pair of W

bosons. We expect the perturbative series to break down in the regime when �
u

⇠ g2,
for the following reason. The produced W bosons interact by exchanging massless gauge
fields and scalars (and fermions), from the unbroken part of the gauge group, which lead to
an attractive 1/r potential. This causes the W bosons to form non-relativistic Hydrogen-
like bound states, which are exactly stable in the large N

c

limit. Their binding energies
are of order �E ⇠ mg4 at weak coupling. While one cannot see these bound states in
our fixed-order calculation, one should still expected to see the perturbative series diverge
when the kinetic energy becomes of this order. Recalling that �

u

=

p

1 � 4m2/s this indeed
translates to �

u

⇠ g2.
Physically, the leading terms should originate from a nonrelativistic hydrogen-like sys-

tem with the Hamiltonian in the center-of-mass frame3

H =

p2

m
� �

4⇡r
. (2.12)

The contribution of this system cam in fact be computed analytically as a function of g2/�
u

(see ref. [31], eq. (4.55)):
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This resummation accounts for certain ladder graphs; these are the same graphs which
govern the Regge limit.There is in fact a very close connection between these two limits,
as discussed in ref. [12]. Higher order corrections to eq. (2.13) should be interpreted as
relativistic and many-body corrections to the Coulomb Hamiltonian.

2.5 High energy limit

We can take s, t to be much larger than the mass, m2/s ! 0, m2/t ! 0, with s/t fixed.
In this case, the mass serves as an infrared and collinear regulator, leading to a double
logarithm in the small mass limit. Expanding eq. (2.4) in this limit, we obtain

M

✓

4m2

�s
,
4m2

�t

◆

= 1 + g2



�2 log

✓

m2

�s

◆

log

✓

m2

�t

◆

+ ⇡2

�

+ O(g4

) . (2.14)

3The potential is twice that coming from gauge boson exchange, due to the scalar exchange.
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It was argued [11], based on anomalous dual conformal Ward identities originally de-
rived for Wilson loops [10], that the four-point amplitude should have the following exact
form,
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where �(a) is the light-like cusp anomalous dimension [32, 33], ˜G
0

is a collinear anomalous
dimension, and ã a coupling-dependent constant. Eq. (2.15) can be viewed as a mass-
regulated version of the BDS ansatz [9], which was originally formulated within dimensional
regularization.

The small mass limit and eq. (2.15) were studied previously using Mellin-Barnes tech-
niques in refs. [19, 20]. In the preceding sections, we derived analytic formulas for M up to
three loops. As a check, we reproduced eq. (2.15) to that order by taking the small mass
limit of our formulas. For reference the coefficients are �(g2

) = 8g2 � 16⇣
2

g4

+ 176⇣
4
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= �4⇣
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4
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3

).
We note that eq. (2.15) can be rewritten in an interesting way,
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The fact that only a single logarithm appears is consistent with behaviour expected in the
Regge limit s � m2, that will be discussed presently. The fact that eq. (2.16) contains
only a single logarithm (and no further s dependence) means that M is Regge exact (in the
small mass limit).4

2.6 Regge limit

The leading term in the Regge limit s � m2, t limit, up to power corrections, has been
discussed in refs. [19, 20]. It is given by a single power law,
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The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. The leading terms for j

0

(t) and r
0

(t)

were given in eqs. (3.2).
We note that in planar N = 4 super Yang-Mills, the Regge trajectory is equal to the

angle-dependent cusp anomalous dimension [19],

j
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(�) , t = 4m2
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. (2.18)

4The property of Regge-exactness was observed in the dimensionally-regularized massless case in refs.
[34, 35].
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•confirms a previous conjecture [Bern, Dixon, Smirnov, 05]

High-energy limit
• mass serves as a regulator for infrared/collinear divergences

• structure of IR-divergent terms known
• finite part fixed by dual conformal Ward identity for Wilson 
loops

Analytically continuing to s > 4m2 (taking into account the Feynman i0 prescription), and
taking the imaginary part of eq. (2.10), and using formula (2.8), we arrive at
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=
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N
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�
u

+ O(g4

) . (2.11)

In the following, we will make a proposal for an exact formula of this cross section, in the
high energy limit.

2.4 Threshold expansion

Let us consider the amplitude close to the threshold s = 4m2 for producing a pair of W

bosons. We expect the perturbative series to break down in the regime when �
u

⇠ g2,
for the following reason. The produced W bosons interact by exchanging massless gauge
fields and scalars (and fermions), from the unbroken part of the gauge group, which lead to
an attractive 1/r potential. This causes the W bosons to form non-relativistic Hydrogen-
like bound states, which are exactly stable in the large N

c

limit. Their binding energies
are of order �E ⇠ mg4 at weak coupling. While one cannot see these bound states in
our fixed-order calculation, one should still expected to see the perturbative series diverge
when the kinetic energy becomes of this order. Recalling that �

u

=

p

1 � 4m2/s this indeed
translates to �

u

⇠ g2.
Physically, the leading terms should originate from a nonrelativistic hydrogen-like sys-

tem with the Hamiltonian in the center-of-mass frame3

H =

p2

m
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4⇡r
. (2.12)

The contribution of this system cam in fact be computed analytically as a function of g2/�
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This resummation accounts for certain ladder graphs; these are the same graphs which
govern the Regge limit.There is in fact a very close connection between these two limits,
as discussed in ref. [12]. Higher order corrections to eq. (2.13) should be interpreted as
relativistic and many-body corrections to the Coulomb Hamiltonian.

2.5 High energy limit

We can take s, t to be much larger than the mass, m2/s ! 0, m2/t ! 0, with s/t fixed.
In this case, the mass serves as an infrared and collinear regulator, leading to a double
logarithm in the small mass limit. Expanding eq. (2.4) in this limit, we obtain
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It was argued [11], based on anomalous dual conformal Ward identities originally de-
rived for Wilson loops [10], that the four-point amplitude should have the following exact
form,
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where �(a) is the light-like cusp anomalous dimension [32, 33], ˜G
0

is a collinear anomalous
dimension, and ã a coupling-dependent constant. Eq. (2.15) can be viewed as a mass-
regulated version of the BDS ansatz [9], which was originally formulated within dimensional
regularization.

The small mass limit and eq. (2.15) were studied previously using Mellin-Barnes tech-
niques in refs. [19, 20]. In the preceding sections, we derived analytic formulas for M up to
three loops. As a check, we reproduced eq. (2.15) to that order by taking the small mass
limit of our formulas. For reference the coefficients are �(g2

) = 8g2 � 16⇣
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The fact that only a single logarithm appears is consistent with behaviour expected in the
Regge limit s � m2, that will be discussed presently. The fact that eq. (2.16) contains
only a single logarithm (and no further s dependence) means that M is Regge exact (in the
small mass limit).4

2.6 Regge limit

The leading term in the Regge limit s � m2, t limit, up to power corrections, has been
discussed in refs. [19, 20]. It is given by a single power law,
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The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. The leading terms for j
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The small mass limit and eq. (2.15) were studied previously using Mellin-Barnes tech-
niques in refs. [19, 20]. In the preceding sections, we derived analytic formulas for M up to
three loops. As a check, we reproduced eq. (2.15) to that order by taking the small mass
limit of our formulas. For reference the coefficients are �(g2

