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ASPECTS OF 2 ➔ 2 SCATTERING 
AMPLITUDES IN THE HIGH-ENERGY LIMIT



2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

• Calculation of scattering amplitudes at high order in perturbation theory is one of the main 
ingredients for the program of precision physics at the LHC

• Amplitudes are complicated functions of the kinematical invariants, their calculation is non-
trivial, and it is subject of intense study.

• Express Feynman integrals in terms of known functions (harmonic polylogarithms, elliptic 
integrals, etc)

• Amplitudes contains infrared divergences, which must cancel when summing virtual and 
real corrections.
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT

• Consider 2 → 2 scattering amplitudes in the high-energy limit:

• The amplitude becomes a function of the ratio |s/t|; here we consider the leading power term 
in this expansion

s = (p1 + p2)
2 � �t = �(p1 � p4)

2 > 0

p1

p2 p3

p4

t channel
s channel

• Information and constraints can be obtained by 
considering kinematical limits:

• it reduces the number of invariants;

• it helps identifying factorisation properties and 
iterative structures of the amplitude;

• it may be relevant for phenomenology: because of 
soft and collinear enhancement, amplitudes in 
specific kinematic limit develops large logarithms, 
which may spoil the convergence of the perturbative 
expansion in that region of the parameter space.
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2 ➔ 2 SCATTERING AMPLITUDES IN THE HIGH-ENERGY LIMIT
• Consider, as an example, the gluon-gluon scattering amplitude at tree level:

• In the high-energy limit only the second diagram contributes at leading power. The amplitude is 
simply

• The amplitude at higher orders contains logarithms of the ratio |s/t|. In the sixties the dominant 
behaviour in the high-energy limit was characterised in terms of Regge poles and cuts. These can 
now be studied in the context of QCD. One has

• where the function 𝛼g(t) is known as the Regge trajectory:

• and r𝜞 is a ubiquitous 1-loop factor: 
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• Determining the amplitude beyond LL requires to understand the structure of Regge cuts. At this 
purpose, the following considerations hold:

• The amplitudes which develop definite factorisation properties in the high-energy limit are 
the so called even and odd amplitudes, i.e. the projection onto eigenstates of signature, 
(crossing symmetry s ↔ u):

• M(+) and M(−) are respectively imaginary and real, when expressed in terms of the natural 
signature-even combination of logs:

• Beyond tree level the amplitude has a non-trivial color structure:

• Decompose the amplitude in a color orthonormal basis in the t-channel: for gluon scattering 
one has

• Invoking Bose symmetry we deduce that M(+), which is symmetric under permutation of the 
kinematic variables s and u, picks out the colour components which are symmetric under 
permutation of the indices of particles 2 and 3, and M(−), which is antisymmetric upon 
swapping s and u, picks out the colour-antisymmetric part:
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FACTORISATION STRUCTURE
• Write the amplitude as the sum of odd and even component, with expansion in the strong 

coupling constant

• Up to NNLL, the amplitude in the high-energy limit has the following factorisation structure: 

• aIn order to display the Regge-cut contributions in the most transparent way, it proves useful to 
define a “reduced” amplitude by removing from it the Reggeized gluon and collinear divergences 
as follows:
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THE BALITSKY-JIMWLK EQUATION AND 
THE THREE REGGEON CUT

. . . . . .

+



• Starting at NNLL, one has mixing between one- and three-Reggeons exchange:

• The mixing between one- and three-Reggeons exchange has significant consequences:
• It is at the origin of the breaking of the simple power law one has up to NLL accuracy. 

Such breaking appears for the first time at two loops.
• It implies that, starting at three loops, there will be a single-logarithmic contribution 

originating from the three-Reggeon exchange, and from the interference of the one- and 
three-Reggeon exchange: the interpretation of the Regge trajectory at three loops needs 
to be clarified. 

• Schematically, the whole amplitude at NNLL is composed of 

THE ODD AMPLITUDE AT NNLL
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• The high-energy limit correspond to a configuration of forward scattering: 

• The high-energy logarithm correspond to the rapidity difference between the target and the 
projectile: 

• Such kinematical configuration is described conveniently in terms of Wilson lines stretching from 
−∞ to +∞.  The Wilson lines follow the paths of color charges inside the projectile, and are thus 
null and labelled by transverse coordinates z:

• The idea is to approximate, to leading power, the fast projectile and target by Wilson lines and 
then compute the scattering amplitude between Wilson lines. 