) = 8g2 � 16⇣
2

g4

+ 176⇣
4

g6;
˜G
0

= �4⇣
3

g4

+ g6

(36⇣
5
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2

⇣
3

); c̃(g2

) = 3g4⇣
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3

).
We note that eq. (2.15) can be rewritten in an interesting way,
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The fact that only a single logarithm appears is consistent with behaviour expected in the
Regge limit s � m2, that will be discussed presently. The fact that eq. (2.16) contains
only a single logarithm (and no further s dependence) means that M is Regge exact (in the
small mass limit).4

2.6 Regge limit

The leading term in the Regge limit s � m2, t limit, up to power corrections, has been
discussed in refs. [19, 20]. It is given by a single power law,
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s!1
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�t

◆

=r
0

(t)

✓�s
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◆
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+ O(1/s) . (2.17)

The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. The leading terms for j

0

(t) and r
0

(t)

were given in eqs. (3.2).
We note that in planar N = 4 super Yang-Mills, the Regge trajectory is equal to the

angle-dependent cusp anomalous dimension [19],

j
0

(t) + 1 = ��

cusp

(�) , t = 4m2

sin

2

�

2

. (2.18)

4The property of Regge-exactness was observed in the dimensionally-regularized massless case in refs.
[34, 35].
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Regge limit and cusp anomalous dimension

Figure 5. Sample diagrams for different nf -dependent color structures appearing at three loops.
They contribute to CATFnf , CFTFnf and (TFnf)2 terms, respectively.

anomalous dimension in QCD with nf fermions in the fundamental representation has the

following form

Γcusp,QCD(φ,αs) = CR

[
αs

π
γ +

(αs

π

)2
(CAγA + TFnfγf )

+
(αs

π

)3 (
C2
AγAA + CFTFnfγFf + CATFnfγAf + (TFnf )

2 γff
)]

+O(α4
s) , (2.20)

where TF defines the normalization of the SU(N) generators in the fundamental repre-

sentation, trF (T aT b) = TF δab, and the coefficient functions are different, in general, from

those in (2.19). As compared with (2.19), the cusp anomalous dimension in QCD contains

the additional terms proportional to powers of TFnf . They come from diagrams involving

fermion loops (see figure 5).

2.5 Dependence on the cusp angle

In order to discuss the dependence of Γcusp(φ,αs) on the cusp angle, it proves convenient

to introduce auxiliary (complex) variables

x = eiφ , x+ x−1 = 2cos φ ,

ξ =
1 + x2

1− x2
= i cot φ , χ =

1− x2

x
= −2i sinφ . (2.21)

In Euclidean space, for 0 ≤ φ ≤ π, we have |x| = 1. In Minkowski space, for φ = iφM with

φM real, the variable x = e−φM can take arbitrary nonnegative values. Moreover, due to

the symmetry of the definition (2.21) under x → 1/x we can assume 0 < x < 1 without

loss of generality.

We can use the one-loop result (2.14) to illustrate interesting asymptotic behaviour

of the cusp anomalous dimension in three different limits. For φ → 0, or x → 1, the

integration contour in figure 1 transforms into a straight line leading to the vanishing of

the cusp anomaly

Γcusp(φ,αs)
φ→0∼ −φ2B(αs) (2.22)

with B = CR αs/(3π) + O(α2
s) the so-called bremsstrahlung function. For φ → π, or

x → −1, the integration contour degenerates into two antiparallel lines and the cusp
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• expected Regge behavior

• subleading powers 1/s in limit poorly studied

It was argued [11], based on anomalous dual conformal Ward identities originally de-
rived for Wilson loops [10], that the four-point amplitude should have the following exact
form,
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dimension, and ã a coupling-dependent constant. Eq. (2.15) can be viewed as a mass-
regulated version of the BDS ansatz [9], which was originally formulated within dimensional
regularization.
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The fact that only a single logarithm appears is consistent with behaviour expected in the
Regge limit s � m2, that will be discussed presently. The fact that eq. (2.16) contains
only a single logarithm (and no further s dependence) means that M is Regge exact (in the
small mass limit).4

2.6 Regge limit

The leading term in the Regge limit s � m2, t limit, up to power corrections, has been
discussed in refs. [19, 20]. It is given by a single power law,
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The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. The leading terms for j

0

(t) and r
0

(t)

were given in eqs. (3.2).
We note that in planar N = 4 super Yang-Mills, the Regge trajectory is equal to the

angle-dependent cusp anomalous dimension [19],
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0

(t) + 1 = ��

cusp

(�) , t = 4m2

sin

2
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2

. (2.18)

4The property of Regge-exactness was observed in the dimensionally-regularized massless case in refs.
[34, 35].
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• in planar N=4 sYM, Regge trajectory is 
related to cusp anomalous dimension

The angle-dependent cusp anomalous dimension is an extremely interesting quantity in its
own right. It is controlled by integrability [7, 8], and we refer the interested reader to
[24, 36] for a discussion of its various properties. Here we with to point out that its small
angle limit is known exactly [37],

�

cusp

(�) = �2 B , B =

1

4⇡2

p
�I

2

(

p
�)

I
1

(

p
�)

⇡ g2 � 2

3

⇡2g4

+

2

3

⇡4g6

+ . . . . . (2.19)

2.7 Discussion

In summary, the leading power contributions of most of the above limits are in principle
known to all loop orders, or at least controlled by an integrable model. In the case of
massless amplitudes, a systematic expansion around the collinear limit could be found and
described via integrability [38, 39]. The above observations nurture the hope that something
similar can be done here, at least in one of the above limits. In order to find out which of
the limits might be suitable for this, in this paper we investigate the subleading terms, and
we find a remarkably simple structure for the first subleading term in the Regge limit.

3 Regge expansion and SO(3,1) partial waves

The Regge limit is a likely candidate around which one can hope to build a systematic
expansion. The leading term in the limit, up to power corrections, has been considered in
refs. [19, 20]. It is given by a single power law,

lim

s!1
M

✓

4m2

�s
,
4m2

�t

◆

=r
0

(t)

✓�s

m2

◆

j0(t)+1

+ O(1/s) . (3.1)

The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. To fix our conventions,

j
0

(t) + 1 =

2g2

�
v

log

�
v

� 1

�
v

+ 1

+ O(g4

) (3.2)

and r
0

(s) = 1 + O(g2

).
By integrating the differential equation obtained in [6] in the s direction with t fixed,

we can readily obtain the power-suppressed terms. This is discussed in the Appendix. In
this way it is manifest that each term in the 1/s expansion depends on t through harmonic
polylogarithms and algebraic prefactors only.

To our surprise, we found that first 1/s correction to the limit is also a single power
law! More precisely, it is a sum of two power laws, one of which has the same exponent
j
0

as the leading one (a so-called “daughter trajectory”). To show this, we note that the
hypothesis that the O(1/s) term is the sum of two powers law, one of which having a known
exponent, leads to a three-parameter ansatz

lim

s!1
M(

4m2

�s
,
4m2

�t
) =

✓�s

m2

◆

j0(t)+1
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◆
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◆

g

2
c3(t)

+ O(1/s2

). (3.3)
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this way it is manifest that each term in the 1/s expansion depends on t through harmonic
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law! More precisely, it is a sum of two power laws, one of which has the same exponent
j
0
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An implication of dual conformal symmetry

• implies equivalence

[Alday, JMH, Plefka,Schuster 09] u =
4m1m3

�s+ (m1 �m3)2
, v =

4m2m4

�t+ (m2 �m4)2

[JMH, Naculich, Schnitzer, Spradlin 10]

M ⇠t!1 t(j(s)+1)

3

s

t t ! 1

m4 ! 0

FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:

�cusp(⇡ � �) =
��

4⇡�

✓
1 � �
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+
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8⇡3�
log
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cosh(⌧) � 1
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4⇡� � 1
⌘

+ O(�3) .

(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following

M4(s, t;m1,m2,m3,m4) = M(u, v)

m2 = m4 = m

m

m1 = m3 = ⇤ � m

⇤

M ⇠m!0 m�cusp(�)

3

s

t t ! 1

m4 ! 0

FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],
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2
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To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have
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so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
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we borrow:

�cusp(⇡ � �) =
��

4⇡�

✓
1 � �

⇡

◆
+

�2

8⇡3�
log

✏uv

2�

� �

4⇡2

Z 1

✏uv

d⌧

cosh(⌧) � 1

⇣
e�⌧ �

4⇡� � 1
⌘

+ O(�3) .

(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
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Anomalous dimension                     
of a Wilson loop with cusp
• known in QCD up to 3 loops

• known in planar N=4 sYM up to 4 loops

• planar case governed by integrability

• strong coupling computation from 
a minimal surface [Drukker, Gross,Ooguri, 1999]

�cusp(�)

[Polyakov 1980]  [Korchemsky, Radyushkin, 1987]
[Grozin, JMH,Korchemsky, Marquard, 2016]

[Drukker, Forini 06]  [Correa, JMH, Maldacena, Sever 12] 
[JMH, Huber 13]

[Drukker 12]  [Correa, Maldacena, Sever 12]

On the QCD cusp anomalous dimension Johannes M. Henn

v1 v2

φ

Figure 1: Sample Feynman diagram producing an n f dependent contribution to the three-loop cusp anoma-
lous dimension in QCD. Thick lines denote two semi-infinite segments forming a cusp of angle φ . Wavy
lines stand for gauge fields and the thin circle for a quark loop.

The two-loop results for the Wilson loop operatorsWσ=1 andWσ=0 inN = 4 SYM are3

Γsusy WLSYM =aA(1)(φ)+a2A(2)(φ) , (2.3)

Γbosonic WLSYM =a
[

A(1)(φ)−A(1)(0)
]

+a2
[

A(2)(φ)−A(2)(0)+B(2)(φ)−B(2)(0)
]

, (2.4)

where a= g2N/(8π2) is the ’t Hooft coupling and

A(1)(φ) =−ξ logx ,

B(2)(φ) =2ζ2+ log2 x−ξ
[

ζ2+ log2 x+2Li1(x2) logx−Li2(x2)
]

, (2.5)

A(2)(φ) = ξ
[

2ζ2 logx+
1
3
log3 x

]

−ξ 2
[

ζ3+ζ2 logx+
1
3
log3 x+Li2(x2) logx−Li3(x2)

]

.

Eq. (2.3) is due to the last ref. in [4], while to the best of our knowledge eq. (2.4) is new. Note
that although each of the functions (2.5) has uniform weight 1,2 and 3, respectively, they produce
a ‘weight drop’ contribution when evaluated at zero angle, A(1)(0) = 1, B(2)(0) = −2+ 2ζ2, and
A(2)(0) = 1−2ζ2.

Interestingly, the cusp anomalous dimension for the bosonic Wilson loop in N = 4 SYM
differs only slightly from the supersymmetric one. Moreover, the function B(2) is related to a
derivative of A(2), if one considers ξ and x as independent variables,

B(2) =
1
ξ

∂
∂ logx

A(2) . (2.6)

Using relations (2.5), we can rewrite the known two-loop result for the QCD cusp anomalous

3The supersymmetric results quoted here are valid in the DRED scheme, while formulas in QCD will be given in
the MS scheme. See Appendix A of ref. [10] for a discussion of the scheme conversion up to two loops.

3

• exact result [Correa, JMH, Maldacena, Sever 12]
�cusp(�) = �B �2 +O(�4)

The angle-dependent cusp anomalous dimension is an extremely interesting quantity in its
own right. It is controlled by integrability [7, 8], and we refer the interested reader to
[24, 36] for a discussion of its various properties. Here we with to point out that its small
angle limit is known exactly [37],

�

cusp

(�) = �2 B , B =

1

4⇡2

p
�I

2

(

p
�)

I
1

(

p
�)

⇡ g2 � 2

3

⇡2g4

+

2

3

⇡4g6

+ . . . . . (2.19)

2.7 Discussion

In summary, the leading power contributions of most of the above limits are in principle
known to all loop orders, or at least controlled by an integrable model. In the case of
massless amplitudes, a systematic expansion around the collinear limit could be found and
described via integrability [38, 39]. The above observations nurture the hope that something
similar can be done here, at least in one of the above limits. In order to find out which of
the limits might be suitable for this, in this paper we investigate the subleading terms, and
we find a remarkably simple structure for the first subleading term in the Regge limit.

3 Regge expansion and SO(3,1) partial waves

The Regge limit is a likely candidate around which one can hope to build a systematic
expansion. The leading term in the limit, up to power corrections, has been considered in
refs. [19, 20]. It is given by a single power law,

lim

s!1
M

✓

4m2

�s
,
4m2

�t

◆

=r
0

(t)

✓�s

m2

◆

j0(t)+1

+ O(1/s) . (3.1)

The exponent has been computed in ref. [24] to three-loop order; we reproduced their result.
For the explicit expressions we refer to that reference. To fix our conventions,

j
0

(t) + 1 =

2g2

�
v

log

�
v

� 1

�
v

+ 1

+ O(g4

) (3.2)

and r
0

(s) = 1 + O(g2

).
By integrating the differential equation obtained in [6] in the s direction with t fixed,

we can readily obtain the power-suppressed terms. This is discussed in the Appendix. In
this way it is manifest that each term in the 1/s expansion depends on t through harmonic
polylogarithms and algebraic prefactors only.

To our surprise, we found that first 1/s correction to the limit is also a single power
law! More precisely, it is a sum of two power laws, one of which has the same exponent
j
0

as the leading one (a so-called “daughter trajectory”). To show this, we note that the
hypothesis that the O(1/s) term is the sum of two powers law, one of which having a known
exponent, leads to a three-parameter ansatz

lim

s!1
M(

4m2

�s
,
4m2

�t
) =

✓�s

m2

◆

j0(t)+1

✓

1 +

c
1

(t)

s

◆

+

c
2

(t)

s

✓�s

m2

◆

g

2
c3(t)

+ O(1/s2

). (3.3)
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16

Y  = ε

Y  = 0

Fig. 2: A minimal surface for a Wilson loop with a cusp.
The regularized area is evaluated over the shaded region.

The result is that the area of the surface has a logarithmic divergence as well
as a linear divergence. It behaves as

A =
L

2πϵ
− 1

2π
F (Ω, Θ) log

L

ϵ
+ · · · , (3.19)

where Ω and Θ are the cusp angles in R4 and S5 respectively.
When either Θ or Ω vanishes, we can express F (Ω, Θ)/2π in terms of

elliptic integrals. In fig. 3. we show the numerical evaluation of the function
F (Ω, 0) in the solid curve. This is to be compared with the perturbative
expression (2.12) shown in the dashed curve. The function F (Ω, 0) is zero
at Ω = π and has a pole at Ω = 0. As the angle Ω → 0 at the cusp, the
loop goes back along it’s original path, or backtracks. Regularizing the extra
divergence from the pole turns it into a linear divergence which cancels part
of the linear divergence from the length of the loop. This is related to issues
discussed in the section on the zig-zag symmetry.