• The full transverse structure needs to be retained. A projectile necessarily contains multiple color 
charges at different transverse positions: the number of Wilson lines cannot be held fixed.
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• However, in perturbation theory, the unitary matrices U(z) will be close to identity and so can be 
usefully parametrised by a field W:

• The color-adjoint field W sources a BFKL Reggeised gluon. A generic projectile, created with four-
momentum p1 and absorbed with p4, can thus be expanded at weak coupling as

• The factors Di,j depend on  the transverse coordinates of the W fields, but not on the center of 
mass energy. They correspond to the impact factors for the exchange of one-, two- and three- 
Reggeons. 

• The energy dependence enters from the fact that the Wilson lines have rapidity divergences which 
must be regulated, which leads to a rapidity evolution equation (Balitsky-JIMWLK):
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• The inner product is by definition the scattering amplitude of Wilson lines renormalized to 
equal rapidity.

• For our purposes, it suffices to know that it is Gaussian to leading-order: 

• Multi-Reggeon correlators are obtained by Wick contractions:

• There are also off-diagonal elements, which can be defined to have zero overlap (at equal 
rapidity):

• Choosing the 1-W and 3-W states to be orthogonal, combined with symmetry of the 
Hamiltonian, (boost invariance):

• implies that in this scheme Hk → k+2 = Hk+2 → k. This relation is known as projectile-target duality.
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• The Balitsky-JIMWLK equation for an arbitrary number of Wilson lines U(zi) can be written in 
the form

• with 

• We work now in dimensional regularisation with 2-2𝜀 dimensions, and dz = d2-2𝜀z, and TL/R’s are 
generators for left and right color rotations: 

• In our analysis we need only the leading-order conformal invariant kernel Kij, which has a very 
simple dimension-independent expression in momentum space:

• The corrections to the Balitsky-JIMWLK Hamiltonian are suppressed by αs in a power-
counting where the Wilson lines are generic, U ~ 1. This is more general than the perturbative 
counting where 1 - U ~ gs W ~ gs, implying that the equation resums infinite towers of Reggeon 
iterations.

THE BALITSKY-JIMWLK EQUATION
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• To see this, expand U in powers of W:

• The expansion of the color generators follows by using the Backer-Campbell-Hausdorff 
formula.  Then, it is possible to expand the leading Hamiltonian Hij in powers of gs: 

• We get  

• The first non-linear correction is new: 
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• More on the Balitsky-JIMWLK power counting (U ~ 1) vs the BFKL power-counting (W ~ 1):

• Inserting the expansion of U in terms of W in the leading-order Balitsky-JIMWLK equation,  one 
finds that an m→m+k transition is proportional to gs

2l+k. Thus for k ≥ 0, all the leading 
interactions can be extracted from the leading-order equation. 

• On the other hand, interactions with k < 0 are suppressed by at least gs
2l+|k|, which means that 

they can first appear in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. 

• Thus to obtain the m→m−2 transition by direct calculation of the Hamiltonian would require 
three- loop non-planar computation. 

• For our purposes this is unnecessary, since the symmetry of H predicts the result.

THE BALITSKY-JIMWLK EQUATION
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• We can now list the ingredients which build up the amplitude up to three loops. Since the odd 
and even sectors are orthogonal and closed under the action of Ĥ (signature symmetry), we have 

• Using that multi-Reggeon impact factors are coupling-suppressed, |𝜓ik⟩ ~ gs
k, and using the 

suppression by powers of αs of off-diagonal elements in H, the signature odd amplitude becomes 
to three loops:

THE ODD AMPLITUDE UP TO THREE LOOPS
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• Up to two loops the amplitude reads

• with

• At three loops we find the following amplitude:

• where the loop functions RA,B,C are 

RESULT: THE ODD AMPLITUDE AT NNLL TO THREE LOOPS
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COMPARISON BETWEEN REGGE AND 
INFRARED FACTORIZATION



• The calculation of the amplitude so far is based solely on evolution equations of the Regge 
limit, and has taken no input from the theory of infrared divergences. 

• This gives a highly nontrivial consistency test: the prediction must be consistent with the 
known exponentiation pattern and the anomalous dimensions governing infrared divergences.