Away from the cusp, the surface approaches the boundary along the Y -
direction without a momentum in the X-direction. Right at the cusp, how-
ever, the surface has momentum in both the Y and r direction. This means
that, although the constraint ẋ2 = ẏ2 is obeyed almost everywhere, it is



power suppressed terms in Regge limit
• we find only one ‘daughter’ trajectory

The angle-dependent cusp anomalous dimension is an extremely interesting quantity in its
own right. It is controlled by integrability [7, 8], and we refer the interested reader to
[24, 36] for a discussion of its various properties. Here we with to point out that its small
angle limit is known exactly [37],
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massless amplitudes, a systematic expansion around the collinear limit could be found and
described via integrability [38, 39]. The above observations nurture the hope that something
similar can be done here, at least in one of the above limits. In order to find out which of
the limits might be suitable for this, in this paper we investigate the subleading terms, and
we find a remarkably simple structure for the first subleading term in the Regge limit.

3 Regge expansion and SO(3,1) partial waves
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this way it is manifest that each term in the 1/s expansion depends on t through harmonic
polylogarithms and algebraic prefactors only.

To our surprise, we found that first 1/s correction to the limit is also a single power
law! More precisely, it is a sum of two power laws, one of which has the same exponent
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as the leading one (a so-called “daughter trajectory”). To show this, we note that the
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• tested up to 3 loops

• dual conformal symmetry suggests O(4) partial 
wave expansion

The first two terms in the Regge limit are pure 
powers, when using O(4) variables! 
 
 

It is possible to extract much more information by exploiting the symmetries of the
problem. Physically, the Regge limit s ! 1 represents long propagation in the t-channel,
which is delineated by the two propagators D

2

and D
4

. These break the SO(4,2) dual
conformal symmetry down to an SO(3,1) subgroup. It is thus natural to expand the am-
plitude in terms of states which have definite SO(3,1) spin j exchanged in the t-channel.
Geometrically, the propagators D

1

and D
3

define two points on the hyperboloid which is
acted upon by SO(3,1), and the invariant s defines the boost angle ⇢ between these two
points. The explicit expression is worked out in appendix [(??)]:

e�⇢
=

�uv � �u

�uv + �u
, cosh ⇢ = 1 +

2t

s
� t

2m2

. (6.8)

To project onto definite spin in the t-channel we expand the amplitude in terms of SO(1,3)
Legendre polynomials. When making this partial wave expansion it is important to consider
a physical amplitude, rather than M itself which is divided by the tree amplitude. To avoid
complications related to spin we scatter scalar particles (there is no loss of generality since
all particles are in the same multiplet), with R-charge such that only two scalars can be
exchanged in the t-channel. This amplitude is simply A =

t
sM . To write down the SO(3,1)

partial wave expansion we warm up with the O(4) case, which would be physically relevant
for example in the region 0 < t < 4m2, �t < s < 0. In this region we can write simply

t

s
M(

4m2

�s
,
4m2

�t
) =

1
X

j=0

P (4)

j (cosh ⇢)Cj(
4m2

�t
). (6.9)

This is similar to the conventional partial wave expansion, we have just enlarged O(3) to
O(4) to exploit the additional symmetries of our problem. To analytically continue to the
other regimes where O(4) becomes SO(3,1), which includes the Regge limit, we use the
standard Watson-Sommerfeld trick to convert the sum to an integral (see, for example, [?
]). Using the simple expression for the O(4) Legendre polynomials P (4)

j (cosh ⇢) =

sinh(j+1)⇢
(j+1) sinh ⇢

and absorbing unnecessary factors, we obtain the representation

1 + e�⇢

1 � e�⇢
M(

4m2

�s
,
4m2

�t
) =

Z i1

�i1

dj

2⇡i sin ⇡j
e(j+1)⇢Cj(

4m2

�t
) . (6.10)

[Relative prefactors?] Apart from the prefactor on the left this is just inverse Laplace
transform with respect to the hyperbolic angle ⇢. The contour must be to the left of j = 0

but to the right of the rightmost singularity of Cj ; for t < 0 we expect this region to be
nonempty.

Let us see the implications of this expansion. In the Regge limit s ⇠ e⇢ ! 1, the
amplitude will be dominated by the rightmost singularities of Cj in the spin plane. Since
we are in the large Nc limit it seems most natural to expect these singularities to be discrete
poles, e.g. a discrete set of Regge trajectories. This is consistent to what we found above.
Let us now assume that in the SO(3,1) variables the daughter trajectories are completely
removed. For the two leading powers we then find:

lim

s!1

1 + e�⇢

1 � e�⇢
M(

4m2

�s
,
4m2

�t
) = r

0

(t)e(j0(t)+1)⇢
+ r

1

(t)e(j1(t)+1)⇢
+ O(e�2⇢

), (6.11)

– 27 –

( cosh ⇢ = 1 +

2s

t
� s

2m2 )



O(4) partial wave expansion

The three unknown c
i

(t) can be determined at leading order in the coupling using the tree-,
one- and two-loop amplitudes at leading log, so the exponentiation hypothesis produces a
nontrivial prediction at three-loops and leading-log. From our three-loop result we found
that this prediction was fulfilled, supporting the hypothesis.

It is possible to extract much more information by exploiting the symmetries of the
problem. Physically, the Regge limit s ! 1 represents long propagation in the t-channel,
which is delineated by the two propagators D

2

and D
4

. These break the SO(4,2) dual
conformal symmetry down to an SO(3,1) subgroup. It is thus natural to expand the am-
plitude in terms of states which have definite SO(3,1) spin j exchanged in the t-channel.
Geometrically, the propagators D

1

and D
3

define two points on the hyperboloid which is
acted upon by SO(3,1), and the invariant s defines the boost angle ⇢ between these two
points. The explicit expression is worked out in appendix [(??)]:

e�⇢

=

�
uv

� �
u

�
uv

+ �
u

, cosh ⇢ = 1 +

2t

s
� t

2m2

. (3.4)

To project onto definite spin in the t-channel we expand the amplitude in terms of SO(1,3)
Legendre polynomials. When making this partial wave expansion it is important to consider
a physical amplitude, rather than M itself which is divided by the tree amplitude. We recall
that for scalars this amplitude is simply A =

t

s

M . To write down the SO(3,1) partial wave
expansion we warm up with the O(4) case, which would be physically relevant for example
in the region 0 < t < 4m2, �t < s < 0. In this region we can write simply

t

s
M

✓

4m2
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,
4m2

�t

◆

=

1
X

j=0

P (4)

j

(cosh ⇢)C
j

(

4m2

�t
). (3.5)

This is similar to the conventional partial wave expansion, we have just enlarged O(3)
to O(4) to exploit the additional symmetries of our problem. To analytically continue to
the other regimes where O(4) becomes SO(3,1), which includes the Regge limit, we use the
standard Watson-Sommerfeld trick to convert the sum to an integral (see, for example, [40]).
Using the simple expression for the O(4) Legendre polynomials P (4)

j

(cosh ⇢) =

sinh(j+1)⇢

(j+1) sinh ⇢

and absorbing unnecessary factors, we obtain the representation

1 + e�⇢
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) . (3.6)

Apart from the prefactor on the left this is just an inverse Laplace transform with respect
to the hyperbolic angle ⇢. The contour must be to the left of j = 0 but to the right of the
rightmost singularity of C

j

; for t < 0 we expect this region to be nonempty.
Let us see the implications of this expansion. In the Regge limit s ⇠ e⇢ ! 1, the

amplitude will be dominated by the rightmost singularities of C
j

in the spin plane. Since
we are in the large N

c

limit it seems most natural to expect these singularities to be discrete
poles, e.g. a discrete set of Regge trajectories. This is consistent to what we found above.
Let us now assume that in the SO(3,1) variables the daughter trajectories are completely
removed. For the two leading powers we then find:
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• 3-loop result agrees with this form!

where j
0

+ 1 ⇡ 0 is the leading trajectory described above and j
1

+ 1 ⇡ �1 is a single
subleading one. We find that our amplitude matches precisely this form! Since we now
have only a single exponential for the subleading term we can read off from our results its
trajectory to three loops. Defining as in ref. [24]
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The residue is r
1

= 2 + 8g2

⇣

2 log

1+e

��

1�e

�� � 1

⌘

+ O(g4

). We note that only classical polylog-
arithms appear at this order, which is simpler than the corresponding result for j

0

[24].
For the next power-suppressed term e�2⇢ ⇠ 1/s2, we find that the amplitude is in-

consistent with a single power law, which implies only that at least two Regge trajectories
must contribute. Unfortunately, it is impossible to test from the three-loop result whether
only two trajectories contribute, because this hypothesis leads to a four-parameter ansatz
and has no predictive power before four loops. For this reason we do not present results for
sub-sub-leading Regge trajectories.

Power corrections to the Regge limit have been relatively little studied. The simple
structure we find (3.7) strongly suggests the existence of a systematic expansion with a
nice structure. In section 4, we make a proposal for how to determine j

1

(t) in terms of an
effective field theory calculation.

4 Anomalous dimension of a Wilson loop with scalar insertion at the
cusp

• propose to identify j
1

as the anomalous dimension of a cusped Wilson loop with a
scalar insertion

• compute the latter up to two loops from a soft current calculation

5 Total cross section

Here we discuss the total cross section �
Y

¯

Y !W

¯

W+X

at higher orders in perturbation theory.
We compute it up to three-loop order, and then observe an interesting property about its
high-energy behavior that motivates us to make an all-loop prediction.
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• We find (                     )
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1
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+ O(g4

). We note that only classical polylog-
arithms appear at this order, which is simpler than the corresponding result for j

0

[24].
For the next power-suppressed term e�2⇢ ⇠ 1/s2, we find that the amplitude is in-

consistent with a single power law, which implies only that at least two Regge trajectories
must contribute. Unfortunately, it is impossible to test from the three-loop result whether
only two trajectories contribute, because this hypothesis leads to a four-parameter ansatz
and has no predictive power before four loops. For this reason we do not present results for
sub-sub-leading Regge trajectories.

Power corrections to the Regge limit have been relatively little studied. The simple
structure we find (3.7) strongly suggests the existence of a systematic expansion with a
nice structure. In section 4, we make a proposal for how to determine j

1

(t) in terms of an
effective field theory calculation.

4 Anomalous dimension of a Wilson loop with scalar insertion at the
cusp

• propose to identify j
1

as the anomalous dimension of a cusped Wilson loop with a
scalar insertion

• compute the latter up to two loops from a soft current calculation

5 Total cross section

Here we discuss the total cross section �
Y

¯

Y !W

¯

W+X

at higher orders in perturbation theory.
We compute it up to three-loop order, and then observe an interesting property about its
high-energy behavior that motivates us to make an all-loop prediction.
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sub-leading trajectory:

residue:

cosh ⇢ = 1 +

2s

t
� s

2m2



Subleading Regge trajectory from an 
anomalous dimension

• leading Regge trajectory is cusp 
anomalous dimension

• we conjecture that the first subleading trajectory      
is computed from the anomalous dimension of a 
Wilson loop with a scalar insertion at the cusp

j0

On the QCD cusp anomalous dimension Johannes M. Henn

v1 v2

φ

Figure 1: Sample Feynman diagram producing an n f dependent contribution to the three-loop cusp anoma-
lous dimension in QCD. Thick lines denote two semi-infinite segments forming a cusp of angle φ . Wavy
lines stand for gauge fields and the thin circle for a quark loop.

The two-loop results for the Wilson loop operatorsWσ=1 andWσ=0 inN = 4 SYM are3

Γsusy WLSYM =aA(1)(φ)+a2A(2)(φ) , (2.3)

Γbosonic WLSYM =a
[

A(1)(φ)−A(1)(0)
]

+a2
[

A(2)(φ)−A(2)(0)+B(2)(φ)−B(2)(0)
]

, (2.4)

where a= g2N/(8π2) is the ’t Hooft coupling and

A(1)(φ) =−ξ logx ,

B(2)(φ) =2ζ2+ log2 x−ξ
[

ζ2+ log2 x+2Li1(x2) logx−Li2(x2)
]

, (2.5)

A(2)(φ) = ξ
[

2ζ2 logx+
1
3
log3 x

]

−ξ 2
[

ζ3+ζ2 logx+
1
3
log3 x+Li2(x2) logx−Li3(x2)

]

.

Eq. (2.3) is due to the last ref. in [4], while to the best of our knowledge eq. (2.4) is new. Note
that although each of the functions (2.5) has uniform weight 1,2 and 3, respectively, they produce
a ‘weight drop’ contribution when evaluated at zero angle, A(1)(0) = 1, B(2)(0) = −2+ 2ζ2, and
A(2)(0) = 1−2ζ2.

Interestingly, the cusp anomalous dimension for the bosonic Wilson loop in N = 4 SYM
differs only slightly from the supersymmetric one. Moreover, the function B(2) is related to a
derivative of A(2), if one considers ξ and x as independent variables,

B(2) =
1
ξ

∂
∂ logx

A(2) . (2.6)

Using relations (2.5), we can rewrite the known two-loop result for the QCD cusp anomalous

3The supersymmetric results quoted here are valid in the DRED scheme, while formulas in QCD will be given in
the MS scheme. See Appendix A of ref. [10] for a discussion of the scheme conversion up to two loops.

3

j1

[Brueser, Caron-Huot, JMH]• two-loop test underway



Conclusion

• studied massive amplitudes on the Coulomb 
branch of N=4 sYM

• we found a simple structure in the Regge limit

• only one daughter trajectory at 1/s

• many limits governed by integrability, or exact 
results available, at leading order in expansion 

New results:

• trajectory computable from Wilson loop



Outlook
• confirm conjecture for subleading Regge trajectory?

• for massless amplitudes, expansion derived around 
collinear limit using integrability; can the same be 
done for the Regge limit?

• amplitudes at strong coupling: so far, computed only 
for small mass; it would be interesting to extend this 
to finite mass, at least in Regge limit

• Wilson loop with scalar insertion from integrability?

[Alday, Gaiotto, Maldacena, Sever, Vieira 06; Basso, Sever, Vieira 13]

[Gromov, Kazakov,Leurent,Volin, 13; Gromov, Levkovich-Maslyuk 15]

[Drukker, Gross, Ooguri 1999; Alday, Maldacena 07]
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Forward limit and cross section

Here we introduced dimensionless variables

u =

4m2

�s
, v =

4m2

�t
, (2.5)

and the following abbreviations,

�
u

=

p
1 + u , �

v

=

p
1 + v , �

uv

=

p
1 + u + v . (2.6)

The functions appearing in eq. (2.4) are examples of polylogarithms, with the dilogarithm
defined as Li

2

(x) = � R

x

0

log(1 � y)/y dy. The above formulas are valid in the Euclidean
region u, v > 0. In order to continue to other regions, a small imaginary part has to be
added to s and t, according to the Feynman prescription.