• Conversely, the prediction for the reduced amplitude gives a constraint on the soft anomalous 
dimension, which helps in determining it beyond three loops. 

• The infrared divergences of scattering amplitudes are controlled by a renormalization group 
equation, whose integrated version takes the form 

• where Z is given as a path-ordered exponential of the soft-anomalous dimension: 

• The soft anomalous dimension for scattering of massless partons (pi2 = 0) is an operators in 
color space given, to three loops, by
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• 𝜞dip
n involves only only pairwise interactions amongst the hard partons, and is therefore referred 

to as the “dipole formula”: 

• The term 𝜟n(𝜌ijkl) involves interactions of up to four partons, and is called the “quadrupole 
correction”: 

• The three loop correction has been calculated recently, and reads

• where F is a function of cross ratios: 𝜌ijkl = (-sij)(-skl)/(-sik)(-sjl). Explicitly, one has 
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• In the high-energy limit the dipole formula reduces to 

• and the quadrupole correction reads:

• where

• Because of the form of 𝜞dip and 𝜟(𝜌ijkl) in the High-energy limit, the Z factor factorises 

• where the relevant bit for us is 

• The factors K and Q𝜟 involve integrals over the scale:
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• The scalar factors Zi,j are the same as those we removed from the reduced amplitude in the 
BFKL context, and at LL accuracy the exponent in    is also very similar to the gluon Regge 
trajectory subtracted in the reduced amplitude. This makes the relation between the “infrared-
renormalized” amplitude (hard function) H and reduced matrix element particularly simple: 

• This equation allows us to pass from directly from the reduced amplitude predicted using BFKL 
theory, to the hard function. 

• In particular, the statement that the left-hand-side H is finite, which is equivalent to the 
exponentiation of infrared divergences, is a highly nontrivial constraint on our result. 

• By using Baker-Campbell-Hausdorff formula one gets
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• Some coefficients, like the impact factors, are not predicted explicitly from Regge theory: in that 
case, we can use these equations in the reverse direction. 

• The BFLK approach we have developed allows us to extract these quantities consistently, and use 
them to predict higher orders. Consider for instance the impact factors at two loops: 

• In our framework the impact factors at two loops can be extracted consistently by taking the 
projection of the amplitude onto the antisymmetric octet component: 

• The effect of the three-Reggeon cut is evident from the color-dependent term in the equations 
above. Once again, consistency requires the three equations above to be satisfied simultaneously.
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• At three loops, at NNLL, the calculation of the odd sector within Regge theory gives

• Which is consistent with infrared factorisation. This is a rather non-trivial check, given that the 
two calculations are done in two completely different ways. 

• We get also some parts of the finite amplitude.  In the orthonormal basis in the t-channel we have

• The antisymmetric octet amplitude cannot be predicted entirely, given the unknown Regge 
trajectory at three loops; The              component, however,  can be predicted exactly, and it 
agrees with a recent calculation of the gluon-gluon scattering amplitude at three loops in N=4 
SYM. 
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• Consider the relation between the three-loop “gluon Regge trajectory” and the single logarithmic term.

• Starting from three loops the “gluon Regge trajectory” is scheme-dependent. Here we defined it to be the 1→1 
matrix element of the Hamiltonian, αg(t) = −H1→1/CA, in the scheme where states corresponding to a different 
number of Reggeon are orthogonal:

• Thanks to a recent calculation of the gluon-gluon amplitude in N=4 SYM, in this theory one has 

• Define the Regge trajectory as 

• Then, matching these two results we get

• The amplitude is really a sum of multiple powers. Simply exponentiating the log of the full amplitude at three loops 
predicts an incorrect four-loop amplitude.  The correct, predictive, procedure is to exponentiate the BFKL 
Hamiltonian. With the “trajectory” fixed as above, this procedure does not require any new parameter for the odd 
amplitude at NNLL to all loop orders.
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THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT
• Consider now the two Reggeon cut at NLL

• The amplitude reads 

• and the even amplitude at NLL is given by 
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• The even amplitude reads

• with

• and

• and the “target averaged wave function” reads

• with 

• and the initial condition is fixed to 

• Furthermore, the function f is given by the BFKL kernel 

THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT

M̂(+,`)
NLL = �i⇡

(B0)`

(`� 1)!