As already mentioned in the introduction, the amplitude has several physically in-
teresting limits, that we discuss presently. Fig. 1 summarizes the various limits that we
discuss.

2.2 Soft limit

When |s|, |t|⌧ m2 (keeping s/t fixed), the massive W bosons can be integrated out, leading
to a local effective action. At tree-level, the massive W bosons do not appear when scatter-
ing the light SU(4) particles, so that the scattering amplitude is the same as in the unbroken
theory. On the other hand, at loop level (and in the large N

c

limit), the light particles do
not interact directly among themselves, but through a loop of massive W bosons. We have

1

st
M

✓

4m2

�s
,
4m2

�t

◆

=

1

st
� g2

6m4

+ O(1/m6

). (2.7)

In this formula the g2/6m4 term is one-loop exact, as predicted from known non-renormalization
theorems (see ref. [29] and references therein).

2.3 Forward limit and a total cross section

In the forward limit t = 0, the optical theorem relates the imaginary part of the scattering
amplitude Y ¯Y �! Y ¯Y to the total cross section of Y, ¯Y producing a pair of massive W
bosons, plus other particles. We have [30]

�
tot

=

1

2E
cm

p
cm

lim

t!0

Im(A) =

1

s
lim

t!0

Im(A) , (2.8)

where E
cm

=

p
s is the center of mass energy and p

cm

=

p
s/2 is the center of mass

momentum of one particle. We have

lim

t!0

A
Y

¯

Y !Y

¯

Y

= �2g2

Y M

lim

t!0

s

t
M

✓

4m2

�s
,
4m2

�t

◆

(2.9)

In the Euclidean region �s > 0 we find

lim

t!0

�m2

t
M (1)

=�
u

log

✓

�
u

� 1

�
u

+ 1

◆

+ 2 (2.10)
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• optical theorem relates                   to AY Ȳ!Y Ȳ

�
tot

= �Y ¯Y!WW+gluons

• one-loop example:

• cross section goes to a constant at high energies

• we will make a conjecture for this limit at any 
coupling!

lim
s!1

�
tot

=
32⇡3g2

Ncm2

+O(g4)

�
tot

=
32⇡3g2

Ncm2

p
1� 4m2/s+O(g4)



Exact cross section at high energies
• leading Regge behavior

• Assuming the above limits commute, we obtain

5.1 Total cross-section up to three-loop order

We collect the technical results for the various contributing Feynman integrals, as well as
intermediate steps of the calculation. in the Appendix. Here we give the result for the cross
sections

For example, at one- and two-loops we have

�
Y

¯

Y !W

¯

W+X

=

g2

8⇡N
c

m2

⇥


g2

1 + x

1 � x
+ g4

(16Li

2

(�x) + 8 log(�x) log(1 + x) � 4⇣
2

) + O(g6

)

�

.

(5.1)
We recall our notation g2 ⌘ g

2
YMNc

16⇡

2 , so this cross-section is suppressed by 1/N
c

. It is pre-
dominantly inelastic, as the final state includes massive W bosons but not the original SU(4)
particles. The elastic channel, which would be nonzero even for s < 4m2, is proportional
to 1/N2

c

and so we will not discuss it here.
The inclusive cross-sections do not depend on the helicity of the incoming particles

(which could be any member of the N = 4 supermultiplet), due to the fact that our setup
preserve the supersymmetry.

5.2 Comments on the total cross-section at high energies

The cross-section (5.1) can be seen to approach a constant in the high-energy limit. It turns
out that the value of the constant can be determined exactly at all values of the ‘t Hooft
coupling!

To see this, we use the leading Regge behavior of the amplitude

lim

s!1
M

✓

4m2

�s
,
4m2

�s

◆

= r
0

(t)(�s � i0)

1+j0(t)
+ O(1/s) , (5.2)

where r
0

and j
0

+ 1 are defined below eq. (3.1). Because of the mass gap, loop corrections
to A / Ms/t must be real and analytic around t = 0. This implies that loop corrections
to these parameters must vanish at the origin: r

0

(0) = 1 and j
0

(0) = �1. Hence

lim

t!0

lim

s!1

1

�t
Im M(s, t) = ⇡

d

dt
j
0

(t)|
t=0

. (5.3)

Equation (5.3) is a bit unusual since the cross-section involves the slope of the Regge
trajectory at t = 0 but not the intercept, as is more usual. This happens here because the
intercept precisely vanish.

Remarkably, the slope has been calculated exactly in ref. [37],

d

dt
j
0

(t)|
t=0

=

B

m2

, B =

1

4⇡2

p
�I

2

(

p
�)

I
1

(

p
�)

⇡ g2 � 2

3

⇡2g4

+

2

3

⇡4g6

+ . . . . (5.4)

We will now assume that the order of the limits in eq. (5.3) can be interchanged. In that
case, combining these formulas, we obtain finally

lim

s!1
�

Y

¯

Y !X

=

2⇡g2

m2

B (5.5)
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• analytically continue and take imaginary part,  
take forward limit
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• the slope is given by the ‘Bremsstrahlung function’

lim
s!1

�Y Ȳ!WW+X =
2⇡2g2

m2
B

• confirmed by explicit calculation up to 3 loops



Perturbative check to 3 loops
• we find

lim
s!1

�Y Ȳ!WW+X =
2⇡2g2

m2
B

• perfectly agrees with conjectured formula!

The first term originates from the ladder while the last line originates from the tennis court
topology. Here H are harmonic polylogarithms of argument x, which we omitted for brevity.
Note that all formulas above are symmetric under x ! 1/x, as may be verified by using
identities between the harmonic polylogarithms for different arguments [43, 44].

The Euclidean region s < 0, where the amplitude is real, corresponds to 0 < x < 1.
The region s > 4m2 where the inelastic cross-section is nonzero is �1 < x < 0, with a
small positive imaginary part added to x in keeping with Feynman’s i0 prescription. Using
standard methods it is possible to calculate the imaginary part in this region. The result
at one- and two loops is [Refer to main text]

�
tot

=

32⇡3g2

N
c

m2

⇥

g2X
1

+ g4X
2

+ g6X
3

+ O(g8

)

⇤

, (C.5)

where

X
1

=

1 + x

1 � x
, (C.6)

X
2

=16Li
2

(�x) + 8 log(�x) log(x + 1) � 2⇡2

3

, (C.7)

X
3

= � 48H�3,0

(�x) + 64H
3,0

(�x) + 48H�2,0,0

(�x) � 64H
2,0,0

(�x)

� 48⇣
2

H�2

(�x) + 64⇣
2

H
2

(�x) + 32⇣
4

+

1 + x

1 � x

h

16H�3,0

(�x) + 96H�2,2

(�x) � 32H
2,2

(�x) + 128H
3,1

(�x)

+ 64H�2,0,0

(�x) + 32H�2,1,0

(�x) + 32H
2,�1,0

(�x) � 80H
2,0,0

(�x)
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(�x) � 112⇣
2

H�2

(�x) + 96⇣
2

H
2

(�x) + 28⇣
4

i

. (C.8)

where we have chosen a form that is manifestly real-valued for �1 < x < 0.
In the high-energy limit x ! 0, we obtain

X
1

! 1 , X
2

! �2⇡2

3

, X
3

! 2⇡4

3

. (C.9)

This is in precise agreement with the perturbative expansion of the Bremsstrahlung function

B(�) =

1

16⇡4



� � 1

24

�2

+

1

384

�3

+ O(�4

)

�

. (C.10)

where � = g2

Y M

N
c

, and we recall that g2

= g2

Y M

N
c

/(16⇡2

).

A Method for obtaining the expansions in various limits

Here we explain how to express the amplitude in various limits, which in general can contain
logarithmic divergences. In principle, we could use the analytic expressions for the master
integrals derived in ref. [6], and expand them using properties of the iterated integrals
they were expressed in. We find it more convenient to obtain such expansions directly from
differential equation for the master integrals that were derived in ref. [6].
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The region s > 4m2 where the inelastic cross-section is nonzero is �1 < x < 0, with a
small positive imaginary part added to x in keeping with Feynman’s i0 prescription. Using
standard methods it is possible to calculate the imaginary part in this region. The result
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where we have chosen a form that is manifestly real-valued for �1 < x < 0.
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This is in precise agreement with the perturbative expansion of the Bremsstrahlung function
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A Method for obtaining the expansions in various limits

Here we explain how to express the amplitude in various limits, which in general can contain
logarithmic divergences. In principle, we could use the analytic expressions for the master
integrals derived in ref. [6], and expand them using properties of the iterated integrals
they were expressed in. We find it more convenient to obtain such expansions directly from
differential equation for the master integrals that were derived in ref. [6].
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Transporting the boundary value
• boundary value    : 
start from soft limit, 
transport it along the 
boundary of this square

u

Regge limit
t ! 1

v

Regge limit
s ! 1

forward limit
t ! 0

forward limit
s ! 0

1

1

0

soft limit
s, t ! 0

high energy limit
s, t ! 1

Figure 2. Different limits we consider in the u� v plane. To derive expansions, first the boundary
value for each limit is obtained. Initially known in the soft limit, the boundary value is transported
along the edge of the diagram.

In order to do so, we use a well-known procedure for solving differential equations
in a limit, following closely the textbook [45]. Let x be parameter that parametrizes the
expansion around x = 0, and let f be the vector of master integrals. As we will see, the
solution for f takes the general form P (x)xA0f

0

, where P (x) is a (matrix) polynomial in x;
the matrix exponential xA0 contains possible logarithmic divergences, and f

0

is the finite
boundary value at x = 0. Given possible powers of logarithms log(x), one may also call f

0

the ‘regularized’ boundary value.
A technical point is related to obtaining such boundary values for all expansions that

we are interested in. The boundary value considered in ref. [6] is taken at s, t ! 0, see Fig.
2. In order to obtain appropriate boundary values for other expansions, we first transport
this value to other regions, along appropriate paths. By ‘transporting’ we mean solving the
differential equation along a given path. In principle one could choose any convenient path.
However, we some choices are preferable over others. In particular, one can often find paths
for which the one-parameter solution is expressible in terms of a relatively simple class of
functions, the harmonic polylogarithms. This is the case for the paths shown in Fig. 2.

As we will discuss in more detail in the following, special care is required when singu-
lar boundaries are approached (corresponding to singularities of the differential equation).
When several of such boundaries intersect, it is important to clarify how the singular bound-
ary is approached. In mathematical language, one can perform a ‘blowup’ that resolves
singular intersections of boundaries.

As a non-trivial verification of our analytic continuation procedure, we verified that,
upon returning to the original point s, t ! 0 after going around the whole square in the
positive quadrant shown in Fig. 2, we recover the correct boundary value.

A.1 Solving the differential equation in an expansion

In this section we follow [45] closely. Given a square n-th order matrix A(x), which is
holomorphic on a connected open set R ⇢ C, the differential equation f 0

(x) = A(x)f(x)

has a unique solution on R, provided a boundary condition f(a) = f , a 2 R. Furthermore

– 15 –

f0

• choice of analytic continuation path

u

v

�

�

0

v = �u

u2

= 4v

v2

= 4u

�
�

t

�

✏
1 � ✏ 1

4 ✏

(1�✏)

2

0

u2

= 4v v2

= 4u

�1

✏

�2

✏

�3

✏

�4

✏

�5

✏

Figure 3. Left: Choice of path in the u-v-plane. Right: Choice of path in the t-�-plane.

the regularized boundary condition, we use the asymptotic expansion of the differential
equation at x

v

= 0.
The calculation for the second path �

2

is identical to the previous one. In the limit
v ! 0 and with the variable transformation (A.7) for the variable u the differential equation
can be solved on the path �

2

in terms of harmonic polylogarithms. With the previous
calculated boundary condition (??) the integration constants are fixed. With g�2

(x
u

) as our
regularized boundary condition we finally solve the differential equation in an asymptotic
expansion with arbitrary u 2 [1, 1) in x

v

near x
v

= 0 to obtain the master integrals in the
Regge limit.

A.4 High Energy Expansion

In the high energy limit we have |s|, |t|� 4m2. We will work in the Euclidean region.
Obtaining the appropriate boundary condition at (u, v) = (0, 0) requires some care, as we
discuss presently. The subtlety originates from the singularity structure of the differential
equation in the limit u, v ! 0. This can be immediately understood by inspecting the
alphabet of the differential equation [6], which contains the letters {log(u), log(v), log(u +

v), log(u2 � 4v), log(v2 � 4v)}. (It is sufficient to study these “simple” letters, because
the other letters do not add more singularities in the vicinity of (u, v) = (0, 0).) The
corresponding singular lines are shown in Fig. 3(a). The fact that the latter intersect at
(u, v) = (0, 0) implies that one has to specify how exactly this point is approached. The
problem of a potential ambiguity can be avoided by switching to appropriate variables that
resolve the way the singularity is approached.

The variable transformations can also be understood as choosing more sophisticated
paths near the origin to connect both boundary value g1

BC

and g2

BC

. In figure 3 these paths
are shown. The first transformation or path

�
�

(t) = (u, v) = (�(1 � t), �t) , t 2 [0, 1] , � > 0 (A.9)

resolves the ambiguity of the first three considered letters

{log(u), log(v), log(u + v)} �! {log(�), log(t), log(1 � t)} .
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bound state energy of pair of W bosons

• obtain bound state energy from 
cusp anomalous dimension
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FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:

�cusp(⇡ � �) =
��

4⇡�
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cosh(⌧) � 1
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+ O(�3) .

(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following
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lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:

�cusp(⇡ � �) =
��

4⇡�
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cosh(⌧) � 1

⇣
e�⌧ �
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⌘

+ O(�3) .

(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following
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FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following
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The classical two-body (or Kepler) problem, with
Hamiltonian

H =
p2

2µ
� �

4⇡

1

|x| , (1)

is well-known to possess a non-obvious conserved vec-
tor which makes it superintegrable. This Laplace-Runge-
Lenz vector is expressed as

~A =
1

2

⇣
~p ⇥ ~L � ~L ⇥ ~p

⌘
� µ

�

4⇡

~x

|x| , (2)

where ~L = ~x ⇥ ~p is the angular momentum. Physically,
its conservation accounts for the fact that the orbits of
the 1/|x| central potential form closed ellipses which do
not precess with time.

The same Hamiltonian is relevant for the quantum me-
chanical description of the Hydrogen atom, with ~x and
~p replaced by operators. As was pointed out early on by
Pauli, the Laplace-Runge-Lenz vector in the above form
is also conserved quantum mechanically, i.e. it commutes
with the Hamiltonian. The symmetry group is enlarged
from SO(3) rotations to SO(4). This gives rise to a sim-
ple algebraic way of calculating the spectrum, which au-
tomatically accounts for its degeneracies [1].