Z
[Dk]

p2

k2(k � p)2
⌦(`�1)(p, k)T2

s�u M(0),

⌦(`�1)(p, k) = (2CA �T2
t ) 

(`�1)(p, k) + (CA �T2
t )�

(`�1)(p, k),

 (`�1)(p, k) =

Z
[Dk0] f(p, k, k0)

h
⌦(`�2)(p, k0)� ⌦(`�2)(p, k)

i
, �(`�1)(p, k) =

1� J(p, k)

2✏
⌦(`�2)(p, k),

[Dk] ⌘ ⇡

B0

✓
µ2

4⇡e��E

◆✏
d2�2✏k

(2⇡)2�2✏
,

B0 = r� = e✏�E
�2(1� ✏)�(1 + ✏)

�(1� 2✏)
.

f(p, k0, k) =
k02

k2(k � k0)2
+

(p� k0)2

(p� k)2(k � k0)2
� p2

k2(p� k)2
, J(p, k) = �2✏

Z
[Dk0] f(p, k, k0).

⌦(0)(p, k) = 1.

. . .
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
Ω(ℓ−2)(p, k)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ω(ℓ−1)(p, k′)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

M̂(+,ℓ)(p)

⎫
⎬
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• Up to four loops one gets

THE BALITSKY-JIMWLK EQUATION AND THE TWO REGGEON CUT
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not predicted by the dipole formula of infrared divergences! 

• The fact that it arises only at four loops is a consequence of 
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structure appears in the target-averaged wave function already 
at three loops, but it cancels out due to this symmetry. 
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• It would be possible to calculate few order higher in perturbation theory; the problem 
becomes rapidly quite involved. 

• However, this is not necessary, if we are interested to know only the infrared singularities. 
Reconsider the wave function: 

• with

• where

• The wave function is actually finite. All divergences must arise from the last integration!

• We see that divergences arises only from the limit k → p or k → 0 limit. Consider one of the 
two regions, and multiply the result by two. 

TWO REGGEON CUT: SOFT APPROXIMATION
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• In the soft limit the integrations becomes trivial (“bubble” type integrals), and we are able to obtain an 
all-order solution for the target-averaged wave function: 

• where 

• It is immediate to get a result for the reduced amplitude: 

• This result is valid only up to the single poles. Taking this into account, it is possible to achieve a 
tremendous simplification: 

• where
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• Expand for a few orders in the strong coupling constant:

• A new color structure appears every three loops!
• Resumming the amplitude to all loops we get 

TWO REGGEON CUT: SOFT APPROXIMATION
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COMPARISON BETWEEN REGGE AND 
INFRARED FACTORIZATION



• Consider the soft anomalous dimension

• with 

• Parameterise the soft anomalous dimension at NLL according to

• Within the dipole formula one has

• Recall now the infrared factorisation formula

• with
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• We get the infrared-factorised representation of the reduced amplitude:

• and comparing with the result from the Regge theory allows us to obtain

• Explicitly, for the first few orders we have:

• The result can be used as constraint in a bootstrap approach to the soft anomalous dimension.
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CONCLUSION

• Using the non-linear Balitsky-JIMWLK rapidity evolution equation we have computed the 
three-Reggeon cut to three loops, at NNLL in the signature-odd sector, and the IR singular 
part of the two-Reggeon cut to all orders, at NLL in the signature-even sector, for 2 → 2 
scattering amplitudes.

• Concerning the three-Reggeon cut, we have shown how to take systematically into 
account the effect of mixing between states with k and k+2 Reggeized gluons, due non-
diagonal terms in the Balitsky-JIMWLK Hamiltonian, which contribute first at NNLL.

• Our results are consistent with a recent determination of the infrared structure of 
scattering amplitudes at three loops, as well as a computation of 2 → 2 gluon scattering in 
N = 4 super Yang-Mills theory. Combining the latter with our Regge-cut calculation we 
extract the three-loop Regge trajectory in this theory. 

• The calculation of the infrared singular part of the two-Reggeon cut allows us to extract 
the soft anomalous dimension to all orders in perturbation theory, in this kinematical limit.

• The information obtained concerning infrared singularities has been/will be used to 
constrain the structure of the soft anomalous dimension in general kinematics. (See 
Almelid, Duhr, Gardi, McLeod, White, 2017).