In real Hydrogen atoms, both this symmetry and its as-
sociated degeneracies are approximate due to relativistic
e↵ects whose size are of order me↵4, where ↵ is the fine-
structure constant and me the electron mass. Is there
a relativistic quantum field theory which has an exact
symmetry generalizing the conservation of the Laplace-
Runge-Lenz vector? In this Letter we will show that
such a system exists and use the additional symmetry to
facilitate the calculation of its spectrum.

To understand how to formulate the symmetry (2) rel-
ativistically it will be helpful to recall the classic work by

Wick and Cutkosky [2]. These authors studied the rela-
tivistic Bethe-Salpeter equation for a bound-state wave-
function  ,

 (p) =

Z �4i�m1m3  (q) d4q/(2⇡)4

(p�q)2
⇥
(q�y1)2 + m2

1

⇤⇥
(y3�q)2 + m2

3

⇤ , (3)

where (y3�y1)µ = Pµ is the total four-momentum of the
bound state and (q�y1)µ and (y3�q)µ are the momenta
of its two constituents. This is a natural relativistic gen-
eralization of the Schrödinger equation, and arises as the
approximation to electron-proton scattering where one
retains only all planar ladder diagrams and treats the
photon as a spin-0 particle.

Wick and Cutkosky noticed that the equation is invari-
ant under a larger symmetry than the expected SO(3)
rotations. In modern language, their findings may be
summarized by the statement that eq. (3) is covariant
under the transformations

�⇠p
µ = 2(⇠·p)pµ � p2⇠µ , � (p) = �2(⇠·p) (p) ,

�⇠y
µ
i = 2(⇠·yi)yµ

i � �
y2
i + m2

i

�
⇠µ , �mi = 2(⇠·yi)mi .

(4)

These transformations have a simple interpretation as
conformal transformations of the momentum space of the
theory. Following recent literature, we will refer to them
as dual conformal transformations. Noticing that eq. (3)
is also invariant under translations of (p, yi) as well as un-
der Lorentz transformations, one may see that the equa-
tion is covariant under a full SO(4, 2) group.

The transformations (4) can be used to relate solutions
which correspond to di↵erent masses. In fact, they imply
that the dynamics depends only on the combination [2]

u =
4m1m3

�s + (m1 � m3)2
. (5)
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FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following

• result for energy

• checks
- [...] bounded for any n
- n large correctly gives quark-antiquark potential

[Ericksson, Semenoff, Szabo Zarembo, 1999; Pineda 2007]

4

correction to eq. (14):

(En�2m) |�3 =
��3m

64⇡4n2


S1(n) + log

�

2⇡n
� 1 � 1

2n

�
, (16)

for n = 1, 2, 3, . . ., and where S1(n) =
Pn

k=1
1
k is the

harmonic number.
Let us discuss this equation. First, we note that the

size of the correction is uniformly bounded as a function
of n, and therefore for small � it is always smaller than
the leading term given in eq. (14). This demonstrates
that the perturbative expansion is under control.

Second, we notice the non-analytic dependence on the
coupling through the log � term. This originates from
the ultrasoft modes alluded to earlier, and is conceptually
similar to the (me↵5 log ↵) contribution to the Lamb shift
in QED. It appears earlier by two powers of the coupling
in the present model because ultrasoft scalar exchanges
are not dipole-suppressed.

Third, the square bracket becomes constant at large n.
Its value is in perfect agreement with replacing the cou-
pling � in eq. (14) with the (flat space) static potential,

� 7! � + �2

2⇡2

�
log �

2⇡ + �E � 1
�
+ O(�3) [12], as it should.

Finally, we wish to mention that we have verified
eq. (16) against a direct next-to-leading order calculation
of the spectrum using conventional methods [14]. This
confirms, in a nontrivial way, that the method based on
eqs. (10)-(11) provides the correct spectrum.

The duality (11) can also be verified at strong cou-
pling. The cusp anomalous dimension was obtained in
semi-analytic form in ref. [15] while the spectrum was
obtained in ref. [16] by solving numerically a di↵erential
equation, both using the AdS/CFT correspondence. The
two formulations appear very di↵erent and we were not
able to find an analytic match between them. Nonethe-
less, when we evaluated numerically the two formulas
throughout the range 0 < E < 2m, (corresponding to
0 < � < ⇡), we found perfect agreement within numeri-
cal accuracy.

In Fig. 3 we show the next-to-leading order trajectory
at weak-coupling [22] as well as the strong coupling for-
mula taken from either one of refs. [15, 16]. The spectrum
is obtained from the curves by solving jn(sn) = n�1,
see eq. (10). With increasing coupling the ground state
becomes more tightly bound, as expected. The reader
should not attribute a deep meaning to the agreement
of the two curves at � = 10 and large spin; this is sim-
ply due to the fact that the weak and strong coupling
extrapolations of the flat space static potential turn out
to cross roughly at this value. The di↵erence in shape
between the two curves o↵ers one measure of the current
uncertainties at intermediate coupling. At small s the
slope is exactly known [17].

As a final application, the Laplace-Runge-Lenz sym-
metry allows to extend the conventional SO(3) partial
wave decomposition of the four-particle amplitude so as
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FIG. 3: Regge trajectories of Hydrogen-like states in N = 4
SYM theory for � = 5, 10, 10, 30, 100 (bottom to top). The
solid-blue lines use the weak-coupling formulas while the
dashed-red lines use the large-� formulas (see text). The
bound states (crosses) are obtained by equating j to an inte-
ger. The inset shows the same curves with the total energy
in units of mass on the horizontal axis.

to account for the contribution of full SO(4) multiplets,
reducing the complexity of the expansion. By analyzing
the three-loop results from ref. [18] in this way we found
evidence that the first subleading power correction in the
high-energy limit is controlled by a single Regge pole, or,
equivalently via eq. (11), a single operator of dimension

�1(�) =1 + �/(4⇡2) + O(�2) . (17)

Details of the analysis and the full three-loop trajectory
will be reported elsewhere [14]. This simplicity hints at
further structure in the dynamics of this model, which
does not directly follow from the Laplace-Runge-Lenz
symmetry but which the latter may help uncover.

To conclude we mention that the cusp anomalous di-
mension in N = 4 SYM has been recently reformulated
in terms of a system of integral equations which embody
the integrability of this theory [19]. Combined with the
present results this could lead to an exact determina-
tion of the spectrum at finite coupling in this interacting
quantum field theory.
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S1(n) =
nX

k=1

1

k

- confirmed by standard ‘Coulomb resummation’
[Caron-Huot, JMH]

[systematic EFT, e.g. 
Pineda 2007]

[Correa, JMH, Maldacena, 
Sever, 2012]

[see Beneke, Kiyo & Schuller 1312.4791]



Strong coupling check

• cusp anomalous dimension              at strong 
coupling was computed from minimal surface

[Drukker, Gross,Ooguri, 1999]

�cusp(�)

• spectrum of ‘mesons’ was computed at strong 
coupling in 2003

[Kruczensky, Mateos, Myers, Winters, 2003]

• the two curves agree perfectly, once one uses 
the correct dictionary!

En = 2m sin
�n

2



Regge trajectories of Hydrogen-like states

solid/blue: based on weak-coupling formulas
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� = 5, 10, 10, 30, 100 (bottom to top)

dashed/red: based on strong-coupling formulas

[Correa, Maldacena, Sever; Drukker]

• exact spectrum should be computable 
from TBA for �cusp(�)


